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Abstract
Objective. The rapidly developing paradigm of closed-loop neuroscience has extensively employed
brain rhythms as the signal forming real-time neurofeedback, triggering brain stimulation, or
governing stimulus selection. However, the efficacy of brain rhythm contingent paradigms suffers
from significant delays related to the process of extraction of oscillatory parameters from
broad-band neural signals with conventional methods. To this end, real-time algorithms are
needed that would shorten the delay while maintaining an acceptable speed-accuracy trade-off.
Approach.Here we evaluated a family of techniques based on the application of the least-squares
complex-valued filter (LSCF) design to real-time quantification of brain rhythms. These
techniques allow for explicit optimization of the speed-accuracy trade-off when quantifying
oscillatory patterns. We used EEG data collected from 10 human participants to systematically
compare LSCF approach to the other commonly used algorithms. Each method being evaluated
was optimized by scanning through the grid of its hyperparameters using independent data
samples.Main results.When applied to the task of estimating oscillatory envelope and phase, the
LSCF techniques outperformed in speed and accuracy both conventional Fourier transform and
rectification based methods as well as more advanced techniques such as those that exploit
autoregressive extrapolation of narrow-band filtered signals. When operating at zero latency, the
weighted LSCF approach yielded 75% accuracy when detecting alpha-activity episodes, as defined
by the amplitude crossing of the 95th-percentile threshold. Significance. The LSCF approaches are
easily applicable to low-delay quantification of brain rhythms. As such, these methods are useful in
a variety of neurofeedback, brain-computer-interface and other experimental paradigms that
require rapid monitoring of brain rhythms.

1. Introduction

Investigations of neural oscillations have been and
continue to be an area of intensive research, partic-
ularly with the advancement of neuroimaging tech-
niques, such as noninvasive electroencephalography
(EEG) and magnetoencephalography (MEG), invas-
ive electrocorticography (ECoG) and stereo EEG
(sEEG). Many experimental paradigms and meth-
ods have been developed in order to deal with spe-
cific types of neuronal oscillations particularly, exper-
imental and clinical approaches for either enhancing
or suppressing various brain rhythms [1, 2]. Exist-
ing paradigms for exploration of oscillatory activity

fall in one of the two categories: (1) studies where
stimuli are presented regardless of the specifics of the
ongoing neural activity and (2) studies implement-
ing a closed-loop design where the stimuli formation
depends on the characteristics of the ongoing brain
activity [3]. In this paper, we evaluate signal pro-
cessing methods that are useful for the second cat-
egory where the closed-loop is formed on the basis
of the oscillatory activity quantified in real-time. We
refer to this experimental approach as brain-rhythm
contingent paradigm (BRCP) .

As shown in figure 1(A), BRCP operates via three
key steps: (1) data acquisition, (2) target signal extrac-
tion, and (3) stimulus generation. During the data
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Figure 1. Schematics of BRCP. (A) Signal flow diagram in the closed-loop BRCP system (B) Signal processing pipeline (C) The
sources of delays contributing to the total latency of BRCP. Delays with technical and fundamental sources are marked in blue and
red, respectively.

acquisition step, brain activity is measured, usually
with multiple spatially distributed electromagnetic
sensors, and streamed to a computer. Within the tar-
get signal extraction step, a computer routine extracts
the parameters of oscillatory activity from the mul-
tichannel data in real-time, typically amplitude and
phase. At the stimulus generation step, these para-
meters are converted into a feedback delivered to
the brain either directly, using stimulation applied to
the nervous tissue (also called neuromodulation), or
using natural senses: vision, hearing or touch. The
feedback can be presented continuously and modu-
lates the parameters of an ongoing stimulation, or dis-
cretely and contributes to selecting a stimulus from a
predefined set.

Many implementations of BRCP have been
developed allowing us to explore a variety of goal-
directed behaviors dependent on a closed-loop design
[3]. The most distinct versions of BRCP are: neur-
ofeedback [4–7], brain computer interface (BCI)
[8–10], closed-loop brain stimulation [11–13], and
brain state-contingent stimulus delivery [14–20].
As such, BRCPs are applicable to the treatment of
a range of neurological disorders [21], [22], cog-
nitive enhancement therapy [23], and post-stroke
rehabilitation [9], [10], [24]. Additionally, brain-
state contingent stimulus presentation can reduce
the overall session duration and reduce participants’
fatigue, particularly when neural patterns of interest
consist of short-lived episodes of activity [25, 26].
Despite the conceptual differences between the

implementations of BRCP reported in the literature,
their signal processing pipelines have many com-
mon features, as depicted in figure 1(B). The generic
pipeline incorporates the spatial and temporal filter-
ing steps in order to emphasize specific neural sources
and frequency components, respectively. These filter-
ing steps are often followed by quantification of the
oscillatory envelope and phase.

Here we focus primarily on the multichannel
recording methods with millisecond-scale temporal
resolution, such as EEG and MEG. These techniques
allow for exploration of the fine rhythmic struc-
ture of brain activity and, in principle, can enable
closed-loop, instantaneous interaction with brain cir-
cuits. Yet, as explained in detail below, time-lags of
both technical and fundamental nature occur during
the online extraction of oscillatory parameters from
the ongoing brain activity. These delays vary, depend-
ing on the concrete implementation and can be signi-
ficantly reduced with the use of optimized signal pro-
cessing methods.

