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Abstract In this paper, we introduce new methods for convex optimization problems
with stochastic inexact oracle. Our first method is an extension of the Intermediate
Gradient Method proposed by Devolder, Glineur and Nesterov for problems with
deterministic inexact oracle. Our method can be applied to problems with composite
objective function, both deterministic and stochastic inexactness of the oracle, and
allows using a non-Euclidean setup. We estimate the rate of convergence in terms of
the expectation of the non-optimality gap and provide a way to control the probability
of large deviations from this rate. Also we introduce two modifications of this method
for strongly convex problems. For the firstmodification, we estimate the rate of conver-
gence for the non-optimality gap expectation and, for the second, we provide a bound
for the probability of large deviations from the rate of convergence in terms of the
expectation of the non-optimality gap. All the rates lead to the complexity estimates
for the proposed methods, which up to a multiplicative constant coincide with the
lower complexity bound for the considered class of convex composite optimization
problems with stochastic inexact oracle.
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1 Introduction

In this paper, we introduce new first-order methods for problems, which belong
to a rather wide class of convex composite optimization problems with stochastic
inexact oracle. First-order methods are widely developed since the earliest years of
optimization theory; see, e.g., [1,2]. The book [3] started an activity of providing
upper complexity bounds for optimization methods and lower complexity bounds for
different classes of problems (see also [4]). Later, ellipsoid methods (e.g., [5]) and
interior-point methods [6] were proposed for convex problems with special structure.
These methods possess very fast convergence rate but have rather costly iterations,
which require the number of arithmetic operations proportional to cube or fourth power
of the space dimension [4]. This makes them hardly applicable for general problems
with dimensions greater than ten thousands. In the last decade, problems of large and
huge dimension [7] have become one of the main focuses of research in optimization
methods. The reason is large amount of application areas, such as telecommunications,
the Internet, traffic flows, machine learning and mechanical design. Usually in these
areas, the requirements for the precision of the approximation of the optimal value are
not very strong. This allows to use first-order methods, which converge slower, but
have nearly dimension-independent rate of convergence, and each of their iteration
requires the number of arithmetic operations proportional to the square of the space
dimension or less.

In some problems, e.g., bi-level optimization, a concept of inexact oracle naturally
arises. This means that the value of the objective function and its subgradient are
available only with an error of some kind. It could be a deterministic error and a
randomerror. The recentwork [8] considers the case of deterministic error. The authors
propose the Dual Gradient Method and the Fast Gradient Method with inexact oracle
and show that the first one does not accumulate the error of the oracle, and the second
has faster rate of convergence, but accumulates the oracle error. In [9], the same authors
propose the Intermediate Gradient Method. This method allows to choose the trade-
off between the rate of convergence and the rate of the oracle error accumulation by
choosing an appropriate value of some parameter. In the thesis [10], all the mentioned
abovemethods are extended for non-Euclidean setup. On the other hand in [11,12], the
authors construct a method for composite stochastic optimization problems, which is
optimal for problems both with smooth and non-smooth objective functions, but they
do not consider any deterministic error of the oracle.

In this paper, we consider the general framework of stochastic inexact oracle intro-
duced in [10]. This means, that both stochastic and deterministic errors are present in
the oracle information, and the methods we develop can solve more general problems
than the methods proposed in [9,11,12]. Unlike [10], our method has more flexibil-
ity in using the trade-off between the rate of convergence and the rate of the oracle
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error accumulation. In contrast to [9,10], we develop twomodifications of ourmethod,
which converge faster under additional assumption of strong convexity of the objective
function. Note that the considered class of problems with stochastic inexact oracle is
very wide and includes, for example, problems of stochastic optimization, smooth and
non-smooth problems (see [8]), problems with an error in the gradient of the objective
function, such as LASSO [13].

The paper is organized as follows. In Sect. 2, we introduce the problem and provide
the definition of stochastic inexact oracle. In Sect. 3, we generalize the Intermedi-
ate Gradient Method [9] for the case of composite optimization problems [14] with
stochastic oracle error. The result is the Stochastic Intermediate Gradient Method
(Algorithm 1), which also can be used in non-Euclidean setup. We estimate its rate
of convergence in terms of the non-optimality gap expectation (Theorem 3.3). With
some so-called light-tail assumption about the nature of the stochastic error, we obtain
(Theorem 3.4) a bound for the probability of large deviations from the rate given
in the previous theorem. In Sect. 4, we propose an accelerated method for strongly
convex problems (Algorithm 2) and estimate its rate of convergence (Theorem 4.1).
Finally, we introduce Algorithm 3, which allows to control the probability of large
deviations from the rate of convergence in terms of the non-optimality gap expectation
for strongly convex case (Theorem 4.2).

2 Notation and Terminology

Let E be a finite-dimensional real vector space and E∗ be its dual. We denote the
value of a linear function g ∈ E∗ at x ∈ E by 〈g, x〉. Let ‖ · ‖ be some norm on E . By
∂ f (x), we denote the subdifferential of the function f (x) at a point x . In this paper,
we consider the composite optimization problem of the form

min
x∈Q{ϕ(x) := f (x) + h(x)}, (1)

where Q ⊂ E is a closed and convex set, h(x) is a simple convex function, and f (x)
is a convex function with stochastic inexact oracle. This means that, for every x ∈ Q,
there exist fδ,L(x) ∈ R and gδ,L(x) ∈ E∗, such that

0 ≤ f (y) − fδ,L(x) − 〈gδ,L(x), y − x〉 ≤ L

2
‖x − y‖2 + δ, ∀y ∈ Q, (2)

and also that, instead of ( fδ,L(x), gδ,L(x)) (we will call this pair a (δ, L)-oracle),
we use their stochastic approximations (Fδ,L(x, ξ),Gδ,L(x, ξ)). The latter means
that, for any point x ∈ Q, we associate with x a random variable ξ whose prob-
ability distribution is supported on a set � ⊂ R and such that Eξ Fδ,L(x, ξ) =
fδ,L(x),EξGδ,L(x, ξ) = gδ,L(x) and

Eξ (‖Gδ,L(x, ξ) − gδ,L(x)‖∗)2 ≤ σ 2. (3)
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Here ‖·‖∗ is the dual norm corresponding to ‖·‖E , i.e., ‖g‖∗ = supy∈E {〈g, y〉 : ‖y‖E
≤ 1}.

To deal with such problems, wewill need a prox-function d(x), which is differential
and strongly convexwith parameter 1 on Q with respect to ‖·‖. Let x0 be theminimizer
of d(x) on Q. By translating and scaling d(x), if necessary, we can always ensure that

d(x0) = 0, d(x) ≥ 1

2
‖x − x0‖2, ∀x ∈ Q. (4)

We define also the corresponding Bregman distance:

V (x, z) = d(x) − d(z) − 〈∇d(z), x − z〉. (5)

Due to the strong convexity of d(x) with parameter 1, we have:

V (x, z) ≥ 1

2
‖x − z‖2, ∀x, z ∈ Q. (6)

3 Stochastic Intermediate Gradient Method

Let {αi }i≥0, {βi }i≥0, {Bi }i≥0 ⊂ R be three sequences of coefficients satisfying

α0 ∈]0, 1], βi+1 ≥ βi > L , ∀i ≥ 0, (7)

0 ≤ αi ≤ Bi , ∀i ≥ 0, (8)

α2
kβk ≤ Bkβk−1 ≤

(
k∑

i=0

αi

)
βk−1, ∀k ≥ 1. (9)

We define also

Ak :=
k∑

i=0

αi , (10)

τi := αi+1

Bi+1
. (11)

Note that, by definition, α0 = A0 = B0. The Stochastic Intermediate Gradient
Method is described below as Algorithm 1.

