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ABSTRACT
Efficient representations of multi-field packet classifiers with

fields represented by ranges is a core mechanism to express

services on data plane. To implement classifiers in ternary-

addressable memory (TCAM), each range should be encoded

into multiple ternary bit strings whose number is at most lin-

ear to the width (in bits) of a represented field independently

from range encoding method. In this paper we introduce a

notion of a subrange allowing to represent a field range on

any chosen subset of bit indices that significantly improve

efficiency of classifier representations. Our analytic results

are confirmed with a comprehensive evaluation study show-

ing applicability of our approach to implement desired levels

of expressiveness and scalability in packet classifiers.

CCS CONCEPTS
• Networks→ Packet classification; Network algorithms;

1 INTRODUCTION AND MOTIVATION
Packet classification is a core building block implementing

packet processing programs on data plane. With the adop-

tion of OpenFlow [14] and P4 [15], packet classification has

become even more prominent. Each packet classifier is an

ordered set of rules, where a rule consists of the filter (match-

ing packet headers) and the associated action to be applied

on matched packets. A filter is a concatenation of field repre-

sentations participating during classification; in the simplest

form each field in a filter is represented by exact values. In

this case packet classifiers can be implemented with a con-

stant lookup time but the number of rules can be infeasible

to fit in memory. In the other extreme case, to address the

scalability constraint, fields can be represented by ranges of

values. In this case the number of rules is significantly re-

duced but the lookup complexity increases. As a result, some
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intermediate forms of field representations were introduced

as prefixes or more general ternary bit strings, where every

bit has three values: zero, one, or don’t care. For ternary

bit strings, a specialized ternary content addressable (TCAM)

memory was introduced that is actually a coprocessor run-

ning multiple searches in parallel [12].

Related work. There are two major directions dealing

with range-base packet classifiers. The first one is indepen-

dent from structural properties of classifiers encoding every

field range by multiple prefixes or ternary bit strings whose

number is at most linear to the field size (in bits) [3, 4, 11,

16, 17]. Hence, each rule whose fields are represented by

ranges is actually a classifier with exponential number of

rules based on ternary bit strings. Recently, [1] proposes

efficient encoding for the special case of short ranges. Other

range encoding methods exploiting structural properties can

achieve more compact representations [2, 5] but usually they

perform well only when the number of encoded ranges is rel-

atively small. Note that both these lines of research consider

transformations to equivalent classifiers.

Recently, [6, 9, 10, 13] proposed representations of packet

classifiers exploiting their structural properties like rule dis-

jointness; observe that these representations become equiv-

alent to originally given classifiers only when the lookup

table based on a subset of fields is complemented by the

false-positive check on a single matched rule. This allows

to balance which fields are required to implement desired

structural properties in the lookup table and which are going

to the false-positive check where range encoding is unneces-

sary. It allows to reduce the size of classifier representations.

To store classifier in TCAM, a participating subset of ranges

in the lookup table should be encoded by one of the previ-

ously mentioned methods [3, 4, 11, 16, 17].

Our contributions. In this paperwe are going beyond [10]
and propose range reduction (RR) methods allowing to im-

plement structural properties of classifiers with per-bit res-

olution (and not with per-field as in [10]), when fields are

represented by ranges. We introduce an interesting notion of

a subrange on a predefined set of range bit-indices allowing

to construct equivalent representations of packet classifiers

with per-bit resolution avoiding intermediate range expan-

sions. To illustrate this, consider a classifier K in Fig. 1a

based on three range fields. For an incoming header H , the

R3 rule is matched. All three rules are disjoint (do not match

the same header) on three fields. Note that two fields are
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H = (10010, 10011, 01000) H {F1 ,F2 } = (10010, 10011) H B={{2},{1,2},�} = (0, 10)

H = (10010, 10011, 01000)

