How to deal with range-based packet classifiers

Vitalii Demianiuk
IMDEA Networks Institute
Steklov Institute of Mathematics at St. Petersburg

ABSTRACT

Efficient representations of multi-field packet classifiers with
fields represented by ranges is a core mechanism to express
services on data plane. To implement classifiers in ternary-
addressable memory (TCAM), each range should be encoded
into multiple ternary bit strings whose number is at most lin-
ear to the width (in bits) of a represented field independently
from range encoding method. In this paper we introduce a
notion of a subrange allowing to represent a field range on
any chosen subset of bit indices that significantly improve
efficiency of classifier representations. Our analytic results
are confirmed with a comprehensive evaluation study show-
ing applicability of our approach to implement desired levels
of expressiveness and scalability in packet classifiers.
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1 INTRODUCTION AND MOTIVATION

Packet classification is a core building block implementing
packet processing programs on data plane. With the adop-
tion of OpenFlow [14] and P4 [15], packet classification has
become even more prominent. Each packet classifier is an
ordered set of rules, where a rule consists of the filter (match-
ing packet headers) and the associated action to be applied
on matched packets. A filter is a concatenation of field repre-
sentations participating during classification; in the simplest
form each field in a filter is represented by exact values. In
this case packet classifiers can be implemented with a con-
stant lookup time but the number of rules can be infeasible
to fit in memory. In the other extreme case, to address the
scalability constraint, fields can be represented by ranges of
values. In this case the number of rules is significantly re-
duced but the lookup complexity increases. As a result, some
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intermediate forms of field representations were introduced
as prefixes or more general ternary bit strings, where every
bit has three values: zero, one, or don’t care. For ternary
bit strings, a specialized ternary content addressable (TCAM)
memory was introduced that is actually a coprocessor run-
ning multiple searches in parallel [12].

Related work. There are two major directions dealing
with range-base packet classifiers. The first one is indepen-
dent from structural properties of classifiers encoding every
field range by multiple prefixes or ternary bit strings whose
number is at most linear to the field size (in bits) [3, 4, 11,
16, 17]. Hence, each rule whose fields are represented by
ranges is actually a classifier with exponential number of
rules based on ternary bit strings. Recently, [1] proposes
efficient encoding for the special case of short ranges. Other
range encoding methods exploiting structural properties can
achieve more compact representations [2, 5] but usually they
perform well only when the number of encoded ranges is rel-
atively small. Note that both these lines of research consider
transformations to equivalent classifiers.

Recently, [6, 9, 10, 13] proposed representations of packet
classifiers exploiting their structural properties like rule dis-
jointness; observe that these representations become equiv-
alent to originally given classifiers only when the lookup
table based on a subset of fields is complemented by the
false-positive check on a single matched rule. This allows
to balance which fields are required to implement desired
structural properties in the lookup table and which are going
to the false-positive check where range encoding is unneces-
sary. It allows to reduce the size of classifier representations.
To store classifier in TCAM, a participating subset of ranges
in the lookup table should be encoded by one of the previ-
ously mentioned methods [3, 4, 11, 16, 17].

Our contributions. In this paper we are going beyond [10]
and propose range reduction (RR) methods allowing to im-
plement structural properties of classifiers with per-bit res-
olution (and not with per-field as in [10]), when fields are
represented by ranges. We introduce an interesting notion of
a subrange on a predefined set of range bit-indices allowing
to construct equivalent representations of packet classifiers
with per-bit resolution avoiding intermediate range expan-
sions. To illustrate this, consider a classifier K in Fig. 1a
based on three range fields. For an incoming header H, the
Rj5 rule is matched. All three rules are disjoint (do not match
the same header) on three fields. Note that two fields are
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gB={{2h{12h2} — (0,10)

1 ! l range encoding methods
prefix [17] SRGE [3]
K ‘ L I, I3 ‘ Action JCFLF} ‘ L L Ve ‘ IlB‘ Ifz # entries | # bits | # entries | # bits
Ry | [24,30] [5,28] [9,16] | A; R, [24,30] [5,28] Ry | [1] [0,3] I3 105 | 1575 60 900
Ry | [18,20] [25,31] [12,20] Ay R, [18,20] [25,31] R, | [0] [3,3] JC{FLF} [10] 39 390 30 300
R; | [17, 23] [5, 21] [8, 15] A; R3 [17, 23] [5, 21] R; | [0] [0, 2] 7(8, RR 4 12 4 12
H| H|
false positive I3 L L I3
check: Rs = [8, 15] R; = (17, 23][5, 21][8, 15]
(a) (b) (c) (d)