Temporal specificity of BRCP is characterized by
the overall delay between the onset of the neural event
of interest and the time the corresponding feedback is
issued (figure 1(C)). This overall BRCP latency incor-
porates time-lags related to different factors, some of
them technical (i.e. software and hardware delays),
others, fundamental (i.e. required to collect a suf-
ficient amount of neural data to isolate a rhythmic
component). The technical time-lags typically do
not exceed 100 ms; this time is needed for data
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transmission by the hardware and low-level software
processing. These delays can be reduced by specific
hardware and software solutions. From our exper-
ience, it is feasible to reduce the technical delay to
10–30 ms depending on the feedback delivery specif-
ics. The fundamental lag cannot be reduced as easily
because it is composed of the time needed to collect a
snapshot of neural oscillatory data that could be then
quantified with an appropriate algorithm like band-
pass filtering and envelope/phase analysis. As such,
this lag is fundamental: a longer observation time is
required to improve the resolution over spectral fre-
quencies. Suboptimal approaches used for extracting
the envelope and/or phase of rhythmic neural com-
ponents may mount to several hundreds of milli-
seconds of fundamental delay. This is undesirable in
most closed-loop paradigms [27].

The adverse effect of feedback delays was repor-
ted in many neurofeedback applications and the BCI
studies where participants were supposed to learn to
modulate their own brain activity - with or without
a mental strategy recommended by the experimenter
[28]. A similar problem with long feedback delays
was highlighted in several studies on evidence-based
learning. Thus, back in 1948, Grice showed that learn-
ing to discriminate complex visual patterns drastically
depends on the feedback signal latency [29]. Impaired
performance caused by delayed feedback was also
demonstrated in the studies on motor learning, e.g
in the prism adaptation task [30]. According to Rah-
mandad et al [20], behavioral learning is impaired
when feedback delay is misperceived by a participant.
Moreover, an elongated feedback delay impairs the
sense of agency during the BCI control [31], the
finding also corroborated by the simulation study
[32] showing that feedback delay and temporal blur
adversely influence automatic (strategy free) learning
in BCI tasks.

Temporal specificity is also an important consid-
eration for the experimental settings with closed-loop
brain stimulation and brain state triggered stimulus
delivery [13, 33, 34]. Indeed, a key requirement for
these methods is an accurate estimation of instant-
aneous oscillatory features and the timely delivery of
stimuli to efficiently interfere with oscillatory neural
patterns.

In the present study, we evaluate several
approaches aimed at reducing the delay between
neuronal events and the corresponding feedback in
BRCP. We pay special attention to a family of meth-
ods based on the least-squares complex-valued filter
(LSCF) designmethodology to identify finite impulse
response (FIR) filter weights and explicitly control
the processing latency. The proposed approach is
capable of extracting the instantaneous amplitude
and phase of neural oscillations with a shorter
latency and higher accuracy as compared to other

techniques. With LSCF, the user can explicitly specify
the desired delay which facilitates a flexible control
of the speed-accuracy trade-off in the closed-loop
neuroscientific experiments. .

2. Methods

Our basic assumption is that the measured neural
activity x[n] is a sum of the narrow-band signal s[n]
(neural activity targeted by a BRCP) and colored
broad-band noise η[n].

x[n] = s[n] + η[n] (1)

The narrow band neural activity s[n] utilized in a
BRC paradigm can be represented as the real part of
analytic signal y[n] [35]:

y[n] = s[n] + jsh[n] = a[n]ejϕ[n] (2)

where sh[n] is the imaginary part of the analytic sig-
nal (often called second quadrature of the original
signal), a[n] is the instantaneous amplitude of the
narrow band process at time n, and ϕ[n] is its instant-
aneous phase at time n. Sequence a[n], often called
envelope, is a relatively smooth real-valued sequence
that skirts the local peaks of a narrow-band process.
Importantly, envelope a[n] and phase ϕ[n] can be
instantaneously computed from the complex-valued
analytic signal y[n] as

a[n] =
√
ℜ{y[n]}2 +ℑ{y[n]}2,

ϕ[n] = atan

(
ℑ{y[n]}
ℜ{y[n]}

)
(3)

As illustrated in figure 2(A), analytic signal y[n]
can be computed from x[n] using narrow-band Hil-
bert transform [35] through the following steps. First,
the discrete Fourier transform (DFT) is applied to the
data segment of x[n]. Then, the obtained DFT coeffi-
cients are masked so that the coefficients correspond-
ing to the frequency band of interest (designated on
the positive-frequency semi-axis) are doubled and the
others are set to zero. Lastly, the inverse Fourier trans-
form (iDFT) is applied to obtain y[n]. This approach
will inevitably deliver inaccurate values of y(n) for
the beginning and the end of the data segment it
is applied to. To avoid this distortion, the segment
needs to be augmented with flanker data—a proced-
ure that is impossible to conduct in real time where
the data segment ends at the last sampled point. This
is because obtaining the flanker in this case would
require an extension into the unknown future. Unlike
the real-time operations, y[n] is estimated accurately
when the data segment is extended with true flanker
data in the offline analysis. Then, using equations (3)
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Figure 2.Methods for narrow-band signal envelope estimation. (A) Ideal non-causal system for ground truth signal extraction.
(B) Envelope detector based on rectification of the band-filtered signal. (C) Sliding window narrow-band Hilbert transform-
based method. (D) Complex-valued FIR family filters that perform FIR causal filter based approximation of the ideal non-causal
system. (D’) Complex-valued FIR filter design.

one can compute the ideal envelope a[n] and phase
ϕ[n] sequences. The rest of figure 2 shows a summary
of the available causal techniques that can be applied
in real-time to compute the envelope and instantan-
eous phase of a narrow-band component extracted
from a broad-band signal.