K I1 I2 I3 Action

R1 [24, 30] [5, 28] [9, 16] A1

R2 [18, 20] [25, 31] [12, 20] A2

R3 [17, 23] [5, 21] [8, 15] A3

K {F1 ,F2 } I1 I2
R1 [24, 30] [5, 28]

R2 [18, 20] [25, 31]

R3 [17, 23] [5, 21]
H

false positive

check:

I3
R3 = [8, 15]

KB IB1

1
IB2

2

R1 [1] [0, 3]

R2 [0] [3, 3]

R3 [0] [0, 2]
H

I1 I2 I3
R3 = [17, 23][5, 21][8, 15]

range encoding methods

prefix [17] SRGE [3]

# entries # bits # entries # bits

K 105 1575 60 900

K {F1 ,F2 }
[10] 39 390 30 300

KB
, RR 4 12 4 12

(a) (b) (c) (d)

Figure 1: OurRRmethod vs. previousworks: (a) original classifierK whose rules consist of three 5-bit fields; (b) the
representation ofK as in [10] exploiting rule disjointness based on two ranges; (c) the proposed RR implementing
rule disjointness on three bits; (d) comparison of three different representations.

sufficient to keep rule disjointness as it is done in [10]. Still

these two ranges in every rule are to be encoded by one of the

range encoding methods (e.g., prefix expansion [17] or SRGE

based on Gray encoding [3]). Intuitively, representations

narrowing down the covered field ranges can significantly

improve memory requirements. This is a reason why the

notion of subranges introduced in this paper allow to imple-

ment rule disjointedness only on 3 bit indices (see Fig. 1c).

Fig. 1d demonstrates advantages of per-bit resolution leading

to significant reduction in TCAMmemory requirements both

in total bits and ternary entries (e.g., RR allows to reduce the

number of ternary entries maintained in TCAM from 60 to 4

for SRGE range encoding).

Based on properties of subranges, we introduce heuris-

tics to find efficient classifier representations in TCAMs. We

demonstrate the viability of our approach through compre-

hensive evaluation where in the extreme case all six fields are

based on ranges. Such classifiers cannot be implemented in

TCAM with the conventional methods dealing with equiva-

lent classifiers. The evaluation results together with analytic

observations confirm that subranges could be an interest-

ing direction to implement a fundamental tradeoff between

expressiveness and scalability.

2 MODEL DESCRIPTION
A packet header H = (H1, . . . ,Hk ) is a concatenation of k
header fields, where each header field Hi is a binary string

on wi bits; headers are matched by classifiers. A classifier

K = {R1, . . . ,RN }≺ is an ordered (by ≺) set of rules, where

each rule Ri = (Fi ,Ai ) consists of a filter Fi and the associ-

ated action Ai . A filter F = (F1, . . . , Fk ) is a sequence of k
field representations, where each field representation Fi is on
wi bits corresponding to the header field Hi . In this paper

we consider two types of field representations: (1) a range

of values; and (2) a ternary bit string, where each bit can

have one of the three values 0, 1, or ∗ (“don’t care”). We say

that a range I is matching a value x if x ∈ I . We say that a

ternary bit string T matching a binary string H of the same

length l if for each bit index 1 ≤ i ≤ l either H [i] = T [i]
or T [i] = ∗. In the case of ternary field representations, a

filter is a ternary bit string produced by concatenation of the

ternary bit strings of the corresponding field representations.

A filter F matches a header H if every Fi of F matches the

corresponding header fieldHi . We say that two filters F1 and

F2 are disjoint if no single header matches both of them. Oth-

erwise, F1 and F2 intersect. Two rules intersect (are disjoint)

if their filters intersect (are disjoint). The main purpose of

the classification process is to find the action corresponding

to the highest priority rule matching a given header that we

call a classifying rule. If there is no rule matching H in K ,

the classification result is a default action that differs from

all actions in K . Two classifiers (or their representations)

are equivalent if the classification result coincides in both

classifiers (representations) for all headers.

Example 2.1. A sample 2-field (k = 2) range-based classi-

fier K with 3-bit fields (w1 = w2 = 3).