Figure 1: Our RR method vs. previous works: (a) original classifier K whose rules consist of three 5-bit fields; (b) the
representation of K as in [10] exploiting rule disjointness based on two ranges; (c) the proposed RR implementing
rule disjointness on three bits; (d) comparison of three different representations.

sufficient to keep rule disjointness as it is done in [10]. Still
these two ranges in every rule are to be encoded by one of the
range encoding methods (e.g., prefix expansion [17] or SRGE
based on Gray encoding [3]). Intuitively, representations
narrowing down the covered field ranges can significantly
improve memory requirements. This is a reason why the
notion of subranges introduced in this paper allow to imple-
ment rule disjointedness only on 3 bit indices (see Fig. 1c).
Fig. 1d demonstrates advantages of per-bit resolution leading
to significant reduction in TCAM memory requirements both
in total bits and ternary entries (e.g., RR allows to reduce the
number of ternary entries maintained in TCAM from 60 to 4
for SRGE range encoding).

Based on properties of subranges, we introduce heuris-
tics to find efficient classifier representations in TCAMs. We
demonstrate the viability of our approach through compre-
hensive evaluation where in the extreme case all six fields are
based on ranges. Such classifiers cannot be implemented in
TCAM with the conventional methods dealing with equiva-
lent classifiers. The evaluation results together with analytic
observations confirm that subranges could be an interest-
ing direction to implement a fundamental tradeoff between
expressiveness and scalability.

2 MODEL DESCRIPTION

A packet header H = (Hy, ..., Hy) is a concatenation of k
header fields, where each header field H; is a binary string
on w; bits; headers are matched by classifiers. A classifier
K ={Ry,...,RN}< is an ordered (by <) set of rules, where
each rule R; = (F;, A;) consists of a filter ; and the associ-
ated action A;. A filter ¥ = (F, ..., Fy) is a sequence of k
field representations, where each field representation F; is on
w; bits corresponding to the header field H;. In this paper
we consider two types of field representations: (1) a range
of values; and (2) a ternary bit string, where each bit can
have one of the three values 0, 1, or * (“don’t care”). We say
that a range I is matching a value x if x € I. We say that a
ternary bit string T matching a binary string H of the same
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length [ if for each bit index 1 < i < [ either H[i] = T[i]
or T[i] = =. In the case of ternary field representations, a
filter is a ternary bit string produced by concatenation of the
ternary bit strings of the corresponding field representations.
A filter ¥ matches a header H if every F; of ¥ matches the
corresponding header field H;. We say that two filters #; and
¥ are disjoint if no single header matches both of them. Oth-
erwise, F1 and ¥ intersect. Two rules intersect (are disjoint)
if their filters intersect (are disjoint). The main purpose of
the classification process is to find the action corresponding
to the highest priority rule matching a given header that we
call a classifying rule. If there is no rule matching H in X,
the classification result is a default action that differs from
all actions in K. Two classifiers (or their representations)
are equivalent if the classification result coincides in both
classifiers (representations) for all headers.

Example 2.1. A sample 2-field (k = 2) range-based classi-
fier K with 3-bit fields (w; = wy = 3).

K| L I, | Action
Ry [[o.6] [25]] A
Ry | [0,3] [13]| A,

Aheader H = (010, 001) is classified by R, since it is matched
only by R;; a header H’ = (010, 011) is matched by both R;
and R, but H’ is classified by R;.

3 RANGE ON A SUBSET OF BITS

Recall that each range is encoded into multiple ternary en-
tries whose number is at most linear to the field width (in
bits) independently from range encoding methods [16]. In-
tuitively, taking values on a subset of bit indices of a given
range leads to consideration of a smaller set of values and
potentially more efficient representations in ternary entries
than the originally given range. But this is not enough, for
correctness, we need that a matched value in the original
range continues to be matched the corresponding entity on
the representing subset of bit indices. In this section we
introduce such entities implementing both efficiency and
correctness that we call subranges and study their properties.
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Consider a non-empty subset of bit indices B € {1,2...,w}
of a w-bit range I. For a value x, denote by x® a value ob-
tained from x by taking the values of bits at the positions
in B. Also we denote by I? a set of values on B bit indices
obtained from the values in a range I.