3.1 General Convergence Rate

Let us obtain the convergence rate of the proposed method in terms of the sequences
Ai , Bi and βi , i ≥ 0. Denote by
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ALGORITHM 1: Stochastic Intermediate Gradient Method (SIGM)
Input: The sequences {αi }i≥0, {βi }i≥0, {Bi }i≥0, functions d(x), V (x, z).
Output: The point yk .

1 Compute x0 := argminx∈Q {d(x)}.
2 Let ξ0 be a realization of the random variable ξ . Calculate Gδ,L (x0, ξ0).
3 Find

y0 := arg min
x∈Q{β0d(x) + α0〈Gδ,L (x0, ξ0), x − x0〉 + α0h(x)}. (12)

4 Set k = 0.
5 repeat
6 Find

zk := arg min
x∈Q{βkd(x) +

k∑
i=0

αi 〈Gδ,L (xi , ξi ), x − xi 〉 + Akh(x)}. (13)

7 Let

xk+1 := τk zk + (1 − τk )yk . (14)

8 Let ξk+1 be a realization of the random variable ξ . Calculate Gδ,L (xk+1, ξk+1).
9 Find

x̂k+1 := arg min
x∈Q{βkV (x, zk ) + αk+1〈Gδ,L (xk+1, ξk+1), x − zk 〉 + αk+1h(x).}. (15)

10 Let

wk+1 := τk x̂k+1 + (1 − τk )yk . (16)

11 Let

yk+1 := Ak+1 − Bk+1

Ak+1
yk + Bk+1

Ak+1
wk+1. (17)

12 until;

Ψk(x) := βkd(x) +
k∑

i=0

αi
[
Fδ,L(xi , ξi ) + 〈Gδ,L(xi , ξi ), x − xi 〉

]+ Akh(x), (18)

the model of the objective function, Ψ ∗
k := minx∈Q Ψk(x) its minimal value on the

feasible set and ξ[k] := (ξ0, . . . , ξk) the history of the randomprocess after k iterations.
Let us show that {yk}k≥0 and {Ψk(x)}k≥0 define a sequence of estimate functions. We
denote fi := fδ,L(xi ), gi := gδ,L(xi ), Fi := Fδ,L(xi , ξi ),Gi := Gδ,L(xi , ξi ).

Lemma 3.1 For all k ≥ 0, the following inequality holds

Akϕ(yk) ≤ Ψ ∗
k + Ek, (19)
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where

Ek :=
k∑

i=0

Biδ +
k∑

i=0

Bi
βi − L

(‖Gi − gi‖∗)2 +
k∑

i=0

αi ( fi − Fi )

+
k∑

i=1

(Bi − αi )
αi

Bi
〈gi − Gi , zi−1 − yi−1〉.

Proof The proof is rather technical and can be found in “Appendix A.” �

Lemma 3.2 For all k ≥ 0, the following inequality holds

Ψk(x) ≤ Akϕ(x) + βkd(x) + Ēk(x), ∀x ∈ Q, (20)

where Ēk(x) := ∑k
i=0 αi

[
Fi − fi + 〈Gi − gi , x − xi 〉

]
.

Proof We have:

Ψk(x) = βkd(x) +∑k
i=0 αi

[
fi + 〈gi , x − xi 〉

]
+∑k

i=0 αi
[
Fi − fi + 〈Gi − gi , x − xi 〉

]+ Akh(x)
(2)≤ βkd(x) + Akϕ(x) + Ēk(x).

�

Combining Lemmas 3.1 and 3.2, we obtain the following result.

Theorem 3.1 Assume that the function f is endowed with a stochastic inexact oracle
with noise level σ , bias δ and constant L. Then the sequence yk generated by the
Algorithm 1, when applied to the Problem (1), satisfies

ϕ(yk) − ϕ∗ ≤ 1

Ak

(
βkd(x∗) +

k∑
i=0

Biδ +
k∑

i=0

Bi
βi − L

‖Gi − gi‖2∗

+
k∑

i=0

αi 〈Gi − gi , x
∗ − xi 〉 +

k∑
i=1

(Bi − αi )
αi

Bi
〈Gi − gi , yi−1 − zi−1〉

)
. (21)

Moreover,

Eξ0,...,ξkϕ(yk) − ϕ∗ ≤ βkd(x∗)
Ak

+
∑k

i=0 Biδ

Ak
+ 1

Ak

k∑
i=0

Bi
βi − L

σ 2.

Proof From the inequalities (19) and (20), by the definition of Ψk(x) and Ψ ∗
k , we

have:

Akϕ(yk) ≤ Ψ ∗
k + Ek ≤ Ψk(x

∗) + Ek ≤ Akϕ
∗ + βkd(x∗) + Ēk(x

∗) + Ek,

which immediately gives the first statement of the theorem.
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Since Eξi

[
Gi |ξ[i−1]

] = gi and xi , yi−1, and zi−1 are deterministic functions of
(ξ0, . . . , ξi−1), we have

Eξi

[〈Gi − gi , x
∗ − xi 〉|ξ[i−1]

] = Eξi

[〈Gi − gi , yi−1 − zi−1〉|ξ[i−1]
] = 0.

Therefore, the expectation of fourth and fifth terms in (21) with respect to ξ0, . . . , ξk
is zero. Also, by our assumption, Eξi

[‖Gi − gi‖2∗|ξ[i−1]
] ≤ σ 2, and, hence,

Eξ0,...,ξk

[∑k
i=0

Bi
βi−L ‖Gi − gi‖2∗

]
≤ ∑k

i=0
Bi

βi−L σ 2. This proves the second part of

the theorem. �


3.2 General Probability of Large Deviations

In this section, we obtain an upper bound on the probability of large deviations for the
ϕ(yk) − ϕ∗. To obtain our results, we make the following additional assumptions.

1. ξ0, . . . , ξk are i.i.d random variables.
2. Gδ,L(x, ξ) satisfies the light-tail condition

Eξ

[
exp

(‖Gδ,L(x, ξ) − gδ,L(x)‖2∗
σ 2

)]
≤ exp(1).

3. Set Q is bounded, and we know a number D > 0, such that maxx,y∈Q ‖x − y‖ ≤
D.

Lemma 3.3 ([15], [10]) Let ξ0, . . . , ξk be a sequence of realizations of the i.i.d.
random variables X0, . . . , Xk and let �i := �i (ξ[i]) be a deterministic function of

ξ[i] such that, for all i ≥ 0,E

[
exp

(
�2

i
σ 2

)
|ξ[i−1]

]
≤ exp(1), and c0, . . . , ck be a

sequence of positive coefficients. Then we have for any k ≥ 0 and any 
 ≥ 0:

P

(
k∑

i=0

ci�
2
i ≥ (1 + 
)

k∑
i=0

ciσ
2

)
≤ exp(−
).

