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First�order methods were among the first to be
developed in optimization theory; their descriptions
can be found in classical books, such as [1–3]. After
publishing [4], special attention was given to conver�
gence rate estimates for developed methods and to
lower complexity bounds for various classes of prob�
lems (see also [5]). Later, more efficient methods,
such as the ellipsoid method and interior point meth�
ods, were developed for convex optimization prob�
lems. These methods have a high rate of convergence,
but the number of arithmetic operations required at
every iteration step is on the order of n3 – n4 [5], which
makes them inefficient for large�scale problems (with
n > 105). Over the last decade, large�scale optimization
problems have attracted much interest motivated by
numerous applications, such as transportation model�
ing, web page ranking, and the design of mechanical
structures. In such problems, the solution is usually
not required to be highly accurate. As a result, they can
be effectively solved by applying first�order methods,
for which the estimated number of iterations required
for finding a solution with prescribed accuracy is usu�
ally nearly independent of the dimension of the prob�
lem and the number of arithmetic operations required
at every iteration step is on the order of n2 or lower.
Accordingly, an important issue is to develop new effi�
cient first�order methods.

Now, we describe the formulation of the problem.
Let E be a finite�dimensional vector space and E* be
its adjoint. The value of a linear functional g ∈ E* at a
point x ∈ E is denoted by 〈g, x〉. Let E be equipped with
some norm ||·||. In this paper, we consider composite
optimization problems of the form

(1)

where Q ⊆ E is a convex closed set, h(x) is a simple con�
vex function (for example, ||x||1, which is used in
LASSO problems), and f(x) is a convex function with
an inexact stochastic oracle. This means that, for any
x ∈ Q, there are fδ, L(x) ∈ � and gδ, L(x) ∈ E* such that

0 ≤ f(y) – fδ, L(x) – 〈gδ, L(x), y – x〉 ≤ ||x – y||2 + δ,

∀y ∈ Q and that instead of the pair (fδ, L(x), gδ, L(x))
(which is referred to as a (δ, L)�oracle) one can use
only their stochastic approximations (Fδ, L(x, ξ),
Gδ, L(x, ξ)). The last means that every point x ∈ Q is asso�
ciated with a random variable ξ such that �ξFδ, L(x, ξ) =
fδ, L(x), �ξGδ, L(x, ξ) = gδ, L(x), and �ξ(||Gδ, L(x, ξ) –
gδ, L(x)||∗)2 ≤ σ2. Here, ||·||∗ is the dual norm defined in

the standard manner as ||g||∗ = 〈g, y〉: ||y||E ≤ 1}.

First�order methods for various special cases of the
above class of problems were proposed in [6–10].
Below, general methods are suggested for solving
problems of this class. Specifically, for the composite
optimization problem (1), we propose a stochastic
intermediate gradient method (SIGM) (Algorithm 1)
that allows using an arbitrary norm on E and a prox�
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function d(x) (see the rigorous definition below) and

has an O  +  + kp – 1δ  convergence rate

(Theorem 1), where k is the iteration number, R is an
estimate of the distance between the starting point of
the algorithm and the solution, and p ∈ [1, 2] is a pre�
scribed number. Theorem 1 also gives an estimate for
the probability of large deviations from the conver�
gence rate. Additionally, a modification of this method
(Algorithm 2) is proposed for problems with a strongly
convex function ϕ and its rate of convergence is esti�
mated (see Theorem 2). The results of [4, 10] imply
that our estimates coincide, up to a multiplicative con�
stant, with lower bounds not only for the considered
class of composite optimization problems with an
inexact stochastic oracle, but also for all usually con�
sidered subclasses of this class. Additionally, we
describe Algorithm 3 for controlling large deviations
from the resulting convergence rate in the strongly
convex case (Theorem 3).

The algorithms proposed have the following advan�
tages.

(1) They are applicable to a wide range of prob�
lems: stochastic optimization, problems with an error
in gradient evaluation, smooth and nonsmooth prob�
lems, and problems with a Hölder subgradient (see
[6]), and strongly convex problems.

(2) For fixed values of δ, L, and the number of iter�
ations, p ∈ [1, 2] can be chosen so as to minimize the
error of the resulting solution approximation. For p = 1,
we obtain the gradient method and, for p = 2, a fast
gradient method.

(3) Artificial randomization can be used in an ini�
tially deterministic problem if the computation of a
stochastic oracle requires fewer arithmetic operations
than that of the original deterministic oracle.

(4) The computational costs required for solving an
auxiliary problem at Step 3 in Algorithm 1 can be
reduced due to the use of an arbitrary norm and a
prox�functions d(x). For example, if Q is a unit sim�
plex in an n�dimensional space, d(x) = –lnn +

lnxi, and h(x) = 0, then minimization in

such auxiliary problems can be done by explicit for�
mulas [4].

