On dual description of the $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ sigma models
 Based on M. Alfimov, B. Feigin, B. Hoare and A. Litvinov, arXiv:2003.xxxxx

Mikhail Alfimov,

HSE University, Lebedev Physical Institute RAS and Moscow Engineering Physical Institute

NORDITA, Stockholm, Sweden, February 24, 2020

Motivation

- The integrability-preserving deformations of $\mathrm{O}(\mathrm{N})$ sigma models are known to admit the dual description in terms of a coupled theory of bosons and Dirac fermions with exponential interactions of the Toda type (Fateev, Onofri, Zamolodchikov'93, Fateev'04, Litvinov, Spodyneiko'18).
- On the other hand, there are known examples of the integrable superstring theories, such as type IIB $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ (dual to $\mathcal{N}=4 \mathrm{SYM}$) and others, which also have integrable deformations.
- Our strategic goal is to build a similar dual description for the deformed $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ type IIB superstring (Arutyunov, Frolov et al.) and, possibly, other theories of this type.
- There are three major problems on this way:

1. Incorporate the fermionic degrees of freedom into the construction of dual theory.
2. Adapt the whole construction to describe the sigma models with non-compact target space.
3. The superstring theory possesses the reparametrization symmetry and requires gauge fixing, which makes us include this symmetry into the dual description.

- In the present work we address the first problem generalizing the dual description of the deformed $\mathrm{O}(\mathrm{N})$ sigma models to account for the $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ sigma models.

The undeformed $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ sigma model

- The $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ sigma model is given by the symmetric space sigma model on the supercoset

$$
\frac{\operatorname{OSp}(N \mid 2 m)}{\operatorname{OSp}(N-1 \mid 2 m)}
$$

- The action for the supergroup-valued field $g \in \operatorname{OSp}(N \mid 2 m)$ is

$$
\mathcal{S}_{0}=-\frac{\mathrm{R}^{2}}{2} \int \mathrm{~d}^{2} \times \mathrm{S} \operatorname{Tr}\left[\mathrm{~J}_{+} \mathrm{P} \mathrm{~J}_{-}\right]
$$

where $\mathrm{J}_{ \pm}=\mathrm{g}^{-1} \partial_{ \pm \mathrm{g}} \mathrm{g}$ takes values in the Grassmann envelope of the Lie superalgebra $\mathfrak{o s p}(\mathrm{N} \mid 2 \mathrm{~m} ; \mathbb{R})$ and STr is the invariant bilinear form.

- We are considering the symmetric space with the \mathbb{Z}_{2} grading

$$
\mathfrak{g} \equiv \mathfrak{o s p}(N \mid 2 m ; \mathbb{R})=\mathfrak{g}^{(0)} \oplus \mathfrak{g}^{(1)}, \quad \mathfrak{g}^{(0)}=\mathfrak{o s p}(N-1 \mid 2 \mathfrak{m} ; \mathbb{R})
$$

and P being the projector onto the grade 1 subspace.

- This model is quantum integrable and has the following rational S-matrix (Saleur, Wehefrizt-Kaufmann'01)

$$
\check{S}_{i_{1} i_{2}}^{j_{2 j} j_{1}}(\theta)=\sigma_{1}(\theta) E_{i_{1} i_{2}}^{j_{2} j_{1}}+\sigma_{2}(\theta) P_{i_{1} i_{2}}^{j_{2} j_{1}}+\sigma_{3}(\theta) I_{i_{1} i_{2}}^{j j_{j} j_{1}},
$$

where

$$
\sigma_{1}(\theta)=-\frac{2 i \pi}{(N-2 m-2)(i \pi-\theta)} \sigma_{2}(\theta), \quad \sigma_{3}(\theta)=-\frac{2 i \pi}{(N-2 m-2) \theta} \sigma_{2}(\theta)
$$

Trigonometric $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ R-matrix

- Besides rational solution, the Yang-Baxter equation

$$
\check{R}_{i_{1} i_{2}}^{k_{2} k_{1}}(\mu) \check{R}_{k_{1} i_{3}}^{k_{3} j_{1}}(\mu+\rho) \check{R}_{k_{2} k_{3}}^{j_{3} j_{2}}(\rho)=\check{R}_{i_{2} i_{3}}^{k_{3} k_{2}}(\mu) \check{R}_{i_{1} k_{3}}^{j_{3} k_{1}}(\mu+\rho) \check{R}_{k_{1} k_{2}}^{j_{2} j_{1}}(\rho)
$$

has the trigonometric solution (Bazhanov, Shadrikov'87) with the parameter q.

- Introducing the parametrization

$$
q=e^{2 i \pi \lambda}, \quad \mu=(N-2 m-2) \lambda \theta
$$

we observe that for $\lambda=0$ it is consistent with the rational limit and in the special point $\lambda=\frac{1}{2}$ the \check{R}-matrix demonstrates an interesting behaviour.

- It becomes proportional to the S-matrix, corresponding to the scattering of the free theory consisting of $\frac{N}{2}$ Dirac fermions and m superghost particles in the case of even N and the same plus one boson in the case of odd N .

Special point of the $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ R-matrix

- The $\mathrm{O}(3)$ example with $\mathrm{N}=3, \mathrm{~m}=0$ at $\lambda=\frac{1}{2}$:

$$
\left.\frac{\check{R}_{i_{1} i_{2}}^{j_{2} j_{1}}}{\check{\mathrm{R}}_{22}^{22}}=\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\right)+\mathcal{O}\left(\lambda-\frac{1}{2}\right)
$$

- The $\operatorname{OSp}(1 \mid 2)$ example with $\mathrm{N}=1, \mathrm{~m}=2$ at $\lambda=\frac{1}{2}$:

$$
\left.\frac{\check{R}_{i_{1} i_{2}}^{j_{2} j_{1}}}{\check{R}_{22}^{22}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\right)+\mathcal{O}\left(\lambda-\frac{1}{2}\right) .
$$

The deformed $\mathrm{O}(3)$ dual model

- In the work (Fateev, Onofri, Zamolodchikov'93) there was studied the dual description of the sigma model with the metric $\left(\lambda=v+\mathcal{O}\left(\nu^{2}\right)\right)$

$$
d s^{2}=\frac{k}{v}\left(\frac{d r^{2}}{\left(1-r^{2}\right)\left(1-\kappa^{2} r^{2}\right)}+\frac{1-r^{2}}{1-\kappa^{2} r^{2}} d \phi^{2}\right)
$$