Lemma 3.4 ([16], [10]) Let ξ0, . . . , ξk be a sequence of realizations of i.i.d. random
variables X0, . . . , Xk and let �i and ηi be deterministic functions of ξ[i] such that 1)
E
[
�i |ξ[i−1]

] = 0; 2) |�i | ≤ ciηi , where ci is positive deterministic constant; and 3)

E

[
exp

(
η2i
σ 2

)
|ξ[i−1]

]
≤ exp(1). Then, for any k ≥ 0 and any 
 ≥ 0,

P

⎛
⎝ k∑

i=0

�i ≥ √
3
σ

√√√√ k∑
i=0

c2i

⎞
⎠ ≤ exp(−
).
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Theorem 3.2 If the assumptions 1, 2, 3 are satisfied, then, for all k ≥ 0 and all
 ≥ 0,
the sequence generated by the SIGM satisfies

P

(
ϕ(yk) − ϕ∗ ≥ βkd(x∗)

Ak
+
∑k

i=0 Biδ

Ak

+ 1 + 


Ak

k∑
i=0

Bi
βi − L

σ 2 + 2Dσ
√
3


Ak

√√√√ k∑
i=0

α2
i

)
≤ 3 exp(−
).

Proof From Theorem 3.1, we know that for the SIGM, the gap ϕ(yk) − ϕ∗ can be
bounded from above by the sum of four quantities:

1. deterministic I1(k) := βkd(x∗)
Ak

+
∑k

i=0 Bi δ
Ak

,

2. random I2(k, ξ[k]) := 1
Ak

∑k
i=0

Bi
βi−L ‖Gi − gi‖2∗,

3. random I3(k, ξ[k]) := 1
Ak

∑k
i=1(Bi − αi )

αi
Bi

〈Gi − gi , yi−1 − zi−1〉,
4. random I4(k, ξ[k]) := 1

Ak

∑k
i=0 αi 〈Gi − gi , x∗ − xi 〉.

For I2(k, ξ[k]), using Lemma 3.3 with�i = ‖Gi −gi‖∗ and ci = Bi
Ak (βi−L)

, we obtain,
for all k ≥ 0 and 
 ≥ 0,

P

(
I2(k, ξ[k]) ≥ 1 + 


Ak

k∑
i=0

Bi
βi − L

σ 2

)
≤ exp(−
).

For I3(k, ξ[k]), using Lemma 3.4 with �i = (Bi − αi )
αi

Ak Bi
〈Gi − gi , yi−1 − zi−1〉,

ηi = ‖Gi − gi‖∗ and ci = αi D
Ak

, we obtain, for all k ≥ 0 and 
 ≥ 0,

P

⎛
⎝I3(k, ξ[k]) ≥ Dσ

√
3


Ak

√√√√ k∑
i=1

α2
i

⎞
⎠ ≤ exp(−
).

For I4(k, ξ[k]), using Lemma 3.4with�i = αi
Ak

〈Gi − gi , x∗−xi 〉, ηi = ‖Gi − gi ‖∗
and ci = αi D

Ak
, we obtain, for all k ≥ 0 and 
 ≥ 0,

P

⎛
⎝I4(k, ξ[k]) ≥ Dσ

√
3


Ak

√√√√ k∑
i=0

α2
i

⎞
⎠ ≤ exp(−
).

Combining these results, we obtain the statement of the theorem. �


3.3 Choice of the Coefficients

In Theorem 3.1, we have obtained the rate of convergence for the SIGM in terms
of the non-optimality gap expectation, and in Theorem 3.2, we have obtained the
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bound on probability of large deviations for the non-optimality gap. These results are
formulated in terms of the sequences {αi }i≥0, {βi }i≥0, {Bi }i≥0 satisfying (7), (8) and
(9). In this section,we specify these sequences in order to obtain the rate of convergence

Eϕ(yk) − ϕ∗ ≤ �
(
LR2

k p + σ R√
k

+ k p−1δ
)
, where p ∈ [0, 1] can be chosen before the

start of the algorithm. Let a ≥ 1 and b ≥ 0 be some parameters. Let us assume that
we know a number R such that

√
2d(x∗) ≤ R. We set

αi = 1

a

(
i + p

p

)p−1

, ∀i ≥ 0, (22)

βi = L + bσ

R
(i + p + 1)

2p−1
2 , ∀i ≥ 0, (23)

Bi = aα2
i = 1

a

(
i + p

p

)2p−2

, ∀i ≥ 0. (24)

Then inequalities (7) and (8) hold, and we only need to check that (9) also holds. We
have

Ak =
k∑

i=0

αi ≥ 1

a

∫ k

0

(
x + p

p

)p−1

dx + α0 ≥ 1

a

(
k + p

p

)p

. (25)

Clearly, for any i ≥ 0,

α2
k = 1

a2

(
k + p

p

)2p−2

≤ 1

a

(
k + p

p

)2p−2

≤ 1

a

(
k + p

p

)p

≤ Ak .

If we choose a = 2
2p−1
2 , then

1

a2

(
k + p

p

)2p−2

(k + p + 1)
2p−1
2

≤ 1

a

(
k + p

p

)2p−2

(k + p)
2p−1
2 ≤ 1

a

(
k + p

p

)p

(k + p)
2p−1
2 .

Last two sequences of inequalities prove that (9) holds. Using (25), we have

βkd(x∗)
Ak

≤ βk R2

2Ak
≤
(
L + bσ

R
(k + p + 1)

2p−1
2

)
R22

2p−3
2

(
p

k + p

)p

. (26)

Also, using (25) and the fact that p ∈ [1, 2], we have the following chain of inequalities

δ

Ak

k∑
i=0

Bi = aδ

Ak

k∑
i=0

α2
i ≤ aδ

Ak

(∫ k

0

(
x + p

p

)2p−2

dx +
(
k + p

p

)2p−2
)

≤ aδ

Ak

((
k + p

p

)2p−1

+
(
k + p

p

)2p−2
)
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≤ 22p−1δ

(
p

k + p

)p
((

k + p

p

)2p−1

+
(
k + p

p

)2p−2
)

≤ 22p−1

((
k + p

p

)p−1

+ 1

)
δ. (27)

Again, by (25), we have the following inequalities

σ 2

Ak

k∑
i=0

Bi
βi − L

≤ σ R

bp2p−2

(
p

k + p

)p k∑
i=0

(i + p)2p−2

(i + p + 1)
2p−1
2

≤ σ Rp2−p

b(k + p)p

k∑
i=0

(i + p + 1)p−
3
2 ≤ σ Rp2−p

b(k + p)p

∫ k+1

1
(x + p + 1)p−

3
2 dx

≤ σ Rp2−p

b(p − 1
2 )

(k + p + 2)p− 1
2

(k + p)p
. (28)

Combining the estimates (26), (27) and (28), we get for the rate of convergence
obtained in Theorem 3.1

Eξ0,...,ξkϕ(yk) − ϕ∗ ≤
(
L + bσ

R
(k + p + 1)

2p−1
2

)
R22

2p−3
2

(
p

k + p

)p

+ σ Rp2−p

b(p − 1
2 )

(k + p + 2)p− 1
2

(k + p)p
+ 22p−1

((
k + p

p

)p−1

+ 1

)
δ

≤ LR2 pp2
2p−3
2

(k + p)p
+ σ R(k + p + 2)p− 1

2

(k + p)p

(
b2p−

3
2 pp + 2p1−p

b

)

+ 22p−1

((
k + p

p

)p−1

+ 1

)
δ.