K I1 I2 Action

R1 [0, 6] [2, 5] A1

R2 [0, 3] [1, 3] A2

A headerH = (010, 001) is classified by R2 since it is matched

only by R2; a header H
′ = (010, 011) is matched by both R1

and R2 but H
′
is classified by R1.

3 RANGE ON A SUBSET OF BITS
Recall that each range is encoded into multiple ternary en-

tries whose number is at most linear to the field width (in

bits) independently from range encoding methods [16]. In-

tuitively, taking values on a subset of bit indices of a given

range leads to consideration of a smaller set of values and

potentially more efficient representations in ternary entries

than the originally given range. But this is not enough, for

correctness, we need that a matched value in the original

range continues to be matched the corresponding entity on

the representing subset of bit indices. In this section we

introduce such entities implementing both efficiency and

correctness that we call subranges and study their properties.

30



How to deal with range-based packet classifiers SOSR ’19, April 3–4, 2019, San Jose, CA, USA

Consider a non-empty subset of bit indices B ⊆ {1, 2 . . . ,w}

of a w-bit range I . For a value x , denote by xB a value ob-

tained from x by taking the values of bits at the positions

in B. Also we denote by IB a set of values on B bit indices

obtained from the values in a range I .

Example 3.1. Consider a 5-bit range I = [23, 25]. The fol-

lowing table consists of values x ∈ I and xB ∈ IB for a subset

of bit-indices B = {1, 3, 5}; IB = {4, 5, 7}.

x 23 24 25

xB 7 (1112) 4 (1002) 5 (1012)

In the following we explore structural properties of IB

in details. First, note that IB is not necessarily a range, in

Example 3.1, IB = {4, 5, 7}. Second, for a range containing

a single value I = [l , l], the corresponding IB = [lB , lB ]
contains also a single value. Next we explore IB properties

on ranges containing at least two values.

For a range I = [l , r ], let sim(I ) be a first bit index whose
value differs in the binary representations of l and r ; in Ex-

ample 3.1 sim(I ) = 2. We say that a w-bit range I = [l , r ]
is a left border range if l mod 2

w−sim(I ) = 0; and I is a

right border range if (r + 1) mod 2
w−sim(I ) = 0. For in-

stance, I = [24(110002), 28(111002)] is a left border range;

and I = [19(100112), 23(101112)] is a right border range.

Observation 1. A range I = [l , r ] can be represented as a

union of a right border range I1 = [l , l or (2w−sim(I ) − 1)]1 and

a left border range I2 = [r − r mod 2
w−sim(I )

, r ].

For instance, [9, 14] is a union of I1 = [9, 11] and I2 =
[12, 14]. To understand the properties of IB , we are starting
with a special case of a range I when I is a left (right) border
range.

Lemma 3.2. For a subset of bit-indices B ⊆ {1, . . . ,w} and

a w-bit range I = [l , r ], if I is a left (right) border range, the
corresponding IB is a |B |-bit left (right) border range.

Proof. We show the lemma only for the case when I is
a left border range. For the right border range the proof is

symmetric. Note that it is sufficient to show the lemma only

for the case when sim(I ) = 1 (i.e., l = 0) since in other cases

the bits at the first sim(I ) − 1 positions coincide for all values

belonging to I . For a range I = [0, r ], consider two values x ,
y such that x < r and y = x + 1; then, either yB = xB + 1 or
yB ≤ xB . Thus, IB is a range [0,mB ], wheremB

is a maximal

value belonging to IB . □

Nowwe are ready to show that the structure of IB is similar

to the structure of a regular range I ; namely, both IB and I
can be represented as a union of the left and right border

ranges despite the fact that IB is not necessary a range.