In the other limit $\lambda \rightarrow \frac{1}{2}$ the special integrable perturbation of the Sine-Liouville theory $\left(\lambda=\frac{1}{2}-\frac{\mathrm{b}^{2}}{2}+\mathcal{O}\left(\mathrm{b}^{4}\right)\right)$

$$
\begin{aligned}
\mathcal{L}=\frac{\left(\partial_{\mu} \Phi\right)^{2}}{8 \pi}+\frac{\left(\partial_{\mu} \varphi\right)^{2}}{8 \pi} & \\
\quad-\frac{m}{4}\left(e^{b \Phi+i \beta \varphi}\right. & \left.+e^{b \Phi-i \beta \varphi}+e^{-b \Phi+i \beta \varphi}+e^{-b \Phi-i \beta \varphi}\right)- \\
& \quad-\frac{m^{2}}{32 \pi b^{2}}\left(e^{2 b \Phi}-2+e^{-2 b \Phi}\right), \quad \beta=\sqrt{1+b^{2}}
\end{aligned}
$$

The sigma model coupling constant in the regime $\mathrm{b} \rightarrow \infty$ is $v=\frac{2}{\mathrm{~b}^{2}}+\mathcal{O}\left(\frac{1}{\mathrm{~b}^{4}}\right)$.

- Using the Coleman-Mandelstam boson-fermion duality (Coleman'75, Mandelstam'75) $(\partial \varphi)^{2} /(8 \pi) \rightarrow i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi, e^{ \pm i \beta \varphi} \rightarrow \bar{\psi}\left(1 \pm \gamma_{5}\right) \psi$, we obtain

$$
\begin{aligned}
\mathcal{L}=\frac{\left(\partial_{\mu} \Phi\right)^{2}}{8 \pi}+i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi+ & \frac{\pi b^{2}}{2\left(1+b^{2}\right)}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}- \\
& \quad-m \bar{\psi} \psi \cosh (b \Phi)-\frac{m^{2}}{8 \pi b^{2}} \sinh ^{2}(b \Phi)
\end{aligned}
$$

Building of the dual model

Guiding principles to look for the dual description (Litvinov, Spodyneiko'18)

1. The theory with the S-matrix as above has to be renormalizable (at least 1-loop). In the case of the deformed $\mathrm{O}(3)$ it can be checked by the RG flow of the "sausage" metric.
2. The dual theory is found as an integrable perturbation from the special point of the S-matrix and is determined by the set of screening charges, which commute with the integrals of motion in the leading order in the mass parameter

$$
\left[\mathrm{I}_{\mathrm{k}}^{\text {free }}, \int \mathrm{e}^{\left(\boldsymbol{\alpha}_{r}, \phi\right)} \mathrm{d} z\right]=0
$$

In the case of the deformed $O(3)$ they are $e^{b \Phi+i \beta \varphi}, e^{b \Phi-i \beta \varphi}, e^{-b \Phi+i \beta \varphi}$ and $e^{-\mathrm{b} \Phi-\mathfrak{i} \beta \varphi}$.
3. Our model is an integrable deformation of the CFT, based on the coset

$$
\frac{\widehat{\mathfrak{o s p}}(\mathrm{N} \mid 2 \mathrm{~m})_{w}}{\widehat{\mathfrak{o s p}}(\mathrm{~N}-1 \mid 2 \mathrm{~m})_{w}} .
$$

Again, in the $\mathrm{O}(\mathrm{N})$ case they are $\widehat{\mathfrak{s o}}(\mathrm{N})_{w} / \widehat{\mathfrak{s o}}(\mathrm{N}-1)_{w}$.

The Yang-Baxter deformation of the $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ sigma model

- The action for the Yang-Baxter deformed model is (Klimcik'02,Delduc'13)

$$
\mathcal{S}_{\eta}=\int \mathrm{d}^{2} x \mathcal{L}_{\eta}=-\frac{\eta}{2 v} \int \mathrm{~d}^{2} x \mathrm{~S} \operatorname{Tr}\left[\mathrm{~J}_{+} \mathrm{P} \frac{1}{1-\eta \mathcal{R}_{\mathrm{g}} \mathrm{P}} \mathrm{~J}_{-}\right],
$$

where η is the deformation parameter and v is the sigma model coupling.

- The operator $\mathcal{R}_{\mathfrak{g}}$ is defined in terms of an operator $\mathcal{R}: \mathfrak{g} \rightarrow \mathfrak{g}$ through

$$
\mathcal{R}_{\mathrm{g}}=\mathrm{Ad}_{\mathrm{g}}^{-1} \mathcal{R} \mathrm{Ad}_{\mathrm{g}},
$$

with \mathcal{R} an antisymmetric solution of the (non-split) modified classical Yang-Baxter equation

$$
\begin{aligned}
& {[\mathcal{R X}, \mathcal{R} Y]-\mathcal{R}([\mathrm{X}, \mathcal{R} \mathrm{Y}]+[\mathcal{R X}, \mathrm{Y}])=[\mathrm{X}, \mathrm{Y}],} \\
& \mathrm{S} \operatorname{Tr}[\mathrm{X}(\mathcal{R} \mathrm{Y})]=-\mathrm{S} \operatorname{Tr}[(\mathcal{R X}) \mathrm{Y}], \quad \mathrm{X}, \mathrm{Y} \in \mathfrak{g} .
\end{aligned}
$$

- In terms of coordinates on the target superspace

$$
\mathcal{L}_{\eta}=\left(\mathrm{G}_{M N}(z)+\mathrm{B}_{M N}(z)\right) \partial_{+} z^{N} \partial_{-} z^{M}, \quad z^{M}=\left(x^{\mu}, \psi^{\alpha}\right),
$$

where $G_{M N}=(-1)^{M N} G_{N M}$ and $B_{M N}=-(-1)^{M N} B_{N M}$.

- We explicitly calculated $\mathrm{G}_{\mathrm{MN}}(z)$ and $\mathrm{B}_{\mathrm{MN}}(z)$ in the range of parameters $\mathrm{N}=1, \ldots, 8$ and $\mathrm{m}=1,2,3$.