Choosing optimal b = 2
5−2p
4 p

1−2p
2 , we get the following theorem.

Theorem 3.3 If the sequences {αi }i≥0, {βi }i≥0, {Bi }i≥0 are chosen according to (22),

(23), (24) with a = 2
2p−1
2 and b = 2

5−2p
4 p

1−2p
2 , then the sequence yk generated by

the SIGM satisfies

Eξ0,...,ξkϕ(yk) − ϕ∗ ≤ LR2 pp2
2p−3
2

(k + p)p
+ σ R2

3+2p
4

√
p(k + p + 2)p− 1

2

(k + p)p
+

+ 22p−1

((
k + p

p

)p−1

+ 1

)
δ ≤ C1LR2

k p
+ C2σ R√

k
+ C3k

p−1δ

= �

(
LR2

k p
+ σ R√

k
+ k p−1δ

)
,
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where C1 = 4
√
2,C2 = 16

√
2,C3 = 48.

Similarly to what we have done to prove (27), we obtain the following inequality
1
A2
k

∑k
i=0 α2

i ≤ 2p
k+p . Combining this inequality with (26), (27) and (28), we prove the

following corollary of Theorem 3.2.

Theorem 3.4 If the sequences {αi }i≥0, {βi }i≥0, {Bi }i≥0 are chosen according to (22),

(23) and (24) with a = 2
2p−1
2 and b = 2

5−2p
4 p

1−2p
2 , then the sequence yk generated

by the SIGM satisfies

P

(
ϕ(yk) − ϕ∗ >

C1LR2

k p
+ C2(1 + 
)σ R√

k
+ C3k

p−1δ + C4Dσ
√


√
k

)

≤ P

(
ϕ(yk) − ϕ∗ >

LR2 pp2
2p−3
2

(k + p)p
+ (1 + 
)σ R2

3+2p
4

√
p(k + p + 2)p− 1

2

(k + p)p

+ 22p−1

((
k + p

p

)p−1

+ 1

)
δ + 2Dσ

√
6
p√

k + p

)
≤ 3 exp(−
),

where C1 = 4
√
2,C2 = 16

√
2,C3 = 48,C4 = 4

√
3.

4 Stochastic Intermediate Gradient Method for Strongly Convex
Problems

In this section, we consider two modifications of the SIGM for strongly convex prob-
lems. For the first modification, we obtain the rate of convergence in terms of the
non-optimality gap expectation, and for the second, we bound the probability of large
deviations from this rate. Both modifications are based on the restart technique, which
was previously used in [12] and [17].

Throughout this section, we assume that E is a Euclidean space with scalar product
〈·, ·〉 and norm ‖x‖ := √〈x, Hx〉, where H is a symmetric positive definite matrix.
Without loss of generality, we assume that the function d(x) satisfies conditions 0 =
argminx∈Q d(x) and d(0) = 0. Also we assume that the function ϕ(x) in (1) is
strongly convex, i.e., μ

2 ‖x − y‖2 ≤ ϕ(y) − ϕ(x) − 〈g(x), y − x〉 for all
x, y ∈ Q, g(x) ∈ ∂ϕ(x). As a corollary, we have

ϕ(x) − ϕ(x∗) ≥ μ

2
‖x − x∗‖2, ∀x ∈ Q, (29)

where x∗ is the solution of the Problem (1).

4.1 Modified Algorithm with Rate of Convergence for Expectation of
Non-Optimality Gap

In this subsection, we assume that d(x) satisfies the following property. If x0 is a
random vector such that Ex0‖x − x0‖2 ≤ R2

0 for some fixed point x and number R0,
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then, for some V > 0,

Ex0d

(
x − x0
R0

)
≤ V 2

2
. (30)

This assumption is satisfied, for example, for prox-functions, which have quadratic
growth with constant V 2. The latter means that d(x) ≤ V 2

2 ‖x‖2 for all x ∈ E . Several
examples of such prox-functions can be found in [17].

Lemma 4.1 Assume that we start Algorithm 1 from a random point x0 such that

Ex0‖x∗−x0‖2 ≤ R2
0 and, hence, (30)holdswith x = x∗.Weuse the function d

(
x−x0
R0

)
as the prox-function in the algorithm. Also assume that on kth iteration of Algorithm
1, we ask the oracle m times, getting answers Gδ,L(xk+1, ξ

i
k+1), i = 1, . . . ,m, and

use G̃δ,L(xk+1) := 1
m

∑m
i=1 Gδ,L(xk+1, ξ

i
k+1) in (15) instead of Gδ,L(xk+1, ξk+1).

We assume that ξ ik+1, i = 1, ...,m are i.i.d for fixed k + 1. Also let the assumptions of
Theorem 3.3 hold. Then

Eϕ(yk) − ϕ∗ ≤ C1LR2
0V

2

k p
+ C2σ R0V√

mk
+ C3k

p−1δ,

where C1 = 4
√
2,C2 = 16

√
2,C3 = 48 and the expectation is taken with respect to

all the randomness.

Proof Note that d
(
x−x0
R0

)
is strongly convex with respect to the norm 1

R0
‖ · ‖ with

parameter 1 and that the dual for this norm is the norm R0‖ · ‖∗. Also note that with
respect to the norm 1

R0
‖ · ‖ ( fδ,L(x), gδ,L(x)) is a (δ, LR2

0)-oracle for f (x). Also we

have Eξ1k+1,...,ξ
m
k+1

G̃δ,L(xk+1) = gδ,L(xk+1), and

Eξ1k+1,...,ξ
m
k+1

R2
0‖G̃δ,L(xk+1) − gδ,L(xk+1)‖2∗

= Eξ1k+1,...,ξ
m
k+1

R2
0

∥∥∥∥∥ 1m
m∑
i=1

Gδ,L(xk+1, ξ
i
k+1) − gδ,L(xk+1)

∥∥∥∥∥
2

∗

(3)≤ σ 2R2
0

m
.

Applying Theorems 3.1 and 3.3 with changing L to LR2
0, σ to σ R0√

m
andR to V , we

obtain

Eϕ(yk) − ϕ∗ ≤
βkEx0d

(
x∗−x0
R0

)
Ak

+
∑k

i=0 Biδ

Ak
+ 1

Ak

k∑
i=0

Bi
βi − L

σ 2

≤ C1LR2
0V

2

k p
+ C2σ R0V√

mk
+ C3k

p−1δ.

�

Now we are ready to formulate the new algorithm for strongly convex problems

and convergence result for this algorithm.
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ALGORITHM2: Stochastic Intermediate GradientMethod for Strongly Convex
Problems
Input: The function d(x), point u0, number R0 such that ‖u0 − x∗‖ ≤ R0, number p ∈ [1, 2].
Output: The point uk+1.