Example 3.1. Consider a 5-bit range I = [23, 25]. The fol-
lowing table consists of values x € I and x® € I? for a subset
of bit-indices B = {1,3,5}; I® = {4,5,7}.

x | 23 | 24 | 25
xB | 7(1113) | 4(1002) | 5(101p)

In the following we explore structural properties of 2
in details. First, note that I® is not necessarily a range, in
Example 3.1, IB = {4,5,7}. Second, for a range containing
a single value I = [[,1], the corresponding I® = [I5,15]
contains also a single value. Next we explore I? properties
on ranges containing at least two values.

For arange I = [, r], let sim(I) be a first bit index whose
value differs in the binary representations of [ and r; in Ex-
ample 3.1 sim(I) = 2. We say that a w-bit range I = [I,r]
is a left border range if | mod 25D = 0; and I is a
right border range if (r + 1) mod 2"~/ = 0. For in-
stance, I = [24(11000,),28(11100,)] is a left border range;
and I = [19(10011;), 23(101115,)] is a right border range.

OBSERVATION 1. A rangel = [, r] can be represented as a
union of a right border range I; = [1,1 or w-sim) _ 1)]! and
a left border range I, = [r — r mod 2%~ r],

For instance, [9, 14] is a union of I; = [9,11] and I, =
[12, 14]. To understand the properties of IB, we are starting
with a special case of a range I when I is a left (right) border
range.

LEmMMA 3.2. For a subset of bit-indices B C {1,...,w} and
a w-bit range I = [I,r], if I is a left (right) border range, the
corresponding I3 is a |B|-bit left (right) border range.

Proor. We show the lemma only for the case when I is
a left border range. For the right border range the proof is
symmetric. Note that it is sufficient to show the lemma only
for the case when sim(I) = 1 (i.e., I = 0) since in other cases
the bits at the first sim(I) — 1 positions coincide for all values
belonging to I. For a range I = [0, 7], consider two values x,
y such that x < r and y = x + 1; then, either y® = x5 + 1 or
yB < xB. Thus, IB is a range [0, mB], where m® is a maximal
value belonging to I5. O

Now we are ready to show that the structure of I? is similar
to the structure of a regular range I; namely, both I8 and I
can be represented as a union of the left and right border
ranges despite the fact that I? is not necessary a range.

Lor, and are bitwise operations

31

SOSR ’19, April 3-4, 2019, San Jose, CA, USA

Algorithm 1 Construction of I? for w-bit range I = [, 7]

1: procedure IS_DIFFERENT_BIT(l, 1, W, X)
2 if (I and 2%7%) # (r and 2"~¥) then
3 return true
4 else
5: return false
6: procedure REDUCE_LEFT(I=[], r], B)
7 p = {x:x ¢ B, 1S_DIFFERENT_BIT(/,r, w,x)}
8 if p = @ then return [IB, rB]
9 m=ror (zw—min(p) _ 1) _ zw—min(p)

> set (w-min(p))th bit of r to 0 and bits after (w — min(p))th to 1
10: return [[B, mB]

11: procedure REDUCE_RIGHT(I=[], r], B)

12: p = {x:x ¢ B, 1S_DIFFERENT_BIT(/,r, w,x)}
13: if p = @ then return [[B, rB]
14 m=1-1mod (2¥~min(p)) 1 pw-min(p)

> set (w-min(p))th bit of / to 1 and bits after (w — min(p))th to 0
15: return [mB, rB]
16: procedure REDUCE(I=[], r], B)
17: if I = r then return [IB, 8]
18: I =L, Lor 2w—sim() _1)]

19: L =[r—r mod gw-sim(I), r]
> Split I into two border ranges I; and I,
20: return REDUCE_RIGHT(I1, B) U REDUCE_LEFT(I;, B)
THEOREM 3.3. For a subset of bit-indices B C {1,...,w}

and a w-bit range I, the set I® can be represented as a union
of the |B|-bit left border range and |B|-bit right border range.

Proor. By Observation 1 a range I can be splitted into the
left and right border ranges. Applying Lemma 3.2 for these
border ranges, the theorem immediately follows. m]

By definition we knew that in general I? is a set of values,
Theorem 3.3 sheds a light on internals of I®. From now on,
we call a set I® of values as a sub-range of a w-bit range I
on bit-indices B C {1,...,w}. Algorithm 1 shows how to
construct IB for a given range I and a subset of bit-indices B.