1or, and are bitwise operations

Algorithm 1 Construction of IB forw-bit range I = [l , r ]

1: procedure is_different_bit(l, r, w, x)
2: if (l and 2

w−x ) , (r and 2
w−x ) then

3: return true
4: else
5: return false

6: procedure reduce_left(I=[l, r], B)
7: p = {x : x < B , is_different_bit(l , r ,w , x )}
8: if p = � then return [lB , rB ]
9: m = r or (2w−min(p) − 1) − 2

w−min(p)

▷ set (w-min(p))th bit of r to 0 and bits after (w −min(p))th to 1

10: return [lB ,mB ]

11: procedure reduce_right(I=[l, r], B)
12: p = {x : x < B , is_different_bit(l , r ,w , x )}
13: if p = � then return [lB , rB ]
14: m = l − l mod (2w−min(p)) + 2w−min(p)

▷ set (w-min(p))th bit of l to 1 and bits after (w −min(p))th to 0

15: return [mB
, rB ]

16: procedure reduce(I=[l, r], B)
17: if l = r then return [lB , lB ]
18: I1 = [l , l or (2w−sim(I ) − 1)]

19: I2 = [r − r mod 2
w−sim(I )

, r ]
▷ Split I into two border ranges I1 and I2

20: return reduce_right(I1, B) ∪ reduce_left(I2, B)

Theorem 3.3. For a subset of bit-indices B ⊆ {1, . . . ,w}

and aw-bit range I , the set IB can be represented as a union

of the |B |-bit left border range and |B |-bit right border range.

Proof. By Observation 1 a range I can be splitted into the

left and right border ranges. Applying Lemma 3.2 for these

border ranges, the theorem immediately follows. □

By definition we knew that in general IB is a set of values,

Theorem 3.3 sheds a light on internals of IB . From now on,

we call a set IB of values as a sub-range of a w-bit range I
on bit-indices B ⊆ {1, . . . ,w}. Algorithm 1 shows how to

construct IB for a given range I and a subset of bit-indices B.

Lemma 3.4. For a set of indices B ⊆ {1, . . . ,w} and a

left (right) border range I , the procedure reduce_left (re-

duce_right) in Algorithm 1 correctly constructs IB .

Proof. We show the lemma only for the case when I is
a left border range; for the right border range the proof is

symmetric. Since I is a left border range, IB = [lB ,mB ] for

some m ∈ I . Denote by t a minimal bit index such that

t < B and the binary representations of l and r differ at the
position t . Since I is a left border range values of bit of l
and r at the position t equals 0 and 1, respectively. For r
andm, the values of bits at the bit positions in B preceding t
coincide; otherwise, there exists a bit index t ′ < t such that

t ′ < B, l and 2
w−t ′ , r and 2

w−t ′
contradicting to minimality

of t . Since a bit at the tth position is not considered during

construction of IB , we can obtainm from r by setting in a

binary representation of r the bit value at the t th position to

0 and the bits at the positions succeding t to 1. If there is no

such position t thenm = r . □
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H = (11001, 10100, 10011) H {F1 } = (11001) H {F2 ,F3 } = (10100, 10011) H B={{1},�,�} = (1) H B′={�,{1,2},{2}} = (10, 0)

H = (11001, 10100, 10011)

K I1 I2 I3 Action

R1 [0, 13] [5, 14] [3, 28] A1

R2 [20, 30] [5, 14] [3, 28] A2

R3 [2, 31] [5, 28] [24, 30] A3

R4 [2, 31] [5, 21] [18, 20] A4

R5 [2, 31] [25, 31] [17, 23] A5

G {F1 } I1
R1 [0, 13]

R2 [20, 30]

H

false positive

check:

I2 I3
R2 = [5, 14] [3, 28]

G {F2 ,F3 } I2 I3
R3 [5, 28] [24, 30]

R4 [5, 21] [18, 20]
R5 [25, 31] [17, 23]

H

I1
R4 = [2, 31]

GB
1

IB1

1

R1 [0]

R2 [1]

H

I1 I2 I3
R2 = [20, 30][5, 14][3, 28]