Ricci flow

- Substituting the metric and Kalb-Ramond field of the deformed $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ sigma model for $\mathrm{m}=1$ with $\mathrm{N}=1, \ldots, 6$ into the Ricci flow equation

$$
R_{M N}+\frac{d}{d t} E_{M N}+\left(\mathcal{L}_{Z} E\right)_{M N}+(d Y)_{M N}=0, \quad E_{M N}=G_{M N}+B_{M N}
$$

we indeed find $\left(t \sim \log \Lambda_{u v}\right)$

$$
\frac{d v}{d t}=0, \quad \frac{d \eta}{d t}=-v(N-2 m-2)\left(1+\eta^{2}\right)
$$

which is the natural expectation for general N and m . It agrees with the known result for $m=0$ (Squellari'14, Litvinov, Spodyneiko'18).

- Taking $v=\eta R^{-2}$ with $\eta \rightarrow 0$, we find the RG flow in the undeformed limit

$$
\frac{d R^{2}}{d t}=-(N-2 m-2) R^{2}
$$

- Solving the renormalisation group flow equations for real η we find cyclic solutions. This motivates us to consider the analytically-continued regime

$$
v \rightarrow i v, \quad \eta \rightarrow i k
$$

in which we have ancient solutions. In this regime the solution is

$$
v=\text { constant }, \quad k=-\tanh (v(N-2 m-2) t) .
$$

- Therefore the model in question is asymptotically free in the UV for $\mathrm{N}-2 \mathrm{~m}>2$. From now on we will concentrate on the simplest case of this type, i.e. $N=5$ and $m=1$ or $\operatorname{OSp}(5 \mid 2)$.

$\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ action from $\mathrm{O}(\mathrm{N}+2 \mathrm{~m})$ action

- Although the general form of this trick is known to us, for conciseness let us consider the case $N=2 n+1$ and $m=1$. The simplest way to write the deformed $\mathrm{O}(2 n+1) / \mathrm{O}(2 n)$ action is to use "stereographic" coordinates

$$
\mathrm{ds}^{2}=\sum_{\mathrm{k}=1}^{n} \frac{\kappa_{\mathrm{k}}}{v} \frac{\mathrm{~d} z_{\mathrm{k}} \mathrm{~d} \bar{z}_{\mathrm{k}}}{\left(1+z_{\mathrm{k}} \bar{z}_{\mathrm{k}}\right)^{2}\left(1-\kappa_{k}^{2}\left(\frac{1-z_{\mathrm{k}} \bar{z}_{\mathrm{k}}}{1+z_{\mathrm{k}} \bar{z}_{\mathrm{k}}}\right)^{2}\right)},
$$

where

$$
\kappa_{k}=\kappa \prod_{j=1}^{k-1}\left(\frac{1-z_{j} \bar{z}_{j}}{1+z_{j} \bar{z}_{j}}\right)^{2}, \quad k=1, \ldots, n
$$

- The transition to different deformations $\operatorname{OSp}(\mathrm{N} \mid 2)$ action from the $\mathrm{O}(\mathrm{N}+2)$ is made by the substitution for some z_{k}

$$
z_{\mathrm{k}} \rightarrow \frac{\psi}{\sqrt{2}}=\frac{\psi^{1}+i \psi^{2}}{\sqrt{2}}, \quad \bar{z}_{\mathrm{k}} \rightarrow \frac{\bar{\psi}}{\sqrt{2}}=\frac{\psi^{1}-i \psi^{2}}{\sqrt{2}} .
$$

Further we concentrate on the case $k=2$.

- Also we go back to the "spherical" parametrization of the coordinates z_{j}

$$
z_{j}=\sqrt{2 \frac{1-r_{j}}{1+r_{j}}} e^{i \phi_{j}}
$$

The deformed $\operatorname{OSp}(5 \mid 2)$ sigma model action

- Let us now turn to the specific case $\operatorname{OSp}(5 \mid 2)$. The deformed sigma model is parametrised by four bosons, $\phi_{1}, \phi_{2}, r_{1}$ and r_{2}, and a symplectic fermion, ψ^{a}, where $a=1,2$.
- The Lagrangian following from the previous slide is

$$
\begin{aligned}
& \mathcal{L}_{\kappa}^{(i)}=\frac{\kappa}{v\left(1-\kappa^{2} r_{1}^{2}\right)}\left[\frac{\partial_{+} r_{1} \partial_{-} r_{1}}{1-r_{1}^{2}}+\left(1-r_{1}^{2}\right) \partial_{+} \phi_{1} \partial_{-} \phi_{1}+\right. \\
& \left.+i \kappa r_{1}\left(\partial_{+} r_{1} \partial_{-} \phi_{1}-\partial_{+} \phi_{1} \partial_{-} r_{1}\right)\right]+\frac{\kappa r_{1}^{2}\left(1-\kappa^{2} r_{1}^{4} r_{2}^{2}+\left(1+\kappa^{2} r_{1}^{4} r_{2}^{2}\right) \psi \cdot \psi\right)}{v\left(1-\kappa^{2} r_{1}^{4} r_{2}^{2}\right)^{2}} \times \\
& \times\left[\frac{\partial_{+} r_{2} \partial_{-} r_{2}}{1-r_{2}^{2}}+\left(1-r_{2}^{2}\right) \partial_{+} \phi_{2} \partial_{-} \phi_{2}+i \kappa r_{1}^{2} r_{2}(1+\psi \cdot \psi)\left(\partial_{+} r_{2} \partial_{-} \phi_{2}-\partial_{+} \phi_{2} \partial_{-} r_{2}\right)\right]- \\
& -\frac{\kappa r_{1}^{2}\left(1-\kappa^{2} r_{1}^{4}+\frac{1}{2}\left(1+\kappa^{2} r_{1}^{4}\right) \psi \cdot \psi\right)}{v\left(1-\kappa^{2} r_{1}^{4}\right)^{2}}\left[\partial_{+} \psi \cdot \partial_{-} \psi-i \kappa r_{1}^{2}\left(1+\frac{1}{2} \psi \cdot \psi\right) \partial_{+} \psi \wedge \partial_{-} \psi\right],
\end{aligned}
$$

where we have introduced the following contractions of the symplectic fermion

$$
x \cdot x^{\prime}=\epsilon_{a b} x^{a} x^{\prime b}, \quad x \wedge x^{\prime}=\delta_{a b} \chi^{a} \chi^{\prime b}
$$

UV limit of the deformed $\operatorname{OSp}(5 \mid 2)$ sigma model

- We are interested in the expansion around the UV fixed point, that is $k=1$. The specific limit we consider (Litvinov'18) is given by first setting

$$
r_{1}=\exp \left(-\epsilon e^{-2 x_{1}}\right), \quad r_{2}=\tanh x_{2}, \quad \psi^{a}=2 \epsilon^{\frac{1}{2}} \theta^{a}, \quad \kappa=1-\frac{\epsilon^{2}}{2}
$$

and subsequently expanding around $\epsilon=0$.