LEMMA 3.4. For a set of indices B € {1,...,w} and a
left (right) border range I, the procedure REDUCE_LEFT (RE-
DUCE_RIGHT) in Algorithm 1 correctly constructs I®.

Proor. We show the lemma only for the case when I is
a left border range; for the right border range the proof is
symmetric. Since I is a left border range, I B = [I1B, mB] for
some m € I. Denote by ¢ a minimal bit index such that
t ¢ B and the binary representations of [ and r differ at the
position ¢. Since I is a left border range values of bit of |
and r at the position ¢ equals 0 and 1, respectively. For r
and m, the values of bits at the bit positions in B preceding ¢
coincide; otherwise, there exists a bit index ¢’ < t such that
t’ ¢ B,land 2¥~* # r and 2¥~* contradicting to minimality
of t. Since a bit at the tth position is not considered during
construction of I®, we can obtain m from r by setting in a
binary representation of r the bit value at the tth position to
0 and the bits at the positions succeding ¢ to 1. If there is no
such position ¢t then m = r. ]
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x| & L L | Action G| g GiRRY | L GZ | 1P 5|

Ry | [0,13] [5,14] [3,28] A Ry [0,13] Rs [5.28] [24,30] Ry | [0] 5 | [0,3] [1]

R, | [20,30] [5,14] [3,28] A, R; | [20,30] Ry [5,21] [18, 20] R, | [1] R, | [0,2][0]

Rs | [2,31] [5,28] [24,30] | As Rs | [25,31] [17,23] Rs | [3.3] [0]

R, | [2,31] [5,21] [18,20] | A, H H

Rs | [2,31] [25,31] [17,23] | As l HJ J HJ

false positive I I I I L L I J 8
check: R, = [5, 14] [3, 28] R, = [2,31] Ry = [20,30][5, 14][3, 28] R, = [2, 31][5, 21][18, 20]

(@) (b)

©

Figure 2: Multigroup representations our RR method vs. SAX-PAC [10]: (a) an original classifier K with 3-field
rules, each field is on 5 bits; (b) SAX-PAC representation of K on two groups: the first group rules are disjointon a
single field; the second group rules are disjoint on two fields; (c) the proposed RR implementing rule disjointness
on a single bit in the first group and on three bits in the second group.

THEOREM 3.5. For a given subset of indices B C {1,...,w}
and a w-bit range I = [l,r], the procedure REDUCE in Algo-
rithm 1 correctly calculates I® in O(w) time.

Proor. If a range I contains a single value, IB = [IB,1B)],
otherwise I can be splitted into the left and right border
ranges I1, I, and then their sub-ranges are constructed cor-
rectly by Lemma 3.4. The running time immediately follows
by construction of Algorithm 1. O

Recall that encoding of a w-bit regular range consists of
2 - w — 2 ternary bit strings for the prefix expansion and
2 - w — 4 for SRGE in the worst case. The following theorem
shows that while a subrange I? is not necessary a range, its
ternary encoding consists of at most 2 - |B| — 2 ternary bit
strings for both prefix expansion and SRGE encoding.

THEOREM 3.6. A subrange IB can be encoded by at most
2 - |B| — 2 ternary bit strings using prefix expansion or SRGE
encoding.

Proor. The correctness of the theorem immediately fol-
lows from the fact that prefix expansion or SRGE encoding
of a single w-bit left (right) border range consists of at most
w — 1 ternary bit strings. O

Note that we can operate on subranges as on regular
ranges since the intersection of two subranges can be ver-
ified in a constant time. Now we are ready to move on to
equivalent representations of multi-field range-based classi-
fiers.

4 EQUIVALENT REPRESENTATIONS

In difference from the previous works considering equivalent
classifiers by encoding all ranges of every field [3, 17] (to list
a few), [10] proposes equivalent multigroup representations
(not classifiers). These representations consist of at most
lookup tables implementing rule disjointness on a subset of
fields followed by false-positive checks, where f is a constant
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range encoding methods

prefix [17] SRGE [3]
# entries | # bits | # entries | # bits
K 358 5370 188 2820
G} 4 GIREY [10] 44 405 35 320
GZ +GZ,RR 6 14 6 14

Figure 3: Encoding sizes of the reprsentations in Fig. 2.

corresponding to a number of “pseudo-parallel” lookups that
can be issued at line-rate. Representations in [10] allow to
encode only a subset of ranges participating in lookup tables
in difference from equivalent classifiers requiring encoding
all range fields of every rule. Because of rule disjointness
only a single rule can be matched at each lookup table; hence,
for an incoming header, the false-positive check is done only
on matched rules whose ranges can be verified without en-
coding. Multiple lookup tables (a multi-group representation)
are necessary to deal with general classifiers whose rules
can intersect on all fields and to improve representation ef-
ficiency. Note that different lookup tables (groups) can use
different subsets of fields to implement rule disjointness.