GB′

2
I
B′
2

2
I
B′
3

3

R3 [0, 3] [1]

R4 [0, 2] [0]
R5 [3, 3] [0]

H

I1 I2 I3
R4 = [2, 31][5, 21][18, 20]

(a) (b) (c)

Figure 2: Multigroup representations our RR method vs. SAX-PAC [10]: (a) an original classifier K with 3-field
rules, each field is on 5 bits; (b) SAX-PAC representation ofK on two groups: the first group rules are disjoint on a
single field; the second group rules are disjoint on two fields; (c) the proposed RR implementing rule disjointness
on a single bit in the first group and on three bits in the second group.

Theorem 3.5. For a given subset of indices B ⊆ {1, . . . ,w}

and a w-bit range I = [l , r ], the procedure reduce in Algo-

rithm 1 correctly calculates IB in O(w) time.

Proof. If a range I contains a single value, IB = [lB , lB ],
otherwise I can be splitted into the left and right border

ranges I1, I2 and then their sub-ranges are constructed cor-

rectly by Lemma 3.4. The running time immediately follows

by construction of Algorithm 1. □

Recall that encoding of aw-bit regular range consists of

2 · w − 2 ternary bit strings for the prefix expansion and

2 ·w − 4 for SRGE in the worst case. The following theorem

shows that while a subrange IB is not necessary a range, its

ternary encoding consists of at most 2 · |B | − 2 ternary bit

strings for both prefix expansion and SRGE encoding.

Theorem 3.6. A subrange IB can be encoded by at most

2 · |B | − 2 ternary bit strings using prefix expansion or SRGE

encoding.

Proof. The correctness of the theorem immediately fol-

lows from the fact that prefix expansion or SRGE encoding

of a singlew-bit left (right) border range consists of at most

w − 1 ternary bit strings. □

Note that we can operate on subranges as on regular

ranges since the intersection of two subranges can be ver-

ified in a constant time. Now we are ready to move on to

equivalent representations of multi-field range-based classi-

fiers.

4 EQUIVALENT REPRESENTATIONS
In difference from the previous works considering equivalent

classifiers by encoding all ranges of every field [3, 17] (to list

a few), [10] proposes equivalent multigroup representations

(not classifiers). These representations consist of at most β
lookup tables implementing rule disjointness on a subset of

fields followed by false-positive checks, where β is a constant

range encoding methods

prefix [17] SRGE [3]

# entries # bits # entries # bits

K 358 5370 188 2820

G {F1 } +G {F2 ,F3 }
[10] 44 405 35 320

GB
1
+GB′

2
, RR 6 14 6 14

Figure 3: Encoding sizes of the reprsentations in Fig. 2.

corresponding to a number of “pseudo-parallel” lookups that

can be issued at line-rate. Representations in [10] allow to

encode only a subset of ranges participating in lookup tables

in difference from equivalent classifiers requiring encoding

all range fields of every rule. Because of rule disjointness

only a single rule can be matched at each lookup table; hence,

for an incoming header, the false-positive check is done only

on matched rules whose ranges can be verified without en-

coding. Multiple lookup tables (a multi-group representation)

are necessary to deal with general classifiers whose rules

can intersect on all fields and to improve representation ef-

ficiency. Note that different lookup tables (groups) can use

different subsets of fields to implement rule disjointness.

Formally, consider a classifier K with k fields represented

by ranges. Let G be a set of β disjoint groups containing rules

from K , where every group implements rule disjointness on

at most k−1 fields. Since not all rules can be covered by G for

a given classifier K , there is a portion of remaining rules C

fromK not belonging to G. The classification process in [10]

is the following: (1) find a classifying rule at every group

(lookup table) and perform a false-positive check for every

matched rule (at most β overall); (2) independently with

(1) find a classifying rule in C; (3) from at most β matched

rules passing a false-positive check and a classifying rule

in C return the action of a rule with the highest priority

or the default action if there is no a single matching rule

for a given header. The classification process is depicted in

Fig. 2b. In [10] the authors show that this representation

is equivalent to an originally given k-field classifier whose

fields are represented by ranges.
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Algorithm 2 Heuristic for SAX-PAC [10] representation