2.1. Conventional methods
For didactic purposes, we start with the most basic
approaches to extraction and quantification of the
narrow-band processes.

2.1.1. Rectification and smoothing of the band-filtered
signal (rect)
This is conceptually the most straightforward way
to estimate the envelope a[n]. With this method,
low-pass filtering is applied to the rectified narrow-
band filtered signal, as illustrated in figure 2(B). This
approach can be mathematically expressed as:

ar[n] = hlp[n] ∗
∣∣∣hbp[n] ∗ x[n]∣∣∣ (4)

where ∗ is the convolution operator, hbp is the impulse
response of the band-pass filter, | · | denotes the abso-
lute value (i.e. the rectification step), and hlp is the
impulse response of the low-pass filter that performs
smoothing of the rectified signal.Without loss of gen-
erality, we can assume that both hbp and hlp are linear
phase FIRs designed by a Hanning window method
with the number of taps Nbp and N lp, correspond-
ingly. The cutoff frequency for the low-pass filter
fc is set to correspond to one-half of the expected
bandwidth of the narrow-band process, i.e. fc = ( f2 −
f1)/2. FIR filters have a linear phase and therefore the
total delayD and the number of taps in the individual
symmetric filters Nbp and N lp are related as:

D=
Nlp − 1

2
+

Nbp − 1

2
(5)

It follows from equation (5) that a given value
of D can be achieved for multiple selections of N lp

and Nbp. In order to ensure the best envelope recon-
struction accuracy for a given group delay valueD, we
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used grid search over variableNbp in our comparative
analysis. The parameterN lp then follows directly from
(5). Since Nbp and N lp are positive, this method can
estimate the envelope values only for a positive delay.

2.1.2. Sliding window narrow-band Hilbert transform
(hilb)
This is a second most commonly used method that
is based on the use of the analytic signal y[n] com-
puted usingHilbert transform [35]. There are various
implementations of this approach. In this paper, we
resorted to the use of the windowed discrete Fourier
transform (DFT). The DFT is calculated on each
window of length N t which is zero-padded to the
length of N f samples. We then proceed as in the ideal
approach but after computing the inverse DFT we
retain only the (N t−D)-th element of the resultant
complex-valued sequence as an estimate of the ana-
lytic signal with delay D. This filter performs two
operations simultaneously: band-pass filtering and
extracting the analytic signal. The analytic signal is
then used to instantaneously estimate the oscillatory
envelope and phase. This algorithm is illustrated in
figure 2(C).

In matrix representation and using temporal
embedding to form vector x[n], this can be represen-
ted as:

yh[n] =
2

Nf
·wH

Nt−DW∆fx[n], (6)

where vector x[n] contains the lastN t samples of x[n],
i.e. x[n] = [x[n],x[n− 1], . . .x[n−Nt + 1]]T, W∆f is
the N f -by-N t modified DFT matrix with zeros in the
k-th row for k outside of the range [ f1Nf/fs, f2Nf/fs],
which corresponds to the band of interest ∆f=
[ f1, f2] and wH

Nt−D is the Hermitian transposed
(N t−D)-th column of the DFT matrix.

The overall delay of this method is explicitly
determined by parameter D. The parameters to be
optimized in this method are window length N t and
zero-padded length of the signal N f .

2.1.3. Sliding window Hilbert transform with
autoregressive prediction of the narrow-band filtered
signal (ffiltar)
This approach was proposed by Chen et al [33] and
applied in brain rhythm contingent transcranialmag-
netic stimulation (TMS) [13]. In this method, the
slidingwindow vector x[n] containingNa last samples
is forward-backward bandpass filtered. Then, flanker
Ne samples are truncated to eliminate edge artifacts,
and 2Ne samples are forward predicted by using an
autoregressive (AR) model fitted to the immediately
preceding Na −Ne samples. Finally, Hilbert trans-
formation of the prediction is used to estimate the
analytic signal with zero latency at n= Na −Ne +

Ne = Na corresponding to the central point of the
extrapolated segment of length 2Ne. In the original
work, this value was used to determine the current
phase that was then extrapolated for the next cycle
to determine the time for stimulation. This approach
was originally designed for D = 0, so we used it as a
benchmark when we comparing the performance of
different methods operating at zero latency.

Using matrix notation, we can formalize this
method as follows.

yp[n] =
2

Nf
·wH

Na
W+PAR(p)

{
x̃[n]

}
(7)

where x̃[n] contains forward-backward filtered last
Na samples of the x[n], PAR(p) denotes AR model
based prediction operation that augments the trun-
cated data segment and adds 2Ne predicted samples
by using a p-th order AR model, W+ is the N f -by-
(Na +Ne) modified DFT matrix with zeroed rows
corresponding to the range of negative digital fre-
quency values [−π, 0] andwH

Na
is theHermitian trans-

posed Na-th row of the DFT matrix. We used a But-
terworth filter of the order k as the narrow-band filter
for the forward-backward filtering part as suggested
in [33].