Formally, consider a classifier K with k fields represented
by ranges. Let G be a set of 8 disjoint groups containing rules
from %K, where every group implements rule disjointness on
at most k—1 fields. Since not all rules can be covered by G for
a given classifier K, there is a portion of remaining rules C
from % not belonging to G. The classification process in [10]
is the following: (1) find a classifying rule at every group
(lookup table) and perform a false-positive check for every
matched rule (at most S overall); (2) independently with
(1) find a classifying rule in C; (3) from at most  matched
rules passing a false-positive check and a classifying rule
in C return the action of a rule with the highest priority
or the default action if there is no a single matching rule
for a given header. The classification process is depicted in
Fig. 2b. In [10] the authors show that this representation
is equivalent to an originally given k-field classifier whose
fields are represented by ranges.
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Algorithm 2 Heuristic for SAX-PAC [10] representation

Algorithm 3 Heuristic for RR representation

1: procedure Grour_BUILD(K, L)
2 G={}
3 for R € K do
4: if RL is disjoint to all R : R’ € G then G = G U {R}
5 return G
6: procedure FIND_MAX_GROUP(K, [)
7: L = a set of ] fields maximizing Grour_suiLd(K, L)
8: return (Grour_sBUILD(K, L), L)
9: procedure GREEDY_GROUP(K,, [)
10:  G={}
11: while K # @ do
12: G, L = FIND_MAX_GROUP(K,, [)
13: K=K\G;
14: G=6U{Gt}
15: return G

Since our goal is to demonstrate advantages of per-bit
over per-field resolution, we follow the same classification
process and consider the similar representation (G, C) but
now each group implements rule disjointness on a subset of
subranges (at most one per field) on 8 = {B1, By, ..., B},
where B; is a subset of bit indices of a field F;. Note that
B; can be empty meaning that the corresponding field does
not participate in the lookup table. Observe that different
groups in G can implement rule disjointness on different Bs.
The classification process is illustrated in Fig. 2c. Similarly
to the representation with per-field resolution this repre-
sentation is equivalent to an originally given classifier with
two differences: the matching property of subranges and the
false-positive check that should be done on all k fields (and
not only on the remaining fields as in [10]). The impact of
per-bit versus per-field resolution can be seen in Fig. 3.

We assume that both G and C (if C exists) are implemented
in TCAM. For a given range encoding method E and a classi-
fier K% on B bit indices, denote by E(X?) the total size in
bits of all ternary rules constructed from K. Similarly, the
size E(G) is a total size of containing groups.

PrROBLEM 1. For a given range encoding method E and
a range-based classifier K find a multigroup representation
(G, C) minimizing E(G) + E(C).

Even in the special case of a f = 1 this problem is in-
tractable that can be shown by reduction from SetCover [8].
Since SAX-PAC representations are included in the set of
considered solutions of Problem 1, the resulting encoding of
any SAX-PAC representation is no better than the optimal
solution of Problem 1.

5 EVALUATION STUDY

In this section we explore the impact of subranges on effi-
ciency of classifier representations.

Evaluated heuristics. Since we want to demonstrate the
impact of range representations with per-bit versus per-field
resolution, we use the same heuristic as in SAX-PAC [10] to
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1: procedure REDUCE_GROUP(G)

2: B = set of sets of all bit-indices of all fields of G

3: while it is possible do

4: remove a bit-index from one of sets in 8 minimizing E(G%)
and preserving pairwise disjointness of all rules in GZ.

return G5

G=1{}

5
6: procedure GREEDY_GROUP_BIT(K, )
7
8 while K # @ do

9: G, ¥ = FIND_MAX_GROUP(K, [) > F is ignored
10: K=K\G;
11: G = G U {REDUCE_GROUP(G)}
12: return G

build a multi-group representation; we consider two cases:
at every group the rules are pairwise disjoint based on one or
two fields (I = 1 or I = 2); see GREEDY_GROUP(X, [) in Algo-
rithm 2. Since SAX-PAC implements per-field resolution for
range-based fields, to be stored in TCAM, they are encoded
into ternary entries by one of the encoding methods (in our
case prefix [17] or SRGE [3]). The proposed RR starts with
the same assignment of K rules into multiple groups as in
SAX-PAC but now for every range-based field a subrange is
found minimizing the total size in bits or in ternary entries;
see GREEDY_GROUP_BIT(K, [) in Algorithm 3. For cases when
| < 2 the running time of Algorithm 2 is O(N? - k? - §) and
the running time of Algorithm 3 is O(N? - k? - B + N2 - w?),
where N is a number of rules in K.