1 Set k = 0.
2 Calculate

Nk :=
⎡
⎢⎢⎢⎢
(
4eC1LV

2

μ

) 1
p

⎤
⎥⎥⎥⎥ . (31)

3 repeat
4 Calculate

mk := max

{
1,

⌈
16ek+2C2

2σ 2V 2

μ2R2
0Nk

⌉}
, (32)

5

R2
k := R2

0e
−k + 2peC3δ

μ(e − 1)

(
4eC1LV

2

μ

) p−1
p (

1 − e−k
)

. (33)

6 Run Algorithm 1 with x0 = uk and prox-function d
(
x−uk
Rk

)
for Nk steps, using oracle

G̃k
δ,L (x) := 1

mk

∑mk
i=1 Gδ,L (x, ξ i ), where ξ i , i = 1, ...,mk are i.i.d, on each step and sequences

{αi }i≥0, {βi }i≥0, {Bi }i≥0 defined in Theorem 3.3.
7 Set uk+1 = yNk , k = k + 1.
8 until;

Theorem 4.1 After k ≥ 1 outer iterations of Algorithm 2, we have

Eϕ(uk) − ϕ∗ ≤ μR2
0

2
e−k + C3e2p−1

e − 1

(
4eC1LV 2

μ

) p−1
p

δ, (34)

E‖uk − x∗‖2 ≤ R2
0e

−k + C3e2p

μ(e − 1)

(
4eC1LV 2

μ

) p−1
p

δ. (35)

As a consequence, if we choose the error δ of the oracle satisfying

δ ≤ ε(e − 1)

2pC3e

(
4eC1LV 2

μ

) 1−p
p

, (36)

then we need N =
⌈
ln

(
μR2

0
ε

)⌉
outer iterations and not more than

⎛
⎝1 +

(
4eC1LV 2

μ

) 1
p

⎞
⎠(1 + ln

(
μR2

0

ε

))
+ 16e3C2

2σ
2V 2

με(e − 1)
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oracle calls to guarantee that Eϕ(uN ) − ϕ∗ ≤ ε.

Proof The proof is rather technical and can be found in “Appendix B.” �


4.2 Modified Algorithm with Controlled Probability of Large Deviations

In this subsection, we assume that the prox-function has quadratic growth with para-
meter V 2 with respect to the chosen norm, i.e.,

d(x) ≤ V 2

2
‖x‖2, ∀x ∈ R

n . (37)

Several examples of such prox-functions can be found in [17].
Now we present a modification of Algorithm 2 and a theorem with a bound for the

probability of large deviations for the non-optimality gap of this algorithm.

ALGORITHM3: Stochastic Intermediate GradientMethod for Strongly Convex
Problems 2
Input: The function d(x), point u0, number R0 such that ‖u0 − x∗‖ ≤ R0, number p ∈ [1, 2],

number N ≥ 1 of outer iterations, confidence level �.
Output: The point uN .

1 Set k = 0.
2 Calculate

Nk :=
⎡
⎢⎢⎢⎢
(
6eC1LV

2

μ

) 1
p

⎤
⎥⎥⎥⎥ . (38)

3 repeat
4 Calculate

mk := max

⎧⎪⎨
⎪⎩1,

⎡
⎢⎢⎢⎢
36ek+2C2

2σ 2V 2
(
1 + ln

(
3N
�

))2
μ2R2

0Nk

⎤
⎥⎥⎥⎥ ,

⎡
⎢⎢⎢
144ek+2C2

4σ 2 ln
(
3N
�

)
μ2R2

0Nk

⎤
⎥⎥⎥
⎫⎪⎬
⎪⎭ , (39)

R2
k := R2

0e
−k + 2peC3δ

μ(e − 1)

(
6eC1LV

2

μ

) p−1
p (

1 − e−k
)

, (40)

Qk :=
{
x ∈ Q : ‖x − uk‖2 ≤ R2

k

}
. (41)

5 Run Algorithm 1 applied to the problem minx∈Qk ϕ(x) with x0 = uk and prox-function

d
(
x−uk
Rk

)
for Nk steps using oracle G̃

k
δ,L (x) := 1

mk

∑mk
i=1 Gδ,L (x, ξ i ), where ξ i , i = 1, ...,mk

are i.i.d, on each step and sequences {αi }i≥0, {βi }i≥0, {Bi }i≥0 defined in Theorem 3.3.
6 Set uk+1 = yNk , k = k + 1.
7 until k = N − 1;
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Theorem 4.2 After N outer iterations of Algorithm 3, we have

P

⎧⎨
⎩ϕ(uN ) − ϕ∗ >

μR2
0

2
e−N + 2p−1eC3δ

(e − 1)

(
6eC1LV 2

μ

) p−1
p

δ

⎫⎬
⎭ ≤ �. (42)

As a consequence, if we choose error of the oracle δ satisfying

δ ≤ ε(e − 1)

2pC3e

(
6eC1LV 2

μ

) 1−p
p

, (43)

then we need not more than N =
⌈
ln

(
μR2

0
ε

)⌉
outer iterations and not more than

⎛
⎝1 +

(
6eC1LV 2

μ

) 1
p

⎞
⎠
(
1 + ln

(
μR2

0

ε

))
+

+ 36e3C2
2σ

2V 2

μ(e − 1)ε

(
1 + ln

(
3

�

(
1 + ln

(
μR2

0

ε

))))2

+ 144e3C2
4σ

2

με(e − 1)
ln

(
3

�

(
1 + ln

(
μR2

0

ε

)))
(44)

oracle calls to guarantee that P{ϕ(uN ) − ϕ∗ > ε} ≤ �.

Proof The proof of this theorem can be found in “Appendix C.” �


5 Conclusions

In this paper, we propose the Stochastic Intermediate Gradient Method, which can
be used for convex composite optimization problems with stochastic inexact oracle.
We estimate its rate of convergence in terms of the non-optimality gap expectation
and provide the bound on the probability of large deviations for the non-optimality
gap, which has the same asymptotic dependence on the iteration number. The main
advantage of this method is that it provides several degrees of freedom for adapting it
to the problem at hand.

1. Depending on the relations between the error of the oracle and the Lipschitz
constant, one can choose an optimal trade-off between error accumulation and
rate of convergence.

2. One can introduce a randomization to the problem if some stochastic approxima-
tion of the gradient is cheaper to obtain than the real gradient. Since the rate of
convergence depends only on the number of iterations, but not on the number of
calls of the oracle, one can use Monte Carlo approach and generate several real-
izations of the stochastic approximation of the gradient on each iteration. This can
reduce the variance of the stochastic approximation.
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3. The concept of stochastic inexact oracle allows to use the proposed method to
solve non-smooth problems; see [8].

4. Since the method uses a general prox-function and norm, one can choose them
optimally, depending on the geometry of the feasible set. The classical example is
the standard simplex and the entropy prox-function.

5. The method allows to solve composite optimization problems such as the LASSO.

We provide an extension of thismethod for the case of problemswith a strongly convex
objective function and estimate its rate of convergence in terms of the expected non-
optimality gap, and another extension for the case when one needs a solution with
controlled level of confidence in corresponding non-optimality gap. It follows from
the results of [3], [10] that the obtained rates of convergence of our algorithms lead
to the complexity estimates, which up to a multiplicative constant coincide with the
lower complexity bound for the considered class of convex composite optimization
problems with stochastic inexact oracle.
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Appendix A: Proof of Lemma 3.1

Note that for all g ∈ E∗, x ∈ E, ζ > 0,

〈g, x〉 + ζ

2
‖x‖2 ≥ −1

ζ
‖g‖2∗. (45)

Let us first prove that the statement is true for k = 0. Since α0 = A0, we have

Ψ ∗
0

(18),(12)= β0d(y0) + α0 [F0 + 〈G0, y0 − x0〉 + h(y0)]
(4)≥ β0

2 ‖y0 − x0‖2 + α0 [F0 + 〈G0, y0 − x0〉 + h(y0)]
(7)≥ α0

[
F0 + 〈G0, y0 − x0〉 + h(y0) + β0

2 ‖y0 − x0‖2
]

= α0
[
f0 + 〈g0, y0 − x0〉 + h(y0) + L

2 ‖y0 − x0‖2
]

+α0

[
F0 − f0 + 〈G0 − g0, y0 − x0〉 + β0−L

2 ‖y0 − x0‖2
]

(2),(45)≥ α0 [ f (y0) + h(y0) − δ] + α0 [F0 − f0] − α0
β0−L ‖G0 − g0‖2∗.