- Introducing the complex fields

$$
X_{1}=x_{1}-\mathfrak{i} \phi_{1}, \quad X_{2}=x_{2}-\mathfrak{i} \phi_{2}, \quad \Theta=\theta^{1}-\mathfrak{i} \theta^{2}
$$

we find the following expansion

$$
\begin{aligned}
& \mathcal{L}_{k \sim 1}^{(i)}=\frac{1}{v}\left(\partial_{+} X_{1} \partial_{-} X_{1}^{*}+\partial_{+} X_{2} \partial_{-} X_{2}^{*}+i e^{2 \chi_{1}}\left(1-i e^{2 \chi_{1}} \Theta \Theta^{*}\right) \partial_{+} \Theta \partial_{-} \Theta^{*}\right)- \\
& -\frac{\epsilon}{v}\left(e^{2 x_{1}} \partial_{+} X_{1} \partial_{-} X_{1}^{*}+e^{-2 x_{1}+2 x_{2}}\left(1+2 i e^{2 x_{1}} \Theta \Theta^{*}\right) \partial_{+} X_{2} \partial_{-} X_{2}^{*}\right. \\
& +e^{-2 x_{1}-2 x_{2}}\left(1+2 i e^{2 x_{1}} \Theta \Theta^{*}\right) \partial_{+} X_{2}^{*} \partial_{-} X_{2}+ \\
& \left.+\frac{i}{4} e^{4 x_{1}}\left(1-2 i e^{2 x_{1}} \Theta \Theta^{*}\right) \partial_{+} \Theta \partial_{-} \Theta^{*}\right)+\mathcal{O}\left(\epsilon^{2}\right),
\end{aligned}
$$

up to total derivatives.

CFT's defined by screening charges

- Let $\boldsymbol{\varphi}(z)=\left(\varphi_{1}(z), \ldots, \varphi_{\mathrm{N}}(z)\right)$ be the N -component holomorphic bosonic field normalized as

$$
\varphi_{i}(z) \varphi_{\mathfrak{j}}\left(z^{\prime}\right)=-\delta_{i j} \log \left(z-z^{\prime}\right)+\ldots \quad \text { at } \quad z \rightarrow z^{\prime}
$$

and $\overrightarrow{\boldsymbol{\alpha}}=\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{\mathrm{N}}\right)$ be the set of linear independent vectors.

- We define $W_{\overrightarrow{\boldsymbol{\alpha}}}$-algebra as a set of currents $W_{s}(z)$ of integer spins s such that

$$
\oint_{\mathcal{C}_{z}} e^{\left(\alpha_{r} \cdot \varphi(\xi)\right)} W_{s}(z) d \xi=0, \quad r=1, \ldots, N
$$

- For generic $\vec{\alpha}$ there is a spin 2 current

$$
W_{2}(z)=-\frac{1}{2}(\partial \boldsymbol{\varphi}(z) \cdot \partial \varphi(z))+\left(\rho \cdot \partial^{2} \boldsymbol{\varphi}(z)\right), \quad \rho=\sum_{\mathrm{r}=1}^{\mathrm{N}}\left(1+\frac{\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\alpha}_{\mathrm{r}}\right)}{2}\right) \hat{\boldsymbol{\alpha}}_{\mathrm{r}}
$$

and $\left(\boldsymbol{\alpha}_{r} \cdot \hat{\boldsymbol{\alpha}}_{s}\right)=\delta_{r, s}$. The corresponding central charge is

$$
\mathrm{c}=\mathrm{N}+12(\rho \cdot \rho) .
$$

- For $\mathrm{N}=1$ we have a current

$$
\mathrm{T}(\varphi)=-\frac{1}{2}(\partial \varphi)^{2}+\left(\frac{1}{\alpha}+\frac{\alpha}{2}\right) \partial^{2} \varphi .
$$

The same algebra can be defined through the dual screening charge $\oint e^{\alpha^{\vee} \varphi} d z$ with $\alpha^{\vee}=\frac{2}{\alpha}$.

Bosonic and fermionic roots

- Depiction of bosonic roots

$$
\text { - bosonic root: }\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\alpha}_{\mathrm{r}}\right)=\text { generic }
$$

- If the current W_{s} satisfies commutativity condition it should be of a special form

$$
W_{s}=W_{s}\left(T\left(\varphi_{\|}\right), \varphi_{\perp}\right)
$$

where

$$
\varphi_{\|} \stackrel{\text { def }}{=} \frac{\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\varphi}\right)}{\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\alpha}_{\mathrm{r}}\right)^{\frac{1}{2}}}, \quad \boldsymbol{\varphi}_{\perp} \stackrel{\text { def }}{=} \boldsymbol{\varphi}-\frac{\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\varphi}\right)}{\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\alpha}_{\mathrm{r}}\right)} \boldsymbol{\alpha}_{\mathrm{r}}
$$

and $\mathrm{T}\left(\varphi_{\|}\right)$is given by $W_{2}(z)$ with $\alpha=\left(\boldsymbol{\alpha}_{r} \cdot \boldsymbol{\alpha}_{\mathrm{r}}\right)^{\frac{1}{2}}$.