1: procedure group_build(K , L)

2: G = {}
3: for R ∈ K do
4: if RL

is disjoint to all R′L
: R′ ∈ G then G = G ∪ {R }

5: return G

6: procedure find_max_group(K , l )
7: L = a set of l fields maximizing group_build(K , L)

8: return (group_build(K , L), L)

9: procedure greedy_group(K , l )
10: G = {}
11: while K , � do
12: G , L = find_max_group(K , l )
13: K = K \G ;

14: G = G ∪ {GL }
15: return G

Since our goal is to demonstrate advantages of per-bit

over per-field resolution, we follow the same classification

process and consider the similar representation (G,C) but

now each group implements rule disjointness on a subset of

subranges (at most one per field) on B = {B1,B2, . . . ,Bk },
where Bi is a subset of bit indices of a field Fi . Note that

Bi can be empty meaning that the corresponding field does

not participate in the lookup table. Observe that different

groups in G can implement rule disjointness on different Bs.

The classification process is illustrated in Fig. 2c. Similarly

to the representation with per-field resolution this repre-

sentation is equivalent to an originally given classifier with

two differences: the matching property of subranges and the

false-positive check that should be done on all k fields (and

not only on the remaining fields as in [10]). The impact of

per-bit versus per-field resolution can be seen in Fig. 3.

We assume that bothG and C (if C exists) are implemented

in TCAM. For a given range encoding method E and a classi-

fier KB
on B bit indices, denote by E(KB) the total size in

bits of all ternary rules constructed from KB
. Similarly, the

size E(G) is a total size of containing groups.

Problem 1. For a given range encoding method E and

a range-based classifier K find a multigroup representation

(G,C) minimizing E(G) + E(C).

Even in the special case of a β = 1 this problem is in-

tractable that can be shown by reduction from SetCover [8].

Since SAX-PAC representations are included in the set of

considered solutions of Problem 1, the resulting encoding of

any SAX-PAC representation is no better than the optimal

solution of Problem 1.

5 EVALUATION STUDY
In this section we explore the impact of subranges on effi-

ciency of classifier representations.

Evaluated heuristics. Since we want to demonstrate the

impact of range representations with per-bit versus per-field

resolution, we use the same heuristic as in SAX-PAC [10] to

Algorithm 3 Heuristic for RR representation

1: procedure reduce_group(G )

2: B = set of sets of all bit-indices of all fields of G
3: while it is possible do
4: remove a bit-index from one of sets in B minimizing E(GB )

and preserving pairwise disjointness of all rules in GB
.

5: return GB

6: procedure greedy_group_bit(K , l )
7: G = {}
8: while K , � do
9: G , F = find_max_group(K , l ) ▷ F is ignored

10: K = K \G ;

11: G = G ∪ {reduce_group(G)}
12: return G

build a multi-group representation; we consider two cases:

at every group the rules are pairwise disjoint based on one or

two fields (l = 1 or l = 2); see greedy_group(K , l) in Algo-

rithm 2. Since SAX-PAC implements per-field resolution for

range-based fields, to be stored in TCAM, they are encoded

into ternary entries by one of the encoding methods (in our

case prefix [17] or SRGE [3]). The proposed RR starts with

the same assignment of K rules into multiple groups as in

SAX-PAC but now for every range-based field a subrange is

found minimizing the total size in bits or in ternary entries;

see greedy_group_bit(K , l ) in Algorithm 3. For cases when

l ≤ 2 the running time of Algorithm 2 is O(N 2 · k2 · β) and
the running time of Algorithm 3 is O(N 2 · k2 · β + N 2 ·w2),

where N is a number of rules in K .