In view of α0 = A0 = B0, this proves (19) for k = 0.
Let us assume that (19) holds for some k ≥ 0 and prove that it also holds for k + 1.

Let gh(zk) ∈ ∂h(zk). From the optimality condition in (13), we have

〈
βk∇d(zk) +

k∑
i=0

αi Gi + Akgh(zk), x − zk

〉
≥ 0, ∀x ∈ Q
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and, hence,

βk〈∇d(zk), x − zk〉 ≥
k∑

i=0

αi 〈Gi , zk − x〉 + Ak〈gh(zk), zk − x〉, ∀x ∈ Q.

(46)

At the same time, due to the convexity of h(x)

Ak+1h(x) + Ak〈gh(zk), zk − x〉 (10)= Akh(x) + Ak〈gh(zk), zk − x〉 + αk+1h(x)

≥ Akh(zk) + Ak〈gh(zk), x − zk〉 + Ak〈gh(zk), zk − x〉 + αk+1h(x)
(10)= Akh(zk) + αk+1h(x) (47)

Now we get for all x ∈ Q

Ψk+1(x)
(18)= βk+1d(x) +∑k+1

i=0 αi [Fi + 〈Gi , x − xi 〉] + Ak+1h(x)
(7),(5)≥ βkV (x, zk) + βkd(zk) + βk〈∇d(zk), x − zk〉+

+∑k+1
i=0 αi [Fi + 〈Gi , x − xi 〉] + Ak+1h(x)

(46)≥ βkV (x, zk)+βkd(zk)+∑k
i=0 αi 〈Gi , zk−x〉+Ak〈gh(zk), zk−x〉

+∑k+1
i=0 αi [Fi + 〈Gi , x − xi 〉] + Ak+1h(x)

= βkV (x, zk) + βkd(zk) + Ak+1h(x) + Ak〈gh(zk), zk − x〉
+∑k

i=0 αi [Fi +〈Gi , zk−xi 〉] + αk+1
[
Fk+1 + 〈Gk+1, x − xk+1〉

]
(47)≥ βkV (x, zk) + βkd(zk) +∑k

i=0 αi [Fi + 〈Gi , zk − xi 〉] + Akh(zk)+
+αk+1

[
Fk+1 + 〈Gk+1, x − xk+1〉 + h(x)

]
(18),(13)= βkV (x, zk) + Ψ ∗

k + αk+1
[
Fk+1 + 〈Gk+1, x − xk+1〉 + h(x)

]
.

(48)

Also, since Ak
(10)= (Ak+1 − Bk+1) + (Bk+1 − αk+1), we have

Ψ ∗
k + αk+1

[
Fk+1 + 〈Gk+1, x − xk+1〉 + h(x)

]
(19)≥ Akϕ(yk) − Ek + αk+1

[
Fk+1 + 〈Gk+1, x − xk+1〉 + h(x)

]
(1)= (Ak+1 − Bk+1) f (yk) + (Bk+1 − αk+1) f (yk) + Akh(yk) − Ek

+αk+1
[
Fk+1 + 〈Gk+1, x − xk+1〉 + h(x)

]
(2)≥ (Ak+1 − Bk+1) f (yk) + (Bk+1 − αk+1)( fk+1 + 〈gk+1, yk − xk+1〉) +

+Akh(yk) − Ek + αk+1
[
Fk+1 + 〈Gk+1, x − xk+1〉

]+ αk+1h(x)

= (Ak+1 − Bk+1) f (yk) + (Bk+1 − αk+1) fk+1 + αk+1Fk+1

+(Bk+1 − αk+1)〈gk+1, yk − xk+1〉 + αk+1〈Gk+1, x − xk+1〉
+Akh(yk) − Ek + αk+1h(x)

= (Ak+1 − Bk+1) f (yk) + (Bk+1 − αk+1)( fk+1 − Fk+1) + Bk+1Fk+1 (49)
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+(Bk+1 − αk+1)〈gk+1 − Gk+1, yk − xk+1〉
+〈Gk+1, (Bk+1 − αk+1)(yk − xk+1) + αk+1(x − xk+1)〉
+Akh(yk) − Ek + αk+1h(x)

(10)= (Ak+1 − Bk+1) f (yk) + (Bk+1 − αk+1)( fk+1 − Fk+1) + Bk+1Fk+1

+(Bk+1 − αk+1)〈gk+1 − Gk+1, yk − xk+1〉
+〈Gk+1, (Bk+1 − αk+1)(yk − xk+1) + αk+1(x − xk+1)〉
+(Ak+1 − Bk+1 + Bk+1 − αk+1)h(yk) − Ek + αk+1h(x)

(14)= (Ak+1 − Bk+1)( f (yk) + h(yk))

+(Bk+1 − αk+1)
[
fk+1 − Fk+1 + 〈gk+1 − Gk+1, yk − xk+1〉 + h(yk)

]
+Bk+1Fk+1 + αk+1〈Gk+1, x − zk〉 − Ek + αk+1h(x).

In the last equality we used, from (14) and (11), it follows that

(Bk+1 − αk+1)xk+1 + αk+1xk+1 = αk+1zk + (Bk+1 − αk+1)yk .

Hence,

(Bk+1 − αk+1)(yk − xk+1) − αk+1xk+1 = −αk+1zk

and

(Bk+1 − αk+1)(yk − xk+1) + αk+1(x − xk+1) = αk+1(x − zk).

Thus, for all x ∈ Q, we have

Ψk+1(x)
(48),(50),(1)≥ (Ak+1 − Bk+1)ϕ(yk) + Bk+1Fk+1

+ βkV (x, zk) + αk+1〈Gk+1, x − zk〉 + αk+1h(x)

+ (Bk+1 − αk+1)
[
fk+1 − Fk+1 + 〈gk+1 − Gk+1, yk − xk+1〉 + h(yk)

]− Ek (50)

At the same time,
βk

Bk+1

(9)≥ α2
k+1βk+1

B2
k+1

(11)= τ 2k βk+1. (51)
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Using (50), we obtain

Ψ ∗
k+1 ≥ Bk+1Fk+1 + minx∈Q {βkV (x, zk) + αk+1〈Gk+1, x − zk〉+

+ αk+1h(x)} + (Ak+1 − Bk+1)ϕ(yk)+
(Bk+1 − αk+1)

[
fk+1 − Fk+1 + 〈gk+1 − Gk+1, yk − xk+1〉 + h(yk)