- Depiction of fermionic roots

$$
\bigotimes \text { - fermionic root: }\left(\boldsymbol{\alpha}_{r} \cdot \boldsymbol{\alpha}_{\mathrm{r}}\right)=-1
$$

- In the coordinates defined above it corresponds to the complex fermion. The communant of the corresponding screening charge $\oint e^{-i \varphi_{\|}(z)} \mathrm{d} z$ consists of all $w_{\mathrm{s}}=\psi^{+} \partial^{s-1} \psi, s=2,3, \ldots$
- Among these currents only w_{2} and w_{3} are independent. Therefore

$$
\begin{equation*}
W_{s}=W_{s}\left(w_{2}\left(\varphi_{\|}\right), w_{3}\left(\varphi_{\|}\right), \varphi_{\perp}\right) \tag{2.1}
\end{equation*}
$$

Properties of the systems with bosonic/fermionic roots

- Bosonic root duality: the bosonic roots always appear in pairs

$$
\boldsymbol{\alpha} \quad \text { and } \quad \boldsymbol{\alpha}^{\vee}=\frac{2 \boldsymbol{\alpha}}{(\boldsymbol{\alpha} \cdot \boldsymbol{\alpha})}
$$

- Dressed/sigma-model bosonic screening: $\left(\boldsymbol{\alpha}_{1} \cdot \boldsymbol{\alpha}_{2}\right)=\xi$ is arbitrary

$$
\mathcal{S}_{\mathrm{B}}=\oint\left(\boldsymbol{\alpha}_{1} \cdot \partial \boldsymbol{\varphi}\right) \mathrm{e}^{\left(\boldsymbol{\beta}_{12} \cdot \boldsymbol{\varphi}\right)} \mathrm{d} z, \quad \text { where } \quad \beta_{12}=\frac{2\left(\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right)}{\left(\boldsymbol{\alpha}_{1}+\boldsymbol{\alpha}_{2}\right)^{2}}
$$

- Dressed/sigma-model fermionic screening: $\left(\boldsymbol{\alpha}_{1} \cdot \boldsymbol{\alpha}_{2}\right)=-1$

$$
\mathcal{S}_{\mathrm{F}}=\oint\left(\boldsymbol{\alpha}_{1} \cdot \partial \boldsymbol{\varphi}\right) e^{\left(\boldsymbol{\beta}_{12} \cdot \boldsymbol{\varphi}\right)} \mathrm{d} z, \quad \text { where } \quad \boldsymbol{\beta}_{12}=v \boldsymbol{\alpha}_{1}-(1+v) \boldsymbol{\alpha}_{2}
$$

Dressed/sigma-model fermionic screening

- The parameter v cannot be fixed if only the two roots α_{1} and α_{2} are present.
- One way to fix the parameter v is to embed in larger diagram. For example, consider the diagram

Then the parameter ν in the vector β_{23} is fixed from the condition

$$
\left(\boldsymbol{\beta}_{23} \cdot \boldsymbol{\alpha}_{1}\right)=-1 \quad \Longrightarrow \quad v=-\frac{1}{\xi} .
$$

- Another case also important for us is

Then the parameter v in the vector β_{34} is fixed from the condition

$$
\left(\boldsymbol{\beta}_{34} \cdot \alpha_{2}\right)=1-\xi \quad \Longrightarrow \quad v=\xi-1 .
$$

Deformed $\mathrm{O}(5)$ sigma-model

- Our CFT $\frac{\widehat{\mathfrak{s o}(5)} \mathrm{b}^{2}-3}{\widehat{\mathfrak{s o}(4)} \mathrm{b}^{2}-3}$ with the central charge $\mathrm{c}=4+\frac{30}{\mathrm{~b}^{2}}-\frac{12}{\mathrm{~b}^{2}}$ corresponds to the following diagram

- Affinization of the diagram above corresponds to adding one root α_{5} which completes triangle on the right

Blow-up transformation

- Now we describe transformation \mathcal{B} of the root system, we call it blow-up, which acts as

$$
\mathrm{O}(\mathrm{~N}) \rightarrow \mathrm{OSP}(\mathrm{~N} \mid 2)
$$

or more generally as

$$
\operatorname{OSP}(\mathrm{N} \mid 2 \mathrm{~m}) \rightarrow \operatorname{OSP}(\mathrm{N} \mid 2 \mathrm{~m}+2)
$$

It can be applied to both conformal diagram and its affine counterpart.

- It acts on any root except $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{2 n}$ and $\boldsymbol{\alpha}_{2 n+1}$ and produces two fermionic roots out of one. On fermionic root α it acts as follows

$$
\boldsymbol{\alpha}=-\mathrm{b} \mathbf{E}+\mathfrak{i} \beta \mathbf{e} \xrightarrow{\mathcal{B}}\left\{\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right\}=\left\{-\frac{1}{b} \mathbf{E}+\frac{i \beta}{b} \boldsymbol{\epsilon}, \frac{i b}{\beta} \boldsymbol{\epsilon}-\frac{\mathfrak{i}}{\beta} \mathbf{e}\right\},
$$

where $\boldsymbol{\epsilon}$ is a new basic vector.

- Altogether this can be shown as follows

Screening charges for the deformed $\operatorname{OSp}(5 \mid 2)$ sigma model

- Consider the simplest case of $\operatorname{OSP}(5 \mid 2)$ affine diagram. According to our rule it is obtained from $\mathrm{O}(5)$ diagram by blowing up the root α_{3}

- The vectors α_{r} can be parameterized as follows ($\beta=\sqrt{1+b^{2}}$)

$$
\begin{gathered}
\boldsymbol{\alpha}_{1}=b \mathbf{E}_{1}+\mathfrak{i \beta} \mathbf{e}_{1}, \quad \boldsymbol{\alpha}_{2}=b \mathbf{E}_{1}-\mathfrak{i} \beta \mathbf{e}_{1}, \quad \boldsymbol{\alpha}_{3}=-b \mathbf{E}_{1}+i \beta \mathbf{e}_{2}, \\
\boldsymbol{\alpha}_{4}=b \mathbf{E}_{2}-i \beta \mathbf{e}_{2}, \quad \boldsymbol{\alpha}_{5}=-b \mathbf{E}_{2}-i \beta \mathbf{e}_{2}, \\
\boldsymbol{\beta}_{1}=-\frac{1}{b} \mathbf{E}_{1}+\frac{i \beta}{b} \boldsymbol{\epsilon}, \quad \boldsymbol{\beta}_{2}=\frac{i b}{\beta} \boldsymbol{\epsilon}-\frac{i}{\beta} \mathbf{e}_{2}, \quad \boldsymbol{\beta}_{-}^{ \pm}= \pm \frac{\mathfrak{i}}{\beta} \mathbf{e}_{1}-\frac{i b}{\beta} \boldsymbol{\epsilon}, \\
\boldsymbol{\beta}_{+}^{ \pm}= \pm \frac{1}{b} \mathbf{E}_{2}-\frac{i \beta}{b} \boldsymbol{\epsilon}, \quad \boldsymbol{\beta}_{12}=\frac{1}{b} \mathbf{E}_{1}, \quad \boldsymbol{\beta}_{45}=\frac{i}{\beta} \mathbf{e}_{2} .
\end{gathered}
$$

