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1. Shilnikov Chaos in Flows

In 1965, Shilnikov discovered that a homoclinic loop
to a saddle-focus can imply chaos. The notion itself
did not exist then; the “chaos theory” emerged and
became popular only 10–20 years later. Chaos was
found in many nonlinear models of hydrodynam-
ics, optics, chemical kinetics, biology, etc. It also
occurred that strange attractors in models of var-
ious origins often have a spiral structure, i.e. the
chaotic orbits seem to move near a saddle-focus
homoclinic loop. That the homoclinic loop to a
saddle-focus with a positive saddle value implies
chaos — this is Shilnikov theorem [Shilnikov, 1965,
1970], but why is the converse also so often true,
how can chaos imply a homoclinic loop to a saddle-
focus? This question quite preoccupied Shilnikov
in the mid-80s. He found [Shilnikov, 1986] that if
a system depends on a parameter and evolves, as

the parameter changes, from a stable (“laminar”)
regime to a chaotic (“turbulent”) motion, then this
process is naturally accompanied by a creation of
a saddle-focus equilibrium in the phase space and,
no matter what particular way to chaos the system
chooses, it is also natural for the stable and unsta-
ble manifolds of this saddle-focus to get sufficiently
close to each other, so a creation of a homoclinic
loop becomes easy.

This idea is not mathematically formalizable,
it is an empirical statement, which makes it even
more important: as it is not mathematics, it can-
not be derived from any abstract notion. It relates
the beginning of the route to chaos (Andronov–
Hopf bifurcation) with the end (formation of a spiral
attractor) in a simple and model-independent way.
In this paper, we further develop this idea (see also
[Gonchenko et al., 2012b]) and discuss new basic
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scenarios of chaos formation which should be typical
for three-dimensional maps and four-dimensional
flows (higher dimensions will, surely, bring more
diversity). The first of these scenarios (Sec. 2) has
already been mentioned in [Shilnikov, 1986]. The
other scenario (see Sec. 3.2) is not related to saddle-
foci and is more “Lorenz-like”, however it does not
require the symmetry the classical Lorenz system
possesses.

First, we recall in more detail the scenario from
[Shilnikov, 1986] of the creation of spiral chaos.
Shilnikov considered a smooth three-dimensional
system

ẋ = X(x,R) (1)

that depends on a certain parameter R (the choice
of notation for the parameter had a hydrodynamic
motivation; one may think of R as being somehow
related to Reynolds number). Let the increase of R
lead the system from a stable regime to a chaotic
one. That is, at some R < R1 the system has a sta-
ble equilibrium state O, at R = R1 it loses stability,
the new stable regime also loses stability with the
increase of R, and so on. Without additional sym-
metries or degeneracies, or other equilibria coming
into play, it is natural to assume that the loss of sta-
bility at R = R1 corresponds to the Andronov–Hopf
bifurcation, so that a single periodic orbit L is born
from O at R > R1, and this periodic orbit inher-
its the stability of O. The point O is a saddle-focus
at R > R1, and at small positive values of R − R1

the two-dimensional unstable manifold W u
O is a disc

with boundary L. As the system evolves towards
chaos with R increasing, the stable periodic orbit L
may also lose the stability, via a period-doubling or
a secondary Andronov–Hopf bifurcation that corre-
sponds to a birth of an invariant torus from L. In
any case, before the periodic orbit loses stability,
its multipliers must become complex at R > R2 for
some R2 > R1 (the multipliers of L are real pos-
itive at R close to R1, so they must become com-
plex before one of them becomes equal to −1). At
R > R2 the manifold W u

O will wind onto L and form
a funnel-type configuration (Fig. 1). This funnel will
attract all orbits from some open region D. After
the funnel is formed, the creation of a homoclinic
loop to O as R grows further becomes very natural:
the throat of the funnel may become smaller or it
may change its position, so that W u

O and W s
O may

start getting closer to each other until a homoclinic
loop is formed at some R = R3. If the complex

Fig. 1. A funnel-type configuration of W u(O).

characteristic exponents of the saddle-focus O are
nearer to the imaginary axis than the real nega-
tive one (this condition is automatically fulfilled at
R = R1, so we may assume it continues to hold
at R = R3 too), then the existence of the homo-
clinic loop to O implies complex orbit behavior
(infinitely many suspended Smale horseshoes) in a
neighborhood of the loop [Shilnikov, 1965, 1970].
In case the throat of the funnel can be cut by a
cross-section such that all the orbits that intersect
the cross-section come inside, the unstable manifold
Wu