]
(15)= Bk+1Fk+1 + βkV (x̂k+1, zk) + αk+1〈Gk+1, x̂k+1 − zk〉+

+αk+1h(x̂k+1) − Ek + (Ak+1 − Bk+1)ϕ(yk)+
(Bk+1 − αk+1)

[
fk+1 − Fk+1 + 〈gk+1 − Gk+1, yk − xk+1〉 + h(yk)

]
(6)≥ Bk+1

[
Fk+1 + τk〈Gk+1, x̂k+1 − zk〉 + βk

Bk+1
‖x̂k+1 − zk‖2

]−
−Ek + (Bk+1 − αk+1)

[
fk+1 − Fk+1 + 〈gk+1 − Gk+1, yk − xk+1〉

]
+Bk+1(τkh(x̂k+1) + (1 − τk)h(yk)) + (Ak+1 − Bk+1)ϕ(yk)

(51),(16)≥ Bk+1
[
Fk+1 + τk〈Gk+1, x̂k+1 − zk〉 + τ 2k βk+1

2 ‖x̂k+1 − zk‖2
]− Ek

+(Bk+1 − αk+1)
[
fk+1 − Fk+1 + 〈gk+1 − Gk+1, yk − xk+1〉

]
+Bk+1h(wk+1) + (Ak+1 − Bk+1)ϕ(yk)

(14),(16)≥ Bk+1
[
Fk+1 + 〈Gk+1, wk+1 − xk+1〉 + βk+1

2 ‖wk+1 − xk+1‖2
+ h(wk+1)

]− Ek + (Bk+1 − αk+1)
[
fk+1 − Fk+1

+ 〈gk+1 − Gk+1, yk − xk+1〉
]+ (Ak+1 − Bk+1)ϕ(yk)

= Bk+1
[
fk+1 + 〈gk+1, wk+1 − xk+1〉 + L

2 ‖wk+1 − xk+1‖2
+ h(wk+1)

]− Ek + Bk+1
[
Fk+1 − fk+1

+〈Gk+1 − gk+1, wk+1 − xk+1〉 + βk+1−L
2 ‖wk+1 − xk+1‖2

]
+(Bk+1 − αk+1)

[
fk+1 − Fk+1 + 〈gk+1 − Gk+1, yk − xk+1〉

]
+(Ak+1 − Bk+1)ϕ(yk)

(2)≥ Bk+1( f (wk+1) + h(wk+1) − δ) − Ek + αk+1(Fk+1 − fk+1)

+(Bk+1 − αk+1)〈gk+1 − Gk+1, yk − xk+1〉+
+Bk+1

[〈Gk+1 − gk+1, wk+1 − xk+1〉 + βk+1−L
2 ‖wk+1 − xk+1‖2

]
+(Ak+1 − Bk+1)ϕ(yk)

= Ak+1

(
Bk+1
Ak+1

ϕ(wk+1) + Ak+1−Bk+1
Ak+1

ϕ(yk)
)

− Bk+1δ − Ek

+αk+1(Fk+1 − fk+1) + (Bk+1 − αk+1)〈gk+1 − Gk+1, yk − xk+1〉+
+Bk+1

[〈Gk+1 − gk+1, wk+1 − xk+1〉 + βk+1−L
2 ‖wk+1 − xk+1‖2

]
(17),(45)≥ Ak+1ϕ(yk+1) − Ek − Bk+1δ + αk+1(Fk+1 − fk+1)

+(Bk+1 − αk+1)〈gk+1 − Gk+1, yk − xk+1〉
− Bk+1

βk+1−L ‖gk+1 − Gk+1‖2∗.
(52)

Finally, from (14), we have

yk − xk+1
(14)= τk(yk − zk)

(11)= αk+1

Bk+1
(yk − zk).

Thus, by (52), we obtain (19) for k + 1. �
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Appendix B: Proof of Theorem 4.1

Obviously, (35) follows from (34) and (29). Let us prove the inequality

Eϕ(uk) − ϕ∗ ≤ μR2
0

2
e−k + C3e2p−1

e − 1

(
4eC1LV 2

μ

) p−1
p (

1 − e−k
)

δ (53)

for all k ≥ 1. Then we will have (34) as a consequence. Let us prove (53) for k = 1.
It follows from Lemma 4.1 that

Eϕ(yN0) − ϕ∗ ≤ C1LR2
0V

2

N p
0

+ C2σ R0V√
m0N0

+ C3N
p−1
0 δ. (54)

From (31), we have

C1LR2
0V

2

N p
0

≤ C1LR2
0V

2

4eC1LV 2

μ

≤ μR2
0

4e
,

C3N
p−1
0 δ ≤ C3e2p−1

e − 1

(
4eC1LV 2

μ

) p−1
p (

1 − e−1
)

δ. (55)

Using (32), we obtain

C2σ R0V√
m0N0

≤ C2σ R0V√
16e2C2

2σ 2V 2

μ2R2
0N0

N0

≤ μR2
0

4e
.

This with (54) and (55) proves (53) for k = 1.
Let us now assume that (53) holds for k = j and prove that it holds for k = j + 1.

It follows from (29) and(53) for k = j that

E‖u j − x∗‖2 ≤ 2

μ

(
Eϕ(u j ) − ϕ∗)

≤ 2

μ

⎛
⎝μR2

0

2
e− j + C3e2p−1

e − 1

(
4eC1LV 2

μ

) p−1
p (

1 − e− j
)

δ

⎞
⎠ (33)= R2

j .

After N j iterations of Algorithm 1with starting point u j (or yN j−1 , which is the same),
applying Lemma 4.1, we have

Eϕ(yN j ) − ϕ∗ ≤ C1LR2
j V

2

N p
j

+ C2σ R jV√
m j N j

+ C3N
p−1
j δ. (56)
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From (31), we have

C1LR2
j V

2

N p
j

≤ C1LR2
j V

2

4eC1LV 2

μ

≤ μR2
j

4e
, C3N

p−1
j δ ≤ C32

p−1
(
4eC1LV 2

μ

) p−1
p

δ.

(57)
By (32),

m j ≥ 16e j+2C2
2σ

2V 2

μ2R2
0N j

≥ 16e2C2
2σ

2V 2

μ2N j

(
R2
0e

− j + 2peC3δ
μ(e−1)

(
4eC1LV 2

μ

) p−1
p (

1 − e− j
)
δ

)

(33)= 16e2C2
2σ

2V 2

μ2R2
j N j

,

and, hence,
C2σ R jV√

m j N j
≤ C2σ R jV√

16e2C2
2σ 2V 2

μ2R2
j N j

N j

≤ μR2
j

4e
. (58)

Finally, we arrive at

Eϕ(u j+1)−ϕ∗ = Eϕ(yN j ) − ϕ∗ (56),(57),(58)≤ μR2
j

2e
+ C32

p−1
(
4eC1LV 2

μ

) p−1
p

δ
(33)=

= 1

e

⎛
⎝μR2

0

2
e− j + C3e2p−1

e − 1

(
4eC1LV 2

μ

) p−1
p (

1 − e− j
)

δ

⎞
⎠

+ C32
p−1

(
4eC1LV 2

μ

) p−1
p

δ

= μR2
0

2
e−( j+1) + C3e2p−1

e − 1

(
4eC1LV 2

μ

) p−1
p (

1 − e−( j+1)
)

δ.