One of the disadvantages of this approach is that
it has multiple parameters that need to be adjusted to
achieve the optimal performance. To attain the best
performance in this study, we searched over the para-
meter grid composed of the following variables: AR
order p, number of flanker samples Ne, and Butter-
worth filter’s order k.

2.2. Least squares complex-valued filter (LSCF)
design approach
In order to build the analytic signal y[n] that cor-
responds to an estimate of narrow-band signal s[n]
extracted from the noisy broad-band measurements
x[n], one can apply the ideal narrow-band Hil-
bert transform filter [36, 37]. The complex-valued
frequency response of this combined filter can be
defined as:

HD(e
jw) =

{
2e−jwD,w ∈ [wc − δw,wc + δw]⊆ [0,π]
0,otherwise

(8)
where δw= 2πδf is half of the pass bandwidth, andD
is the group delay measured in samples. This filter is
non-causal for any finite delayD and therefore it can-
not be applied in real time. To reconstruct the ana-
lytic signal causally, one can find a causal complex-
valued finite impulse response (FIR) filter b= {b[n]}
of length N t that approximates the ideal complex-
valued frequency response HD(ejw) [38]. This filter
can be then applied in real-time as yc[n]= x[n]∗b[n]
using the convolution of b and x[n], the procedure
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that by design incurs a fixed processing delay of D
samples.

Causal complex-valued FIR filter b[n] can be
established by solving the least squares optimization
problem. Various definitions of the cost functions
lead to different filters.

2.2.1. Frequency domain least squares (cfir)
This is the most straightforward approach to quan-
tifying narrow-band components present in the data.
The least squares filter design strategy consists of find-
ing the complex-valued vector of the FIR filterweights
b of length N t that minimizes the L2 norm between
the FIR filter frequency response obtained by the DFT
and the discrete appropriately sampled version hD of
an ideal response HD(ejω) in the frequency domain.
To increase the frequency resolution, we use a trun-
cated DFT-matrix W with the dimensions Nf ×Nt

(Nf ≥ Nt). The use of transform matrix-based for-
mulation of the DFT in this case is equivalent to
the DFT of N t samples long vector zero-padded to
lengthN f . SinceWHW= NfI, the solution bcfir of the
normal equations for the optimization problem (2.2)
can be found by a simple inverse DFT of the desired
complex-valued characteristics of the narrow-band
Hilbert transformer:

bcfir = argmin
b

||Wb−hD||L2

bcfir =
1

Nf
WHhD (9)

Equation (9) is similar to equation (6) but can be
usedwith negative delays,D≤ 0. This simplemethod,
however, does not take into account the second
order frequency domain statistics of the target sig-
nal and could be further improved. Note that the cfir
approach with parametersN t ,N f andD≥ 0 matches
the sliding window narrow-band Hilbert transform
approach with the same parameters N t , N f and D.

2.2.2. Frequency domain weighted least squares (wcfir)
This is the method that optimizes the filter by con-
structing weights from the power spectral density of
the input signal x[n]. We thus formulate the weighted
frequency domain least squares design technique via
optimization problem

bwcfir = argmin
b

||S1/2x (Wb−hD)||L2 (10)

whose solution can be found by solving the normal
equations:

bwcfir =
(
WHSxW

)−1
WHSxhD (11)

where Sx is the diagonal matrix formed from the
samples of the power spectral density of x[n] estim-
ated over the entire training data segment. Note that
only WHW= NfI remains true while WWH ̸= NtI.
Therefore, at the optimum ||Wb−hD|| ̸= 0 and thus
b is the least squares approximation of the ideal filter
that can be computed even for negative D.

Panels D andD’ of figure 2 illustrate cfir andwcfir
approaches. The delay D corresponds to the slope of
the phase response within the pass-band and theor-
etically can be set to an arbitrary value. The analytic
optimization procedure then aims at finding such
complex-valued vector of the FIR filter coefficients b
for which the desired transfer function hD is approx-
imated optimally in the least squares or weighted least
squares sense.

Conceptually, having in mind the two tasks of
optimal envelope and instantaneous phase estima-
tion we could have formulated two separate optimiz-
ation problems and used two different sets of weights
implementing two different band-pass complex-
valued filters delivering optimal accuracy in estima-
tion of envelope and phase approximation with the
specified delay. In this case, however, due to non-
linearity of the target functional, we would have to
perform an iterative optimization in order to find the
optimal vector of weights b for the FIR filter.

2.2.3. Time domain least squares (tcfir)
This is the last approach from cfir family. It is based
on minimization of the squared distance in the time
domain between the complex delayed ground truth
signal y[n−D] and the filtered signal x[n]∗b[n]:

btcfir = argmin
b

||x[n] ∗ b[n]− y[n−D]||L2 (12)

The ground truth signal y[n−D] is obtained
non-causally from the training samples via an ideal
zero-phaseHilbert transformer (8). According to Par-
seval’s theorem, this approach is equivalent to the
wcfir approach. However in contrast to the frequency
domain formulation, it allows for implementation of
recursive schemes (12) and, therefore,may potentially
account for non-stationarity in the data. One of the
most straightforward solutions is to use recursive least
squares [39] in order to update filter weights online.