Methodology. Since the goal of this paper is to under-
stand design principals to represent desired levels of expres-
siveness and scalability, we assume the extreme case when
all classifier fields are represented by ranges. Each synthet-
ically generated classifier consists of 10000 rules that are
generated independently. Each field range I = [/, r] is gener-
ated independently according to the following distribution:
(1) the value of sim(I) is chosen uniformly at random; (2)
the range bounds [ and r are generated uniformly such that
the binary representations of I and r coincide on the first
sim(I) — 1 bits. Though other distributions are possible, we
choose this one to simulate sparseness of covered range val-
ues. In our experiments we vary a number of range-based
fields in a rule and a range width in bits. For both SRGE and
prefix range encodings, we compare the total size in bits and
entries among (1) conventional equivalent ternary classifiers,
(2) multi-group representations with per-field resolution as
in SAX-PAC (the columns SAX-PAC in Fig. 4 and Fig. 5),
and (3) multigroup representations with per-bit resolution
constructed by GREEDY_GROUP_BIT (the columns RR in Fig. 4
and Fig. 5). We release the code for our evaluation study as
an open source [7].

Impact of range width. In the following denote by G;
and G, multi-group representations implementing rule dis-
jointness on one and two fields, respectively. For classifier
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Input classifier K Multigroup: rule disjointness on 1 field Multigroup: rule disjointness on 2 fields
characteristics ternary, prefix # groups SAX-PAC [10] RR # groups SAX-PAC [10] RR
# ranges | range width | # entries | #bits | 95% of K | 100% of K | # entries | #bits | # entries | #bits | 95% of K | 100% of K | # entries | #bits | # entries | # bits
4 16 3.4-107 | 2.2-10° 24 44 40528 | 648448 | 23310 | 505876 7 18 370852 | 1.2-107 | 128712 | 4.1-10°
4 20 8.4-107 | 6.7-10° 11 26 54375 | 1.1-10° | 18157 | 417708 5 14 632983 | 2.5-107 | 68043 | 2.1-10°
4 24 1.8-10% | 1.7- 101 8 20 71220 | 1.7-10° | 15286 | 363079 4 11 983914 | 4.7-107 | 52304 | 1.6-10°
4 28 3.4-10% | 3.9-10" 6 17 87787 | 2.5-10° | 14177 | 328468 3 10 1.4-10° | 7.9-107 | 44735 | 1.7-10°
4 32 5.9-10% | 7.5-10" 4 13 106248 | 3.4-10° | 12688 | 317128 3 9 1.9-10° | 1.2-10% | 29981 | 1.0-10°
3 32 3.8-107 | 3.7-10° 5 18 109115 |3.5-10° | 18121 | 451028 3 11 2.1-10° | 1.3-10% | 71387 | 23-10°
4 32 5.8-10% | 7.4-10" 4 1 106315 | 3.4-10° | 13998 | 371824 2 7 1.9-10° | 1.2-10% | 31027 | 1.0-10°
5 32 9.1-10° | 1.5-10% 4 9 104343 | 3.3-10° | 11521 | 301740 2 7 1.9-10° | 1.2-10% | 15523 | 464471
6 32 1.4-10" | 2.7 10" 5 9 105026 | 3.4-10° | 11160 | 288901 3 5 1.9-10° | 1.2-10% | 13882 | 464171
Figure 4: Total size of ternary rules in entries and in bits by prefix expansion.
Input classifier K Multigroup: rule disjointness on 1 field Multigroup: rule disjointness on 2 fields
characteristics ternary, SRGE # groups SAX-PAC [10] RR # groups SAX-PAC [10] RR
# ranges | range width | # entries | #bits | 95% of K | 100% of K | # entries | #bits | # entries | #bits | 95% of K | 100% of K | # entries | #bits | # entries | # bits