O (more precisely, its part from O till the cross-
section, plus the cross-section itself) will bound a
forward-invariant region; at R = R3 the attractor
which lies in this region will contain the homoclinic
loop and the chaotic set around the loop. The orbits
in this set spiral around the saddle-focus, so the
characteristic shape of the “spiral attractor” can be
observed. When R changes the loop splits, but a
large portion of the chaotic set will survive; also
new, multiround homoclinic loops may appear, etc.
One can have this scenario of the transition to chaos
for n-dimensional systems with any n ≥ 3, e.g. just
by adding (n − 3) contracting directions.

The main point of this observation is that the
Andronov–Hopf bifurcation of the stable equilib-
rium O not only creates a stable periodic orbit L,
it also transforms O to a saddle-focus, and instead
of following details of the further evolution of the
stable regimes (the periodic orbit L, the periodic
orbit born from L after, for example, the first
period-doubling, etc.) it may be more useful for the
understanding of the transition to chaos to continue
to watch what happens to the primary equilib-
rium O and how the shape of its unstable man-
ifold evolves. Studying typical dynamical features
of attractors that can exist in a Shilnikov funnel
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could be an interesting research direction. A model
for the Poincaré map in the funnel was proposed
in [Shilnikov, 1986]. Based on the analysis of this
map, a birth of an invariant torus in the funnel was
studied in [Afraimovich & Vozovoi, 1988, 1989]. In
[Belykh et al., 2005] there was shown that a cer-
tain type of funnel is consistent with the existence
of a hyperbolic Plykin attractor. The wild attractor
built in [Bamon et al., 2005] can also be inscribed
in a Shilnikov funnel (in dimension n ≥ 5).

The above described scenario appears to give
the simplest (hence, the most general) route to
chaos. It involves a very small number of objects
responsible for chaos formation: the equilibrium O,
its unstable manifold, and the periodic orbit L.
However, there can be more complicated schemes.
For example, Shilnikov also noticed that the
Andronov–Hopf bifurcation at R = R1 can be dif-
ferent from what is described above. Namely, we
assumed that this bifurcation is soft, i.e. the equilib-
rium O is stable at the bifurcation moment and its
stability is transferred to the stable periodic orbit
L at R > R1. However, there can also be a sub-
critical Andronov–Hopf bifurcation at R = R1: the
periodic orbit L can be saddle, it exists then at
R < R1, and at the moment L merges with O (i.e.
at R = R1 already) the equilibrium O becomes a
(weak) saddle-focus. The unstable manifold Wu

O at
R = R1 is the limit of the unstable manifold of L.
Thus, already at R = R1, the manifold Wu

O may
have a nontrivial shape, e.g. it may form a fun-
nel, so a large forward-invariant region associated
to this funnel is created at R = R1. If a chaotic
set Λ (not necessarily an attractor) had already
been formed at R < R1 inside this region, then
we can observe a sudden transition from the sta-
ble regime O to a well-developed spiral chaos at
R = R1. A similar way of a sudden transition from
a stable equilibrium to a large invariant torus was
considered in [Afraimovich & Vozovoi, 1988, 1989].
The chaotic set Λ can be created in several ways.
For example, at some R smaller than R1 a saddle-
node periodic orbit can emerge and, as R grows,
decompose into a saddle periodic orbit L and a sta-
ble periodic orbit L+. In the three-dimensional case
the stable manifold of L is two-dimensional, and L
divides it into two halves. Let one of the halves tend
to O and the other half, Wu+

L to L+. As R grows,
the orbit L+ may lose stability in some way and,
eventually, homoclinic intersections of Wu+

L with
W s

L may form. The homoclinic to a saddle periodic

orbit is accompanied by a nontrivial hyperbolic set
Λ′ [Shilnikov, 1967]. If L keeps the homoclinics as
it merges with O, then the weak saddle-focus O
will have a homoclinic loop at R = R1. Chaotic
dynamics associated with this so-called Shilnikov–
Hopf bifurcation was studied in [Belyakov, 1980;
Bosh & Simo, 1993]. If L loses its homoclinics near
R = R1, a portion Λ of the hyperbolic set Λ′ may
still survive until R = R1.