Dual model lagrangian

- In our case, there are two types of fields which cause UV divergencies. Either exponential ones

$$
e^{(\alpha \cdot \varphi)},
$$

or dressed/sigma-model fields

$$
e^{(\beta \cdot \varphi)}(\alpha, \partial \varphi)\left(\alpha^{*}, \bar{\partial} \varphi\right), \quad(\boldsymbol{\alpha}, \boldsymbol{\alpha})=-1, \quad(\boldsymbol{\alpha}, \boldsymbol{\beta})=\left(\boldsymbol{\alpha}^{*}, \boldsymbol{\beta}\right)=1
$$

- OPE of exponential fields has the form

$$
e^{\left(\alpha_{r} \cdot \varphi(z)\right)} e^{\left(\alpha_{s} \cdot \varphi(w)\right)}=\left|\frac{r_{0}}{z-w}\right|^{2\left(\alpha_{r} \cdot \alpha_{s}\right)} e^{\left(\left(\alpha_{r}+\alpha_{s}\right) \cdot \varphi(w)\right)}+\ldots
$$

- We see that the perturbation theory contains divergent integrals for all scalar products which tend to 1 in the limit $\mathrm{b} \rightarrow 0$. These UV divergences can be regularized by subtracting the following counter terms from the Lagrangian

$$
\frac{\pi \Lambda_{\mathrm{r}} \Lambda_{\mathrm{s}} \mathrm{r}_{0}^{\left(\boldsymbol{\alpha}_{\mathrm{r}}+\boldsymbol{\alpha}_{\mathrm{s}}\right)^{2}}}{\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\alpha}_{\mathrm{s}}\right)-1} e^{\left(\left(\boldsymbol{\alpha}_{\mathrm{r}}+\boldsymbol{\alpha}_{\mathrm{s}}\right) \cdot \varphi\right)}
$$

for each $\boldsymbol{\alpha}_{\mathrm{r}}$ and $\boldsymbol{\alpha}_{\mathrm{s}}$ such that $\left(\boldsymbol{\alpha}_{\mathrm{r}} \cdot \boldsymbol{\alpha}_{\mathrm{s}}\right) \rightarrow 1$ in the limit $\mathrm{b} \rightarrow 0$.

Metric for the deformed $\operatorname{OSp}(5 \mid 2)$ sigma model

- By taking the dual screenings we obtain the following system, which includes the dressed screenings

- By choosing $z=x^{1}-i x^{2}\left(\bar{z}=x^{1}+i x^{2}\right)$ and then conducting Wick rotation $x^{2}=i x^{0}$, we obtain the action in Minkowski signature

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{8 \pi}\left(\sum_{i=1}^{2}\left(\partial_{+} \Phi_{i}\right)\left(\partial-\Phi_{i}\right)+\sum_{j=1}^{3}\left(\partial_{+} \phi_{j}\right)\left(\partial_{-} \phi_{j}\right)\right)+ \\
& +\Lambda_{1} e^{-\frac{i \beta}{b} \phi_{3}}\left(\partial_{+}\left(b \Phi_{2}+i \beta \phi_{2}\right) \partial_{-}\left(b \Phi_{2}-i \beta \phi_{2}\right) e^{-\frac{\Phi_{2}}{b}+}\right. \\
& \left.+\partial_{+}\left(b \Phi_{2}-i \beta \phi_{2}\right) \partial_{-}\left(b \Phi_{2}+i \beta \phi_{2}\right) e^{\frac{\Phi_{2}}{b}}\right)+\Lambda_{2} e^{-\frac{\Phi_{1}}{b}+\frac{i \beta}{b} \phi_{3}}+ \\
& +\Lambda_{3} \partial_{+}\left(b \Phi_{1}+i \beta \phi_{1}\right) \partial_{-}\left(b \Phi_{1}-i \beta \phi_{1}\right) e^{\frac{\Phi_{1}}{b}}+\frac{\pi b^{2}}{\beta^{2}} \Lambda_{1} \Lambda_{2} e^{\frac{\Phi_{1}}{b}} \times \\
& \times\left(\partial_{+}\left(b \Phi_{2}+i \beta \phi_{2}\right) \partial_{-}\left(b \Phi_{2}-i \beta \phi_{2}\right) e^{-\frac{\Phi_{2}}{b}}+\partial_{+}\left(b \Phi_{2}-i \beta \phi_{2}\right) \partial_{-}\left(b \Phi_{2}+i \beta \phi_{2}\right) e^{\frac{\Phi_{2}}{b}}\right)+\ldots,
\end{aligned}
$$

Restoring the deformed $\operatorname{OSp}(5 \mid 2)$ sigma model in the UV limit

- Then we fermionize the ϕ_{3} field This after the integrations over the Ψ_{1} and Ψ_{2}^{\dagger} components yields the following action

$$
\begin{gathered}
\mathcal{L}=\frac{1}{8 \pi}\left(\sum_{i=1}^{2}\left(\partial_{+} \Phi_{i}\right)\left(\partial_{-} \Phi_{i}\right)+\sum_{j=1}^{2}\left(\partial_{+} \Phi_{j}\right)\left(\partial_{-} \phi_{j}\right)\right)+2 i \Psi_{1}^{\dagger} \partial_{-} \Psi_{1}+2 i \Psi_{2}^{\dagger} \partial_{+} \Psi_{2}+ \\
+\frac{2 \pi}{\beta^{2}} \Psi_{1}^{\dagger} \Psi_{2}^{\dagger} \Psi_{2} \Psi_{1}-i \Lambda_{1} \Psi_{1}^{\dagger} \Psi_{2} e^{-\frac{i \beta}{b} \phi_{3}}\left(\partial_{+}\left(b \Phi_{2}+i \beta \Phi_{2}\right) \partial_{-}\left(b \Phi_{2}-i \beta \phi_{2}\right) e^{-\frac{\Phi_{2}}{b}+}\right. \\
\left.+\partial_{+}\left(b \Phi_{2}-i \beta \Phi_{2}\right) \partial_{-}\left(b \Phi_{2}+i \beta \phi_{2}\right) e^{\frac{\Phi_{2}}{b}}\right)-i \Lambda_{2} \Psi_{1} \Psi_{2}^{\dagger} e^{-\frac{\Phi_{1}}{b}}+ \\
+\Lambda_{3} \partial_{+}\left(b \Phi_{1}+i \beta \Phi_{1}\right) \partial_{-}\left(b \Phi_{1}-i \beta \phi_{1}\right) e^{\frac{\Phi_{1}}{b}}+\frac{\pi b^{2}}{\beta^{2}} \Lambda_{1} \Lambda_{2} e^{\frac{\Phi_{1}}{b}} \times \\
\times\left(\partial_{+}\left(b \Phi_{2}+i \beta \phi_{2}\right) \partial_{-}\left(b \Phi_{2}-i \beta \phi_{2}\right) e^{-\frac{\Phi_{2}}{b}+}\right. \\
\left.+\partial_{+}\left(b \Phi_{2}-i \beta \Phi_{2}\right) \partial_{-}\left(b \Phi_{2}+i \beta \phi_{2}\right) e^{\frac{\Phi_{2}}{b}}\right)+\ldots
\end{gathered}
$$