Let us describe the methods. Assume that E is
equipped with some norm ||·|| and d(x) is a differentia�
ble function that is strongly convex with parameter 1
on Q with respect to the chosen norm (referred to as a
prox�function). The Bregman distance is defined as

V(x, z) = d(x) – d(z) – 〈∇d(z), x – z〉.

We choose numbers p ∈ [1, 2], a = , b =

, and R:  ≤ R, where x* is a solu�
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tion of problem (1), and sequences αi = ,

βi = L + (i + p + 1 , Bi = a , τi =  ∀i ≥ 0,

Ak = , N ∈ �. Below, we describe Algorithm 1,

which outputs a point yk.

ALGORITHM 1: SIGM 1

Step 1. x0 = 

Step 2. Let ξ0 be a realization of the random vari�
able ξ. Compute Gδ, L(x0, ξ0).

Step 3. Compute y0 = β0d(x) + α0〈Gδ, L(x0,

ξ0), x – x0〉 + h(x)}. Set k = 0.
repeat

Step 4. Compute zk = βkd(x) +

〈Gδ, L(xi, ξi), x – xi〉 + Akh(x)}.

Step 5. Set xk + 1 = τkzk + (1 – τk)yk.
Step 6. Let ξk + 1 be a realization of the random

variable ξ. Compute Gδ, L(xk + 1, ξk + 1).

Step 7. Compute ξk + 1 = βkV(x, zk) +

αk + 1〈Gδ, L(xk + 1, ξk + 1), x – zk〉 + αk + 1h(x)}.

Step 8. Set wk + 1 = τk  + (1 – τk)yk, yk + 1 =

yk + wk + 1.

until k > N.
Theorem 1. 1. Let the function f be equipped with an

inexact stochastic oracle. Then the sequence yk gener�
ated by Algorithm 1 as applied to problem (1) satisfies the
relation 

ϕ(yk) – ϕ* ≤ 48  +  + kp – 1δ .

2. Let, additionally, ξ0, …, ξk be independent identi�
cally distributed random variables, 

�ξ  ≤ exp(1), 

also set Q limited and

D = x – y||.

Then the sequence yk generated by Algorithm 1 as
applied to problem (1) satisfies the relation
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We introduce the following additional assump�
tions:

(i) E is a Euclidean space with inner product 〈·, ·〉

and the norm ||x|| = , where H is a symmetric
positive definite matrix.

(ii) Without loss of generality, the minimum value
of d(x) is 0 and is reached at the point 0 ∈ E.

(iii) The function d(x) has quadratic growth with a
constant V2 with respect to the chosen norm: d(x) ≤

||x||2, ∀x ∈ E.

(iv) The function ϕ(x) is strongly convex, i.e.,

(2)

Here, ∂ϕ(x) is the subdifferential of ϕ(x) at the point x.
Given an initial point u0 and numbers R0: ||u0 – x*|| ≤

R0, p ∈ [1, 2], and N ∈ �, Algorithm 2 described below
outputs a point uk + 1.

ALGORITHM 2: SIGM 2

Step 1. Set k = 0. Define N0 = .

repeat
Step 2. Set

Step 3. Take N0 steps of Algorithm 1 beginning at

the point x0 = uk with the prox�function d  and

with the oracle Gδ, L(xi, ξi) replaced by (xi) =

(xi, ξj) at Steps 2–4, 6, and 7. Set uk + 1 = ,

k = k + 1.
until k > N.
Theorem 2. Let assumptions (i)–(iv) and the

assumptions from the first part of Theorem 1 hold. Then,
after k ≥ 1 outer iterations of Algorithm 2, we obtain
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�ϕ(uk) – ϕ* ≤ e–k + δ.

Moreover, if the oracle error δ is chosen so that δ ≤

, then a point uN satisfying

�ϕ(uN) – ϕ* ≤ ε can be found after N =

max  outer iterations and

O  oracle calls.

Now let error tolerance ε and confidence level Λ be
also given. An output of Algorithm 3, stated below, is
the point uN.

ALGORITHM 3: SIGM 3 

Step 1. Set N = max , N0 =

, k = 0.

repeat
Step 2. Set

Step 3. Take N0 steps of Algorithm 1 for solving the

problem  beginning at the point x0 = uk with

the prox�function d  and with the oracle

Gδ, L(xi, ξi) replaced by (xi) = (xi, ξj) at

Steps 2–4, 6, and 7. Set uk + 1 =  and k = k + 1.

until k = N – 1.
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Theorem 3. Let assumptions (i)–(iv) and the assump�
tions of Theorem 1 hold. Suppose that the oracle error δ sat�

isfies the relation δ ≤ . Then

Algorithm 3 finds an (ε, Λ)�solution uN satisfying

�{ϕ(uN) – ϕ* > ε} ≤ Λ after O  +

 + ln  oracle calls.

Note that, by using the strong convexity of ϕ, esti�
mates of the same form as in Theorems 2 and 3 can be
obtained for the squared error with respect to the argu�
ment.
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