In systems with symmetry, instead of the
Andronov–Hopf bifurcation a pitchfork bifurcation
may happen to a symmetric stable equilibrium O.
Then, instead of a stable periodic orbit L, a pair of
stable, symmetric to each other equilibria O1 and
O2 will be born; the equilibrium O will become
a saddle with one-dimensional unstable manifold
that tends to O1,2. After the equilibria O1,2 acquire
complex characteristic exponents, the unstable sep-
aratrices of O will start winding around O1,2; the
further increase of a parameter may lead then to for-
mation of a symmetric pair of homoclinic loops and
chaos like in the Lorenz model or in systems with
“double-scroll” attractors [Arneodo et al., 1981,
1985; Khibnik et al., 1993]. In dimension n ≥ 4
a symmetric wild Lorenz-like attractor may emerge
in this way [Turaev & Shilnikov, 1998]. Without a
symmetry, similar scenarios are also possible (see
e.g. [Shilnikov & Shilnikov, 1991]): in a system with
a stable equilibrium O1 a saddle-node equilibrium
may emerge which decomposes into a saddle equilib-
rium O and a stable equilibrium O2, so that one sep-
aratrix of O tends to O2 and the other tends to O1.
After that, as parameters change, chaos may form
around these three equilibria and their unstable
manifolds.

Returning to the simplest scenario, note that
the spiral attractor formed in the funnel does not
need to be the “true” strange attractor. Bifur-
cations of a homoclinic loop to a saddle-focus
can lead to the birth of stable periodic orbits
along with the hyperbolic sets [Ovsyannikov &
Shilnikov, 1987]. Therefore, stable periodic orbits
can coexist with hyperbolic sets in the funnel.
If the period of these orbits is large, or their
domains of attraction are narrow, then they will be
practically invisible and the attractor will appear
chaotic. Such attractors were called quasiattractors
in [Afraimovich & Shilnikov, 1983a]. We discuss
this notion in more detail in Sec. 3.1. We also give
conditions (following [Ovsyannikov & Shilnikov,
1987; Turaev & Shilnikov, 1998]) for the absence
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of stable periodic orbits and the true chaoticity of
the attractor.

2. Shilnikov Scenario for Maps

The second basic scenario which was described in
[Shilnikov, 1986] requires the dimension n of the
system to be at least 4. We assume that system (1)
has a stable periodic orbit L, which undergoes a
soft Andronov–Hopf bifurcation at R = R1 (i.e. its
multipliers cross the unit circle and a stable two-
dimensional invariant torus is born from L). One
may consider a cross-section S to L, then the point
O = S ∩ L is a saddle-focus fixed point of the
Poincaré map on S. The intersection of the invari-
ant torus with the cross-section is an invariant curve
C; it bounds the unstable manifold Wu

O. At small
R−R1 a neighborhood D of Wu

O ∪C is an absorb-
ing domain (the image by the Poincaré map of the
closure of D lies strictly inside D), and W u

O ∪ C is
the attractor in D. We assume that for the entire
range of R values under consideration there exists
a continuously dependent on R absorbing domain
D which contains O along with W u

O. As R grows,
the manifold W u

O may start winding onto C, and
a funnel will form. Then Wu

O may come closer to
the stable manifold W s

O, so at a certain interval
of values of R > R1 the saddle-focus fixed point O
will have homoclinic orbits in D. The corresponding
attractor in [Shilnikov, 1986] was called Poincaré
attractor. The idea was that when we do not con-
sider this attractor on a cross-section and look at it
in the phase space of the continuous-time dynami-
cal system (1), it will appear different from the spi-
ral attractor described in the previous section. The
main element of the spiral attractor is an equilib-
rium state and its unstable manifold, the main ele-
ment of the Poincaré attractor is the saddle-focus
periodic orbit L and homoclinics to it (transverse
homoclinics to periodic orbits were discovered by
Poincaré, so the name).

We, however, will focus more on the attrac-
tors of discrete-time dynamical systems, i.e. we will
not assume that the map under consideration is
the Poincaré map for some smooth flow. Then the
chaotic attractor in the funnel formed by the unsta-
ble manifold of a saddle-focus fixed point O of our
map can have a shape very similar to that of the
spiral attractor for systems with continuous time.
Therefore, we will also call it spiral or Shilnikov
attractor, or discrete Shilnikov attractor. One of the

differences of this attractor from the spiral attractor
for flows is that, in the case of maps, the homoclinics
to O exist for intervals of parameter values (not for
a discrete set of parameter values as it is typical for
flows). The boundaries of such interval correspond
to homoclinic tangencies.