Thus, we have obtained that (53) holds for k = j +1 and, by induction, it holds for all

k ≥ 1. If we choose δ satisfying (36) and perform N =
⌈
ln

(
μR2

0
ε

)⌉
outer iterations

of Algorithm 2, we will obtain from (34)

Eϕ(uN ) − ϕ∗ ≤ μR2
0

2
e−N + C3e2p−1

e − 1

(
4eC1LV 2

μ

) p−1
p

δ ≤ ε

2
+ ε

2
= ε.

It remains to calculate the number of oracle calls to obtain an ε-solution in the sense
that Eϕ(uN ) − ϕ∗ ≤ ε. We perform N outer iterations (k runs from 0 to N − 1), on
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each outer iteration k, we perform Nk inner iterations, and, on each inner iteration, we
call the oracle mk times. Hence, the total number of oracle calls is

C(ε) =
N−1∑
k=0

Nkmk ≤
N−1∑
k=0

Nk

(
1 + 16C2

2e
2σ 2V 2ek

μ2R2
0Nk

)
≤ NN0 + 16C2

2e
2σ 2V 2eN

μ2R2
0(e − 1)

≤
(
1 + ln

(
μR2

0

ε

))⎛
⎝1 +

(
4eC1LV 2

μ

) 1
p

⎞
⎠+ 16e3C2

2σ
2V 2

με(e − 1)

≤
(
1 + ln

(
μR2

0

ε

))⎛⎝1 +
(
62LV 2

μ

) 1
p

⎞
⎠+ 96000σ 2V 2

με
.

�


Appendix C: Proof of Theorem 4.2

Let Ak, k ≥ 0 be the event Ak :=
{
ϕ(uk) − ϕ∗ ≤ μR2

k
2

}
and Āk be its complement.

Let us first prove that, for k ≥ 1,

P

{
ϕ(uk) − ϕ∗ >

μR2
k

2

∣∣∣∣∣ Ak−1

}
≤ �

N
. (59)

Since the event Ak−1 holds, we have from (29)

∥∥uk−1 − x∗∥∥2 ≤ 2

μ

(
ϕ(uk−1) − ϕ∗) ≤ R2

k−1.

Hence, the solution of the problem minx∈Qk−1 ϕ(x) is the same as the solution of
the initial Problem (1). Let us denote Dk−1 := maxx,y∈Qk−1 ‖x − y‖. Clearly,
Dk−1 ≤ 2Rk−1. Note that Dk−1 = Rk−1 maxx,y∈Qk−1

‖x − y‖
Rk−1

and the diameter of

the set Qk−1 with respect to the norm
‖·‖
Rk−1

is not greater than 2. We apply Theorems

3.2 and 3.4 with LR2
k−1 in the role of L ,

σ Rk−1√
mk−1

in the role of σ, V in the role of R, 2
in the role of D, use (37) and make the same argument as in the proof of Lemma 4.1.
This leads to the following inequality

P

{
ϕ(uk) − ϕ∗ >

C1LR2
k−1V

2

N p
k−1

+ C2(1 + 
)σ Rk−1V√
mk−1Nk−1

+ C3N
p−1
k−1 δ+

2C4Rk−1σ
√


√
mk−1Nk−1

∣∣∣∣∣ Ak−1

}
≤ �

N
, (60)
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where C1 = 4
√
2,C2 = 16

√
2,C3 = 48,C4 = 4

√
3,
 = ln

( 3N
�

)
. Using (38), we

have

C1LR2
k−1V

2

N p
k−1

≤ C1LR2
k−1V

2

6eC1LV 2

μ

≤ μR2
k−1

6e
, C3N

p−1
k−1 δ ≤ C32

p−1
(
6eC1LV 2

μ

) p−1
p

δ.

(61)
From (39), we have

mk−1 ≥ 36ek+1C2
2σ

2V 2(1 + 
)2

μ2R2
0Nk−1

≥

36e2C2
2σ

2V 2(1 + 
)2

μ2Nk−1

(
R2
0e

−(k−1) + 2peC3δ
μ(e−1)

(
6eC1LV 2

μ

) p−1
p (

1 − e−(k−1)
)
δ

) (40)=

= 36e2C2
2σ

2V 2(1 + 
)2

μ2R2
k−1Nk−1

,

and, hence,

C2σ Rk−1V (1 + 
)√
mk−1Nk−1

≤ C2σ Rk−1V (1 + 
)√
36e2C2

2σ 2V 2(1+
)2

μ2R2
k−1Nk−1

Nk−1

≤ μR2
k−1

6e
. (62)

Also, by (39), we have

mk−1 ≥ 144ek+1C2
4σ

2


μ2R2
0Nk−1

≥

144e2C2
4σ

2


μ2Nk−1

(
R2
0e

−(k−1) + 2peC3δ
μ(e−1)

(
6eC1LV 2

μ

) p−1
p (

1 − e−(k−1)
)
δ

) (40)= 144e2C2
4σ

2


μ2R2
k−1Nk−1

,

and, hence,
2C4Rk−1σ

√

√

mk−1Nk−1
≤ 2C4Rk−1σ

√

√

144e2C2
4σ 2


μ2R2
k−1Nk−1

Nk−1

≤ μR2
k−1

6e
. (63)
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Finally, we arrive at

C1LR2
k−1V

2

N p
k−1

+ C2(1 + 
)σ Rk−1V√
mk−1Nk−1

+ C3N
p−1
k−1 δ + 2C4Rk−1σ

√

√

mk−1Nk−1

(61),(62),(63)≤

≤ μR2
k−1

2e
+ C32

p−1
(
6eC1LV 2

μ

) p−1
p

δ

(40)= 1

e

⎛
⎝μR2

0

2
e−(k−1) + C3e2p−1

e − 1

(
6eC1LV 2

μ

) p−1
p (

1 − e−(k−1)
)

δ

⎞
⎠

+ C32
p−1

(
6eC1LV 2

μ

) p−1
p

δ

= μR2
0

2
e−k + C3e2p−1

e − 1

(
6eC1LV 2

μ

) p−1
p (

1 − e−k
)

δ = μR2
k

2
.

Thus, (59) follows from (60).
Also, for all k = 1, . . . , N , we have

P

{
ϕ(uk) − ϕ∗ >

μR2
k

2

}
= P

{
ϕ(uk) − ϕ∗ >

μR2
k

2

∣∣∣∣∣ Ak−1 ∪ Āk−1

}

= P

{
ϕ(uk) − ϕ∗ >

μR2
k

2

∣∣∣∣∣ Ak−1

}
P{Ak−1}

+ P

{
ϕ(uk) − ϕ∗ >

μR2
k

2

∣∣∣∣∣ Āk−1

}
P{ Āk−1}

(59)≤

≤ �

N
+ P{ Āk−1} = �

N
+ P

{
ϕ(uk−1) − ϕ∗ >

μR2
k−1

2

}
.

Using that P{A0} = 1 and summing up these inequalities, we obtain

P

⎧⎨
⎩ϕ(uN ) − ϕ∗ >

μR2
0

2
e−N + 2p−1eC3δ

(e − 1)

(
6eC1LV 2

μ

) p−1
p

δ

⎫⎬
⎭ ≤

P

{
ϕ(uN ) − ϕ∗ >

μR2
N

2

}
≤ �.

Making the same arguments as in the proof of Theorem 4.1, we obtain the complexity
bound (44). �
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