2.3. Methods comparison
2.3.1. Data and preprocessing
We compared the performance of the methods
described above using resting state EEG data recor-
ded from ten participants engaged in neurofeedback
experiments. Resting state data was collected prior to
neurofeedback runs. Prior to the experiment, all par-
ticipants provided written consent approved by The
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Higher School of Economics Committee on Inter-
University Surveys and Ethical Assessment of Empir-
ical Research in accordance with the Declaration of
Helsinki. EEG data was obtained using 32 AgCl elec-
trodes placed according to the 10–20-system with the
ground electrode at AFz position and reference elec-
trodes on both ears. The impedance for all electrodes
was kept below 10 KOhm. The signal was sampled
at 500 Hz using an NVX-136 amplifier (Medical
Computer Systems Ltd) and bandpass-filtered in the
0.5−70 Hz band. These preprocessing filters incurred
an overall delay of no more than 10 milliseconds for
the bandwidth of interest (8–12 Hz).

We used 2 minutes of resting state recordings for
each participant. The first minute of the data was
used for implementing a parametric grid search and
the second minute - for performance testing. These
processing steps corresponded to the settings of our
neurofeedback experiments where, after recording a
subject’s resting state activity for one minute, we
adjusted the signal processing parameters and then
proceeded to the main body of the experiment. To
eliminate eye artifacts, we performed independent
component analysis (ICA) on the training data, iden-
tified eyemovement-related components bymeans of
the mutual information spectrum [40], and removed
the artifactual data characterized by the highest
mutual information with the two frontal channels
Fp1 and Fp2. Only the parietal P4 channel of the
cleaned data was used for the analysis and it played
the role of x[n] in (1).

2.3.2. Individual alpha band
We determined individual alpha ranges with the
following procedure: estimate magnitude spectrum
using Welch method with a 4 second 90%-overlap
boxcar window, find the frequency f0 with maximal
signal-to-noise ratio (SNR) in the 8-12 Hz range,
define individual band as [ f1, f2] interval, where f1 =
f0 − 2 Hz and f2 = f0 + 2 Hz. SNR was defined as
the difference between mean magnitude in the band
∆band = [ f1, f2] and mean magnitude in the flankers
band ∆flankers = [ f1 − 2, f1]

⋃
[ f2, f2 + 2] divided by

the mean magnitude in the flankers band∆flankers:

SNR=
m(∆band)−m(∆flankers)

m(∆flankers)
(13)

wherem(∆) is the mean magnitude in band∆.

2.3.3. Ground truth signal
As the ground truth signal we used the non-causally
computed analytic signal y[n] obtained using the
ideal procedure described in section 2 and illustrated
in figure 2(A) and corresponding to the individual
alpha band [ f1, f2] of each subject. After the analytic
signal y[n] was computed, we estimated both envel-
ope and instantaneous phase without any additional
delay according to equation (3).

2.3.4. Performance metrics
To measure the accuracy of the envelope and instant-
aneous phase estimation obtained with the described
techniques, we used the followingmetrics. All metrics
were based on the ground truth envelope and instant-
aneous phase information extracted from the ground
truth signal s[n] obtained non-causally from the real
EEG data as described above and then shifted to
match the specific delay value D of causal processing.
We will denote the shifted ground truth envelope and
phase sequences as a[n−D] and ϕ[n−D] corres-
pondingly.

To assess the performance of different methods
for estimating the envelope, we calculated the Pearson
correlation coefficient between the estimated envel-
ope â[n], obtained causally with each of the methods,
and the appropriately shifted ground truth envelope
sequence a[n−D] over the 1-minute long test data
segment:

ra =

∑
n∈Na

(a[n−D]−ma)(â[n]−mâ)√ ∑
n∈Na

(a[n−D]−ma)2
√ ∑

n∈Na

(â[n]−mâ)2

(14)
whereNa = D . . .N− 1 is the set of time indices with
N = 30000,ma andmâ are samplemean values of a[n]
and â[n] over setNa

To assess the performance of instantaneous phase
estimation, we used bias bϕ, absolute bias |bϕ| and
the standard deviation σϕ with respect to the delayed
ground truth phase ϕ[n−D] at the time when pre-
dicted ϕ̂[n] phase crosses 0. These metrics reflect the
bias, absolute bias, and the variance in determining
zero crossings(negative-to-positive direction) of the
delayed signal s[n−D].

bϕ =
1

|Nϕ|
∑
n∈Nϕ

ϕ[n−D] (15)

σϕ =

√
1

|Nϕ| − 1

∑
n∈Nϕ

(ϕ[n−D]− bϕ)2 (16)

whereNϕ = {n : n ∈Na, sign(ϕ̂[n])> sign(ϕ̂[n− 1])}
is the set of time instances when ϕ̂[n] crosses 0.

2.3.5. Grid search procedure
To ensure that the methods being compared operated
optimally, we defined a grid search space for each of
them as described in table 1 and looked for the com-
bination of parameters that ensured the best perform-
ance for each technique. Here we use the following
short method names: rect for envelope detector based
on rectification of the band-filtered signal, cfir for
the frequency domain LSCF, wcfir for the frequency

7



J. Neural Eng. 17 (2020) 046022 N Smetanin et al

Figure 3. Four performance metrics vs incurred processing delay. (A) Dependence of the correlation coefficient ra on delay D for
the cfir family, for rectification based technique and AR-based extrapolation approach (ffiltar). (B) Phase estimation bias bϕ as a
function of processing delay D. (C) Phase estimation variance σϕ as a function of processing delay. (D) Phase estimation absolute
bias

∣∣bϕ∣∣ vs. D.

domain weighted LSCF, tcfir for the recursive ver-
sion of the LCSVF and ffiltar for the method based
on autoregressive extrapolation of zero-phase filtered
time series [33]. Note that when operating at a pos-
itive latency the sliding window narrow-band Hilbert
transform approach (hilb) exactly matches the cfir.