4 16 2.1-107 | 1.4-10° 24 44 34620 | 553920 | 19053 | 405194 7 18 286856 | 9.2-10° | 87677 | 2.8-10°
4 20 58107 | 4.6-10° 11 26 47328 | 946560 | 16084 | 374638 5 14 512044 | 2.0-107 | 46351 | 1.5-10°
4 24 1.3-10% | 1.3- 10 8 20 63513 | 1.5-10° | 14055 | 341758 4 11 824121 | 4.0-107 | 37976 | 1.2-10°
4 28 2.6-10% | 2.9-10" 6 17 79694 | 2.2-10° | 12903 | 305834 3 10 1.2-10° | 6.8-107 | 40733 | 1.5-10°
4 32 4.6-10% | 5.9-10%° 4 13 97917 | 3.1-10° | 11899 | 292533 3 9 1.7-10% | 1.1-10% | 24192 | 775260
3 32 3.2-107 | 3.1-10° 5 18 100641 |3.2-10° | 16286 | 399179 3 11 1.8-10° [ 1.2-10% | 58765 [ 1.9-10°
4 32 45-10% | 5.8-10%° 4 11 97835 | 3.1-10° | 13263 | 350490 2 7 1.7-10° | 1.1-10% | 24976 | 805932
5 32 6.7-10° | 1.1-10% 4 9 95834 | 3.1-10° | 11229 | 285668 2 7 1.7-10° | 1.1-10% | 14516 | 444518
6 32 1.0-10" | 1.9-108 5 9 96610 | 3.1-10° | 10830 | 284829 3 5 1.6-10° | 1.0-10% | 12355 | 380373

Figure 5: Total size of ternary rules in entries and in bits by SRGE.

rules based on four 16-bit ranges encoded by prefix expan-
sion, the total size of G; with per-field resolution is 1.73 times
bigger than with per-bit; this ratio is rapidly growing when
range width is increasing; e.g., for 32-bit ranges the same
ratio is already equal to 10. The similar effect is seen on the
total size in bits for the both range encoding methods. For G,
representations, the effect of per-bit resolution is even more
pronounced; e.g., for classifier rules consisting of four 32-bits
ranges encoded by SRGE, the ratio between per-field and
per-bit resolution in ternary entries is already 70 times since
the total size of G, depends quadratically on range width.

Number of fields in a rule. Increasing the number of
fields has no significant effect on the total size of multi-group
representations with per-field resolution and this is a signifi-
cant advantage of SAX-PAC versus equivalent classifiers en-
coding all ranges. The per-bit resolution provides additional
memory saving since it allows to pickup multiple subranges
minimizing the total size; e.g., for classifier rules on six 32-
bit ranges, the size of SRGE encoding for G; with per-bit
resolution is 10830 ternary entries which is very close to the
optimal case when every range-based rule is encoded by a
single ternary entry; from the other hand, G; with per-field
resolution and SRGE encoding requires 96610 entries. In the
worst case among all experiments, the average number of
ternary entries in G; with per-bit resolution does not exceed
2.4 entries per rule.

Number of groups. G requires smaller number of groups
than G; when per-field resolution is considered; from the
other hand, the total size of encoded ternary entries is signif-
icantly bigger for G, than for G;; e.g., for rules on five 32-bit
ranges, the total size of G, in entries for SRGE encdoing
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is 17 times bigger than for G;. For per-bit resolution, this
effect is less pronounced and does not exceed 6 times in all
experiments. Note that in all experiments for classifiers with
at least 24-bits range width, the number of entries required
for G, with per-bit resolution is smaller even than for G;
with per-field resolution showing effectiveness of per-bit
resolution for reduction not only of the total size (both in
entries and bits) but also of the number of required groups.

6 CONCLUSION

Range-based field representation is an important abstrac-
tion to balance between scalability and expressiveness in
packet classifiers; when a number of range-based fields is
growing, equivalent classifiers encoding all ranges is not the
right direction. Equivalent representations (not classifiers) as
SAX-PAC [10] significantly improve memory requirements
but still operating with per-field resolution can demand sig-
nificant memory resources and the number of groups to
implement desired structural properties. In this paper we in-
troduce a notion of subranges allowing to operate on ranges
with per-bit resolution and overcome constraints of per-field
representations. Coexistence of subranges with other en-
coding methods as [1, 2, 5] and software-based classifier
representations in regular memory we leave for the future
study.
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