- This after the integrations over the Ψ_{1} and Ψ_{2}^{\dagger} upon identifying $\Phi_{1,2}=2 b x_{2,1}$, $\phi_{1,2}=2 \mathrm{~b} \varphi_{2,1}$ and $\Psi_{1}^{\dagger}=\mathrm{b} \Theta^{*}, \Psi_{2}=\mathrm{b} \Theta$ together with taking the limit $\mathrm{b} \rightarrow \infty$ and adjusting properly the coefficients $\Lambda_{1,2,3}\left(\alpha^{\prime}=\frac{2}{\mathrm{~b}^{2}}\right)$ we obtain dividing by 4 the UV limit originating from the screening picture.

Screening charges in the $b \rightarrow 0$ limit

- By taking the subsystem of screenings, which are regular in the limit $b \rightarrow 0$

- We are able to write the lagrangian of the dual model

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{8 \pi}\left(\sum_{i=1}^{2}\left(\partial \Phi_{i}\right)\left(\bar{\partial} \Phi_{i}\right)+\sum_{j=1}^{3}\left(\partial \varphi_{j}\right)\left(\bar{\partial} \varphi_{j}\right)\right)+2 \Lambda_{1} e^{b \Phi_{1}} \cos \beta \varphi_{1}+ \\
&+\Lambda_{2} \partial\left(\Phi_{1}-i\right.\left.i \beta \varphi_{3}\right) \bar{\partial}\left(\Phi_{1}+i \beta \varphi_{3}\right) e^{-b \Phi_{1}+i \beta \varphi_{2}}+ \\
&+ \Lambda_{3}\left(e^{-b \Phi_{2}-i \beta \varphi_{2}}+e^{b \Phi_{2}-i \beta \varphi_{2}}\right)+(\text { counterterms })
\end{aligned}
$$

- This action appears to have only finite number of counterterms!

Dual model lagrangian for the $\operatorname{OSp}(5 \mid 2)$ case

- Utilizing the bosonization of the complex fermion and $\beta \gamma$ system

$$
e^{\mathrm{b} \Phi_{1}} \rightarrow \bar{\beta} \beta, \quad\left(\frac{1}{\mathrm{~b}} \partial \Phi_{1}+\frac{\mathrm{i} \beta}{\mathrm{~b}} \partial \varphi_{3}\right)\left(\frac{1}{\mathrm{~b}} \bar{\partial} \Phi_{1}-\frac{i \beta}{\mathrm{~b}} \bar{\partial} \varphi_{3}\right) e^{-\mathrm{b} \Phi_{1}} \rightarrow \bar{\gamma} \gamma,
$$

we get after rescaling $\Phi_{2}=2 \sqrt{\pi} \Phi$ and $\hat{\mathrm{b}}=2 \sqrt{\pi} \mathrm{~b}$

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2} \partial \Phi \bar{\partial} \Phi+i \bar{\Psi}_{1} \gamma^{\mu} \partial_{\mu} \Psi_{1}+i \bar{\Psi}_{2} \gamma^{\mu} \partial_{\mu} \Psi_{2}+\beta \bar{\partial} \gamma+\bar{\beta} \partial \bar{\gamma}+ \\
& +\frac{m^{2}}{2 \hat{b}^{2}} \cosh ^{2} \hat{b} \Phi+m \bar{\Psi}_{1} \Psi_{1} \cosh \hat{\mathrm{~b}} \Phi+m \bar{\Psi}_{2} \Psi_{2} \cosh \hat{\mathrm{~b}} \Phi+m(\bar{\beta} \beta-\bar{\gamma} \gamma) \cosh \hat{\mathrm{b}} \Phi \\
& -\frac{\hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}}\left(\bar{\Psi}_{1} \gamma^{\mu} \Psi_{1}\right)^{2}-\frac{\hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}}\left(\bar{\Psi}_{2} \gamma^{\mu} \Psi_{2}\right)^{2}-\frac{4 \hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}} \bar{\beta} \beta \bar{\gamma} \gamma+\frac{\hat{b}^{2}}{2}(\bar{\gamma} \gamma)^{2}+ \\
& +\hat{b}^{2} \bar{\Psi}_{1} \Psi_{1} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}+\hat{b}^{2} \bar{\Psi}_{1} \Psi_{1} \bar{\gamma} \gamma+\hat{b}^{2} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}(\bar{\beta} \beta-\bar{\gamma} \gamma),
\end{aligned}
$$

- Integrating out β and putting $\gamma=\sqrt{m} \gamma$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \partial \Phi \bar{\partial} \Phi+i \bar{\Psi}_{1} \gamma^{\mu} \partial_{\mu} \Psi_{1}+i \bar{\Psi}_{2} \gamma^{\mu} \partial_{\mu} \Psi_{2}+ \\
& +\left(\cosh \hat{b} \Phi+\frac{4 \hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}} \bar{\gamma} \gamma-\hat{b}^{2} m^{-1} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}\right)^{-1} \partial \bar{\gamma} \bar{\partial} \curlyvee+ \\
& +\frac{m^{2}}{2 \hat{b}^{2}} \cosh ^{2} \hat{b} \Phi+m \bar{\Psi}_{1} \Psi_{1} \cosh \hat{b} \Phi+m \bar{\Psi}_{2} \Psi_{2} \cosh \hat{b} \Phi+m^{2} \bar{\gamma} \Upsilon \cosh \hat{b} \Phi \\
& -\frac{\hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}}\left(\bar{\Psi}_{1} \gamma^{\mu} \Psi_{1}\right)^{2}-\frac{\hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}}\left(\bar{\Psi}_{2} \gamma^{\mu} \Psi_{2}\right)^{2}+\frac{\hat{b}^{2}}{2} m^{2}(\bar{\gamma} \gamma)^{2}+ \\
& +\hat{b}^{2} \bar{\Psi}_{1} \Psi_{1} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}-\hat{b}^{2} m \bar{\Psi}_{1} \Psi_{1} \bar{\gamma} \gamma+\hat{b}^{2} m \bar{\Psi}_{2} \gamma_{+} \Psi_{2} \bar{\gamma} \gamma .
\end{aligned}
$$