Methodology. Since the goal of this paper is to under-

stand design principals to represent desired levels of expres-

siveness and scalability, we assume the extreme case when

all classifier fields are represented by ranges. Each synthet-

ically generated classifier consists of 10000 rules that are

generated independently. Each field range I = [l , r ] is gener-
ated independently according to the following distribution:

(1) the value of sim(I ) is chosen uniformly at random; (2)

the range bounds l and r are generated uniformly such that

the binary representations of l and r coincide on the first

sim(I ) − 1 bits. Though other distributions are possible, we

choose this one to simulate sparseness of covered range val-

ues. In our experiments we vary a number of range-based

fields in a rule and a range width in bits. For both SRGE and

prefix range encodings, we compare the total size in bits and

entries among (1) conventional equivalent ternary classifiers,

(2) multi-group representations with per-field resolution as

in SAX-PAC (the columns SAX-PAC in Fig. 4 and Fig. 5),

and (3) multigroup representations with per-bit resolution

constructed by greedy_group_bit (the columns RR in Fig. 4

and Fig. 5). We release the code for our evaluation study as

an open source [7].

Impact of range width. In the following denote by G1

and G2 multi-group representations implementing rule dis-

jointness on one and two fields, respectively. For classifier
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Input classifier K Multigroup: rule disjointness on 1 field Multigroup: rule disjointness on 2 fields

characteristics ternary, prefix # groups SAX-PAC [10] RR # groups SAX-PAC [10] RR

# ranges range width # entries # bits 95% of K 100% of K # entries # bits # entries # bits 95% of K 100% of K # entries # bits # entries # bits

4 16 3.4 · 107 2.2 · 109 24 44 40528 648448 23310 505876 7 18 370852 1.2 · 107 128712 4.1 · 106

4 20 8.4 · 107 6.7 · 109 11 26 54375 1.1 · 106 18157 417708 5 14 632983 2.5 · 107 68043 2.1 · 106

4 24 1.8 · 108 1.7 · 1010 8 20 71220 1.7 · 106 15286 363079 4 11 983914 4.7 · 107 52304 1.6 · 106

4 28 3.4 · 108 3.9 · 1010 6 17 87787 2.5 · 106 14177 328468 3 10 1.4 · 106 7.9 · 107 44735 1.7 · 106

4 32 5.9 · 108 7.5 · 1010 4 13 106248 3.4 · 106 12688 317128 3 9 1.9 · 106 1.2 · 108 29981 1.0 · 106

3 32 3.8 · 107 3.7 · 109 5 18 109115 3.5 · 106 18121 451028 3 11 2.1 · 106 1.3 · 108 71387 2.3 · 106

4 32 5.8 · 108 7.4 · 1010 4 11 106315 3.4 · 106 13998 371824 2 7 1.9 · 106 1.2 · 108 31027 1.0 · 106

5 32 9.1 · 109 1.5 · 1012 4 9 104343 3.3 · 106 11521 301740 2 7 1.9 · 106 1.2 · 108 15523 464471

6 32 1.4 · 1011 2.7 · 1013 5 9 105026 3.4 · 106 11160 288901 3 5 1.9 · 106 1.2 · 108 13882 464171

Figure 4: Total size of ternary rules in entries and in bits by prefix expansion.

Input classifier K Multigroup: rule disjointness on 1 field Multigroup: rule disjointness on 2 fields

characteristics ternary, SRGE # groups SAX-PAC [10] RR # groups SAX-PAC [10] RR

# ranges range width # entries # bits 95% of K 100% of K # entries # bits # entries # bits 95% of K 100% of K # entries # bits # entries # bits

4 16 2.1 · 107 1.4 · 109 24 44 34620 553920 19053 405194 7 18 286856 9.2 · 106 87677 2.8 · 106

4 20 5.8 · 107 4.6 · 109 11 26 47328 946560 16084 374638 5 14 512044 2.0 · 107 46351 1.5 · 106

4 24 1.3 · 108 1.3 · 1010 8 20 63513 1.5 · 106 14055 341758 4 11 824121 4.0 · 107 37976 1.2 · 106