For each combination of parameters and fixed
delay D, we computed the metrics defined in equa-
tions (14–16) on the training set - separately for each
subject. Note that no negative delay D is possible for
rect and hilb, so we used only zero delay (D= 0) for
ffiltar. The same approach was used in the closed-
loop magnetic stimulation experiments in this spe-
cific condition [13, 33, 34] . Frequency band and
weights for the wcfir approach were computed using
the training data. We then used optimal parameters
for each method corresponding to the maximum of
ra, minimum for |bϕ| and minimum of σϕ values
observed on the training set, and estimated the same
performance metrics ra, bϕ, |bϕ| and σϕ on the test
data.

We adjusted the filter weights and hyperparamet-
ers over the 1 minute segment of the resting state
data recorded from the individual subject to ensure
adequate performance of this filter during the entire
course of recording ( typically 15-20 minute). This
adaptation makes the filter weights reflect individual
shape of the alpha-peak and signal-to-noise (SNR)
ratio of the occipital alpha oscillation. These paramet-
ers are specific to an individual and do not change
over time. In practice, when needed the filter weights
and the hyperparameters can be re-adjusted anytime
using the most recent data segment.

3. Results

Figure 3 shows the comparison of different meth-
ods. The results are averaged over the data from ten
participants. To ensure the best performance for each
technique, we used training data segments to adjust
each method’s parameters using the grid search pro-
cedure described in the Methods section. For each

8
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Figure 4. Four performance metrics vs. alpha rhythm SNR for D= 0. (A) Envelope correlation coefficient ra, (B) Phase
estimation standard deviation (SD) σϕ and (C), (D) Phase estimation bias bϕ and absolute bias

∣∣bϕ∣∣. Each dot corresponds to a
dataset and is positioned on the x-axis according to the P4 alpha-rhythm SNR.

Table 1. Grid search space for each method.

Method Param. Grid

rect Nbp 0, 5, .., 100
cfir/hilb N t 250, 500, 1000
wcfir N t 250, 500, 1000
tcfir N t 250, 500, 1000

Nu 25, 50
µ 0.7, 0.8, 0.9

ffiltar p 10, 25, 50
Ne 10, 25, 50

method (panels A, B, C andD), we show the perform-
ance metrics ra, σϕ, bϕ, |bϕ| reflecting envelope cor-
relation accuracy (panel A), phase estimate variance
(panel B), phase estimate bias (panel C) and phase
estimate absolute bias (panel D) as described by equa-
tions (14)–(16) and computed on the test data seg-
ment with the optimal set of parameters identified
over the independent training data segment. For each
such metric, the curves display the metric mean val-
ues averaged over ten participants as a function of
the incurred delay. The error bars indicate the 95%

confidence intervals obtained from 1000 bootstrap
iterations. Our observations show that the accuracy
metrics computed over 1 minute of the test data
adequately reflects the average estimation accuracy
exhibited over the entire duration of recording. Swap-
ping the test and the train data results into qualitat-
ively very similar relative performance curves.

Figure 3(A) shows that, as expected, the envelope
estimation accuracy quantified by the correlation
coefficient ra deteriorates as the processing lag D
decreases. The smaller the processing lag, the weaker
is the correlation between the non-causally obtained
ground-truth envelope and the envelope causally
estimated by each of the methods. For all posit-
ive delays rect approach (gray line) has noticeably
the worst performance making it practically unus-
able for latency values below 150 ms. Methods from
the LSCF family, cfir (blue line), wcfir (red line)
and tcfir (light blue line), exhibit comparable accur-
acy. The approach described in [33] (ffiltar, black
dot) that entails autoregressive (AR) modeling of
data and forward-backward filtering of the extended
data chunk yields the accuracy comparable to that
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Figure 5. Discrete paradigm accuracy for one subject with median SNR. (A) Binary classification task. The goal is to detect the
time instances when alpha envelope is in the upper 5% quantile of its values. (B) Ternary classification task to distinguish lower
and upper 5% quantiles of the envelope values from the mid-range values falling into 5%–95% range.

delivered by the LSCF family of methods at zero
latency but it also requires specification of parameters
describing the AR model order, filter and extension
window length, and it is significantly more computa-
tionally intense.

Panels B, C and D of figure 3 show the results
for real-time estimation of instantaneous phase as a
function of time-lag D. For the positive delay values,
the bias bϕ remains practically negligible and does not
exceed 5

◦
for all considered methods. Noteworthy,

the ffiltar approach formulated for zero-latency shows
nearly zero mean phase estimation bias correspond-
ing to D = 0. However, as panel D demonstrates, the
absolute bias of the phase estimate obtained by this
technique is comparable to that delivered by the LSCF
family of methods. Therefore, the close-to-zero aver-
age phase estimation bias in panel C reflects sym-
metry around zero distribution of phase estimation
bias values observed in the ten examined datasets. The
methods from the LSCF family exhibit a significant

growth of phase estimation standard deviation (SD)
as lag D decreases. Yet, at zero lag, the variance of
the estimate delivered by the proposed family of tech-
niques appears to be significantly below that of the
ffiltar approach. Here we reported an averaged obser-
vations made on the basis of the data recorded from
ten participants as described in section 2.3.