Wick rotation and tree-level S-matrix

- Now we are to continue to the Lorentzian signature

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \partial_{-} \Phi \partial_{+} \Phi+i \bar{\Psi}_{1} \gamma^{\mu} \partial_{\mu} \Psi_{1}+i \bar{\Psi}_{2} \gamma^{\mu} \partial_{\mu} \Psi_{2}+ \\
& +\left(\cosh \hat{b} \Phi+\frac{4 \hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}} \bar{\gamma} \gamma+\hat{b}^{2} m^{-1} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}\right)^{-1} \partial_{-} \bar{\gamma} \partial_{+} \gamma \\
& -\frac{m^{2}}{2 \hat{b}^{2}} \cosh ^{2} \hat{b} \Phi-m \bar{\Psi}_{1} \Psi_{1} \cosh \hat{b} \Phi-m \bar{\Psi}_{2} \Psi_{2} \cosh \hat{b} \Phi-m^{2} \bar{\gamma} \gamma \cosh \hat{b} \Phi \\
& -\frac{\hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}}\left(\bar{\Psi}_{1} \gamma^{\mu} \Psi_{1}\right)^{2}-\frac{\hat{b}^{2}}{8+\frac{2}{\pi} \hat{b}^{2}}\left(\bar{\Psi}_{2} \gamma^{\mu} \Psi_{2}\right)^{2}-\frac{\hat{b}^{2}}{2} m^{2}(\bar{\gamma} \gamma)^{2} \\
& -\hat{b}^{2} \bar{\Psi}_{1} \Psi_{1} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}+\hat{b}^{2} m \bar{\Psi}_{1} \Psi_{1} \bar{\gamma} \gamma-\hat{b}^{2} m \bar{\Psi}_{2} \gamma_{+} \Psi_{2} \bar{\gamma} \gamma,
\end{aligned}
$$

which allows us to write the lagrangian in the 1-loop approximation

$$
\begin{aligned}
& \mathcal{L}=\frac{\partial_{-} \Phi \partial_{+} \Phi}{2}-\frac{\mathfrak{m}^{2}}{2} \Phi^{2}+\bar{\Psi}_{1}\left(\mathfrak{i} \gamma^{\mu} \partial_{\mu}-\mathfrak{m}\right) \Psi_{1}+\bar{\Psi}_{2}\left(\mathfrak{i} \gamma^{\mu} \partial_{\mu}-m\right) \Psi_{2}+\partial_{-} \bar{\gamma} \partial_{+} \Upsilon-m^{2} \bar{\gamma} \gamma \\
& -\frac{\hat{b}^{2}}{6} m^{2} \Phi^{4}-\frac{\hat{b}^{2}}{2} \mathfrak{m} \bar{\Psi}_{1} \Psi_{1} \Phi^{2}-\frac{\hat{b}^{2}}{2} \mathfrak{m} \bar{\Psi}_{2} \Psi_{2} \Phi^{2}-\frac{\hat{b}^{2}}{2}\left(\partial_{-} \bar{\gamma} \partial_{+} \Upsilon+m^{2} \bar{\gamma} \Upsilon\right) \Phi^{2} \\
& -\frac{\hat{b}^{2}}{8}\left(\bar{\Psi}_{1} \gamma^{\mu} \Psi_{1}\right)^{2}-\frac{\hat{b}^{2}}{8}\left(\bar{\Psi}_{2} \gamma^{\mu} \Psi_{2}\right)^{2}-\frac{\hat{b}^{2}}{2} \bar{\gamma} \gamma\left(\partial_{-} \bar{\gamma} \partial_{+} \Upsilon+m^{2} \bar{\gamma} \Upsilon\right) \\
& -\hat{b}^{2} \bar{\Psi}_{1} \Psi_{1} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}+\hat{b}^{2} m \bar{\Psi}_{1} \Psi_{1} \bar{\gamma} \Upsilon-\hat{b}^{2} m^{-1} \bar{\Psi}_{2} \gamma_{+} \Psi_{2}\left(\partial_{-} \bar{\gamma} \partial_{+} \Upsilon+m^{2} \bar{\gamma} \Upsilon\right),
\end{aligned}
$$

- We checked that the $2 \rightarrow 2$ tree-level S-matrix of the obtained lagrangian satisfies the classical Yang-Baxter equation upon identification $\lambda=\frac{1}{2}-\frac{\mathrm{b}^{2}}{2}+\mathcal{O}\left(\mathrm{b}^{4}\right)$ together with some gauge and twist transformation.

Conclusions and outlook

- We found the action of the η-deformed $\operatorname{OSp}(\mathrm{N} \mid 2 \mathrm{~m})$ sigma models for several N and m and put forward the hypothesis how to generate this action for general N and m .
- The 1-loop RG flow of such models was studied and we found the UV stable solutions. We considered the scaling limit of the deformed $\operatorname{OSp}(5 \mid 2)$ sigma model action as an example.
- The system of screening charges, which determine the integrable structure of the $\operatorname{OSp}(\mathrm{N} \mid 2)$ sigma model was built.
- By using it we demonstrated how to restore the sigma model action in the deep UV in the case of $\operatorname{OSp}(5 \mid 2)$.
- Utilizing our system of screenings to write the dual model with the Toda type interactions we can reproduce the expansion of the S-matrix in the vicinity of the special point $\lambda=\frac{1}{2}$, checking that it satisfies the classical Yang-Baxter equation.
- The next interesting step would be to try to adapt the dual description for the sigma models with the non-compact target space (Basso, Zhong'18).

Thanks for your attention!