4 28 2.6 · 108 2.9 · 1010 6 17 79694 2.2 · 106 12903 305834 3 10 1.2 · 106 6.8 · 107 40733 1.5 · 106

4 32 4.6 · 108 5.9 · 1010 4 13 97917 3.1 · 106 11899 292533 3 9 1.7 · 106 1.1 · 108 24192 775260

3 32 3.2 · 107 3.1 · 109 5 18 100641 3.2 · 106 16286 399179 3 11 1.8 · 106 1.2 · 108 58765 1.9 · 106

4 32 4.5 · 108 5.8 · 1010 4 11 97835 3.1 · 106 13263 350490 2 7 1.7 · 106 1.1 · 108 24976 805932

5 32 6.7 · 109 1.1 · 1012 4 9 95834 3.1 · 106 11229 285668 2 7 1.7 · 106 1.1 · 108 14516 444518

6 32 1.0 · 1011 1.9 · 1013 5 9 96610 3.1 · 106 10830 284829 3 5 1.6 · 106 1.0 · 108 12355 380373

Figure 5: Total size of ternary rules in entries and in bits by SRGE.

rules based on four 16-bit ranges encoded by prefix expan-

sion, the total size of G1 with per-field resolution is 1.73 times

bigger than with per-bit; this ratio is rapidly growing when

range width is increasing; e.g., for 32-bit ranges the same

ratio is already equal to 10. The similar effect is seen on the

total size in bits for the both range encoding methods. For G2

representations, the effect of per-bit resolution is even more

pronounced; e.g., for classifier rules consisting of four 32-bits

ranges encoded by SRGE, the ratio between per-field and

per-bit resolution in ternary entries is already 70 times since

the total size of G2 depends quadratically on range width.

Number of fields in a rule. Increasing the number of

fields has no significant effect on the total size of multi-group

representations with per-field resolution and this is a signifi-

cant advantage of SAX-PAC versus equivalent classifiers en-

coding all ranges. The per-bit resolution provides additional

memory saving since it allows to pickup multiple subranges

minimizing the total size; e.g., for classifier rules on six 32-

bit ranges, the size of SRGE encoding for G1 with per-bit

resolution is 10830 ternary entries which is very close to the

optimal case when every range-based rule is encoded by a

single ternary entry; from the other hand, G1 with per-field

resolution and SRGE encoding requires 96610 entries. In the

worst case among all experiments, the average number of

ternary entries in G1 with per-bit resolution does not exceed

2.4 entries per rule.

Number of groups.G2 requires smaller number of groups

than G1 when per-field resolution is considered; from the

other hand, the total size of encoded ternary entries is signif-

icantly bigger for G2 than for G1; e.g., for rules on five 32-bit

ranges, the total size of G2 in entries for SRGE encdoing

is 17 times bigger than for G1. For per-bit resolution, this

effect is less pronounced and does not exceed 6 times in all

experiments. Note that in all experiments for classifiers with

at least 24-bits range width, the number of entries required

for G2 with per-bit resolution is smaller even than for G1

with per-field resolution showing effectiveness of per-bit

resolution for reduction not only of the total size (both in

entries and bits) but also of the number of required groups.

6 CONCLUSION
Range-based field representation is an important abstrac-

tion to balance between scalability and expressiveness in

packet classifiers; when a number of range-based fields is

growing, equivalent classifiers encoding all ranges is not the

right direction. Equivalent representations (not classifiers) as

SAX-PAC [10] significantly improve memory requirements

but still operating with per-field resolution can demand sig-

nificant memory resources and the number of groups to

implement desired structural properties. In this paper we in-

troduce a notion of subranges allowing to operate on ranges

with per-bit resolution and overcome constraints of per-field

representations. Coexistence of subranges with other en-

coding methods as [1, 2, 5] and software-based classifier

representations in regular memory we leave for the future

study.
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