Considering each subject separately allowed us to
explore the performance as a function of the SNR that
naturally varied across individuals. Figure 4 illustrates
the same three performance measures as shown in
figure 3 for individual participants but only forD= 0.

Figure 4 shows the performance of the explored
methods forD= 0 as a function of the SNR observed
in each of the individual subjects. Metrics of the per-
formance are the same as in figure 3. For all methods,
envelope correlation ra grows with the SNR, panel A.
SD of the estimated phase improves with SNR and
appears to be consistently lower for the LSCF family of
methods. Phase estimate bias bϕ shows positive skew
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for the low SNR value. The absolute bias for ffiltar
technique appears to be independent of the SNR. For
high SNR values starting with 1.0 the absolute bias
value obtained by all methods from the LSCF family
appears to be consistently lower than that of the ffiltar.
Also for the LSCF family we observe the expected
reduction in the bias of the estimated phase with the
growth of the SNR. Although not significantly, in the
envelope estimation task the wcfir approach always
performs slightly better than the other methods. This
method takes into account the spectral peak shape
whichmay bringmore benefits to the real-time quan-
tification of brain rhythms with larger bandwidth,
e.g. beta and gamma rhythms. Recursive least squares
(RLS) based tcfir approach is designed to accom-
modate non-stationarities of the brain rhythm’s spec-
tral characteristics. However, in the application where
alpha oscillations were monitored this approach does
not render any advantage over the stationarymethods
pre-trained on the 1 minute long segment of preced-
ing data. To make sure that these observations were
invariant to the arrangement of the test and train seg-
ments, we computed the performance graphs for the
data where the test and train segments were swapped.
This test yielded the same trends as shown in figures
3 and 4.

A full-blown envelope reconstruction is not
required in some versions of the closed-loop
paradigms e.g. [17]. Instead, of interest is the discrete
detection of time instances with high instantaneous
within-band amplitude. Crossing the prespecified
threshold by the rhythm’s envelope may serve as a
feedback or a trigger to either present a stimulus or
directly stimulate brain. Suppose we want to perform
detection of the time when the instantaneous rhythm
power exceeds the 95% threshold. As shown in the
left panel of figure 5(A), for the binary classification
case, the time instance when the envelope crosses the
threshold (dashed line) are labeled as High, and the
rest of the moments are labeled as Low. The right
panel of figure 5(A) shows the balanced accuracy
score (class recall average) for such binary detection
task as a function of the allowed processing delay
parameterD. The analysis is done for one participant
with median SNR selected from the pull of ten par-
ticipants. We can observe that the best performance
in the binary classification task is achieved by the
weighted cfir method with zero processing latency
(D = 0). Similar results for ternary classification of
the three-state problem are shown in figure 5(B).
Just like in the binary case, the instances when the
envelope falls into the top area corresponding to the
5% of the largest envelope values are labeled as High
and additionally, label Low is assigned to the time
instances when the envelope takes on values from the
lowest 5%. The rest of the time instances are labeled
as Medium. As in the binary classification test, the
weighted version of the wcfir approach delivers the
best performance for zero processing delay D = 0.

In the binary classification scenario, we can achieve
about 75% of balanced accuracy. The rectification-
based approach is unable to operate at such a short
latency and it yields just above 60%maximal accuracy
even with 100–150 ms delay. Similar conclusion can
be drawn from the ternary classification case results.

Finally, to explore the shape of the alpha-burst
events in the High/Other classification task described
above in figure 6, we averaged the ground truth
envelope triggered on the crossings of the threshold.
This computation was performed for rect and wcfir
approaches for predefined delay parameters from
[300, 100, 0,−100] ms set (for rect only positive val-
ues were used). Also, we computed an average envel-
ope across a set of randomly picked time moments
(denoted as rand) and across the instances when the
ground truth envelope crossed the High threshold
(denoted as ideal), which can not be done causally,
see figure 6.

Figure 6 shows that the averaging of the alpha
band envelope profiles around the time instances
detected using the wcfir approach operating at D= 0
ms latency results into a well pronounced peak that
practically coincides with t = 0. Therefore, the feed-
back signal sent at the time instances detected with
wcfir will arrive when alpha power is elevated and
not past this event. At the same time, the negat-
ive delay only slightly improves the detection latency
but increases the variance which is not the desirable
behavior.

4. Discussion

Standard techniques for estimating instantaneous
power of EEG rhythms, such as the methods based
on the rectification of narrow-band filtered signal
and the STFT based algorithms, incur significant
delays, which hinders the performance in BRCPs.
Such delays, combined with the lags of acquisition
hardware and the time required for stimulus present-
ation, result in significant lags between the actual
brain activity and the signal used to control the exper-
imental flow in the BRC paradigms. In the closed-
loop stimulation paradigms, this would mean that
the timing of the stimulating pulse can not be accur-
ately aligned to the desired feature of the oscillatory
brain activity. In the neurofeedback setting or settings
requiring an explicit feedback signal that reflects sub-
ject’s performance, these standard approaches close
the loop more than 300 ms past the targeted neural
event [27]. Such delays may be especially detrimental
when the targeted brain rhythm patterns can be
described as discrete events of a limited duration [7],
[41], [42] where the feedback can arrive after the
event has completed. Such low temporal specificity
of the feedback signal hinders learning, especially in
the automatic learning scenarios [28]. Here we sys-
tematically explored a series of methods for minim-
izing latency in BRCPs. We distinguished a family
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Figure 6. Average envelope computed using real-time detected markers of High events for different pre-specified processing delay
values.

of best-performing techniques that are based on the
least-squares complex-valued FIR filter design. These
methods allow for a simpler and more transparent
control over the speed–accuracy trade-off compared
to the other existing approaches.

Our results confirm that the methodology based
on the least-squares complex-valued filter design
noticeably reduces latency of EEG envelope and phase
estimation. The computational procedure is simple;
yet its efficiency pars or exceeds that of the more
complex approaches, including those based on the
use of the AR-model [33] - the most ubiquitous
method for closed-loop studies [43], [13], [34], [44].
Using our method, one can specify the desired delay
and achieve the best possible envelope estimation
accuracy possible with a linear method. As evident
from figure 3, wcfir technique allowed us to gener-
ate zero-latency feedback that accurately tracked the
instantaneous power profile of the EEG-rhythm. The
performance of the proposed approach on a typical
segment of data can be appreciated from figure 7
which shows true values and estimates of the envel-
ope and phase obtainedwithwcfirmethod for various
user specified lags.

The methods in the LSCF family slightly differ
in their properties and expected applicability. The
simplest cfir approach performs on par with the
more advanced wcfir technique when used to estim-
ate alpha-band envelope. However, wcfir appears
to have advantages in the discrete task of detect-
ing threshold crossing by the rhythm’s envelope.
It adapts to the shape of the spectrum within the
band of interest and thus may have advantages over
the cfir approach, especially when dealing with the
real-time quantification of brain rhythms with lar-
ger bandwidth, e.g. beta and gamma rhythms. Non-
stationary tcfir may be useful when the rhythm prop-
erties are likely to change over time as it can be
the case in neurofeedback training experiments or

when the experiments explicitly imply several states of
the participants, e.g. eyes-open and eyes-closed states
characterized by different properties of rhythmic
activity.

This work is a part of our systematic effort
aimed at building a zero- or even negative-latency
feedback paradigm that will allow transferring the
predictive controlmethodology successfully exercised
in technical systems to the tasks where the brain
is the controlled object [45]. As shown in 5, the
wcfir provide for correct instantaneous detection of
rhythmic activity bursts, with AUC exceeding 75%.
This illustration suggests that the proposed family
of simple approaches together with the necessary
hardware optimization will open up avenues for the
implementation of low-latency feedback scenarios
and enable a more efficient interaction with brain
circuits.

Fundamentally, the reduced feedback latency
comes at a cost of a less accurate envelope estimation.
Deterioration of performance is especially sizeable
when the SNR is low and therefore, for the latency-
reduction algorithm to be efficient, care should be
taken to improve the SNR with such methods as
spatial filtering of multi-electrode recordings. Joint
spatial-temporal filters aimed at extracting the ana-
lytic signal with the user specified delay may poten-
tially harness the power of the complex EEG dynam-
ics to further improve the rhythmic components
quantification accuracy. The optimal speed-accuracy
trade-off is the issue that needs to be addressed for
each application and each participant individually. As
shown in figure 3, the methods outlined in this work
allow for a smooth control of this trade-off and a
choice of an optimal operational point for an indi-
vidual application.

As mentioned above, to achieve a true predict-
ive scenario, the signal processing algorithms need
to be improved, but the hardware employed for
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Figure 7. Envelope (A) and phase (B) estimates obtained by wcfir method (blue line) for different delay values D. Each row
corresponds to delays from−50 ms to 200 ms. Red line denotes ground-truth signal calculated by the ideal non-causal filter, gray
dashed line denotes the same ground-truth signal but shifted by the corresponding delay D to facilitate comparison.

signal acquisition as well as the low-level software
that handles EEG data transfer from the acquisition
device to the computer memory buffer need to be
improved too. To this end, it is worth considering
specialized systems based on the Field-Programmable
Gate Array (FPGA) devices that eliminate the uncer-
tain processing delays present in computer operating
systems not designed to operate in real-time [46].

In the context of neurofeedback, additional con-
sideration should be given to the physiological aspects
of the sensory modality used to deliver the feed-
back signal. For instance, visual inputs, although very
informative [31], are processed slower as compared to
the tactile inputs; therefore, tactile feedback could be
a better option for short-latency control. A combin-
ation of modalities can also be considered as a way
to improve performance. For example, in the context
of alpha-band neurofeedback training short-latency
tactile or audio feedback could be used to reinforce
the participant when alpha-band envelope crosses a
prespecified threshold and the screen could demon-
strate the accumulated count of such cases.

The signal processing approaches presented here
could be advanced by employing more sophisticated
decision rules capable of extracting hidden struc-
tures from the data. Thus, convolutional neural net-
works [47], [48] and novel recursive architectures
hold a significant promise to further improve the
accuracy of real-time zero-lag envelope and phase
estimation.

5. Reproducibility

The code implementing all the described methods is
available at https://github.com/nikolaims/cfir includ-
ing all the necessary links to the data to reproduce the
results reported in the paper.
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