In the figures below we show the discrete
Shilnikov attractor in the three-dimensional Henon-
like map

x = y, y = z, z = M1 + Bx + M2z − y2 (2)

(this map emerges in the study of homoclinic tan-
gencies in multidimensional systems [Gonchenko
et al., 1993]). In Fig. 2(i), one notices that the
attractor (here — the numerically obtained limit
of iterations of a randomly chosen initial point) is
strikingly similar to the spiral attractor for flows.
The beginning of the route to the spiral chaos is
quite flow-like here: the closed invariant curve C
[Fig. 2(b)] bifurcates as a single entity to a double-
round invariant curve [Fig. 2(c)]; the double-round
curve loses stability and bifurcates to the 4-round
curve [Fig. 2(e)]. Next, the bifurcation scenario
changes: the invariant curve does not double any-
more, it loses smoothness, gets destroyed, and chaos
is created [Fig. 2(f)].

In general, it is difficult for a closed invari-
ant curve to bifurcate as a single object. When
we change parameters, a pair of resonant periodic
orbits, saddle L and stable L+, emerge and become
visible on the invariant curve. The transition to, say,
double-round closed invariant curve would require
a simultaneous period-doubling of the two reso-
nant periodic orbits, which is a codimension-2 phe-
nomenon, i.e. it would require a special parameter
tuning. Therefore, when a resonance materializes on
the invariant curve, it is more natural to expect
a breakdown of the invariant curve following one
of Afraimovich–Shilnikov scenarios [Afraimovich &
Shilnikov, 1983b]. In particular, the stable resonant
periodic orbit L+ can itself undergo the Andronov–
Hopf bifurcation and became a saddle-focus Lsf ; the
unstable manifold of the Lsf will be bounded by a
multicomponent closed invariant curve (the num-
ber of components equals to the period of Lsf ). As
parameters change, the unstable manifold of this
periodic saddle-focus can form a periodic funnel and
a periodic spiral attractor can form inside it.

An example of such behavior is shown in Fig. 3.
The periodic spiral attractor consists of several dis-
joint components; their number equals to the period
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Fig. 2. Evolution of attractors of Henon-like map (2) at fixed B = 0.7 and M1 = 0: (a) a stable fixed point, (b) a stable
closed invariant curve, (c) the invariant curve has doubled, (d) and (e) the second doubling and loss of smoothness, (f)–(h)
breakdown of the invariant curve and onset of chaos and (i) Shilnikov attractor.
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(g) M2 = 1.258 (h) M2 = 1.27

(i) M2 = 1.29

Fig. 2. (Continued)

of the resonant saddle-focus [see Fig. 3(b)]. Note
that the components may collide to each other
[Figs. 3(c) and 3(d)] as parameters change. This
means that the two-dimensional unstable manifold
of the resonant saddle-focus Lsf that is used to
bound the components of the periodic spiral attrac-
tor starts to intersect the codimension-1 stable
manifold of the other resonant periodic orbit L. The
attractor now includes both of the resonant peri-
odic orbits; we call such attractor “super-spiral”.
Another example of such type of attractor is given
in Fig. 4.

Recall that these resonant spiral/superspiral
attractors exist within the funnel formed by the
unstable manifold of the original saddle-focus
fixed point. As parameters change, the stable and

unstable manifolds of the resonant periodic orbits
may intersect the unstable and, respectively, stable
manifold of this fixed point, so the periodic struc-
ture of the attractor may be lost and it may start
to look more flow-like. The interplay between the
original fixed point and the resonant periodic orbits
can proceed in many different ways. An example
is shown in Fig. 5 where the shape of attractor is
determined by the two-dimensional unstable man-
ifold of the fixed point and the one-dimensional
unstable manifold of an orbit of period 3.

Resonance 1:3 is strong in the sense that if a
periodic point undergoes the Andronov–Hopf bifur-
cation with a pair of multipliers e±iϕ where ϕ is
close to 2π

3 , then the closed invariant curve that is
born at this bifurcation may fast get destroyed by
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Fig. 3. Attractors of map (2) for B = 0.7, M2 = 1.055. (a) 9-component closed periodic curve, (b) spiral attractor “sitting” on
the resonant orbit of period 9, (c) the components of period-9 spiral attractor start to collide and (d) “super-spiral” attractor.
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Fig. 4. Attractors of map (2) at B = 0.7, M2 = 0.8: (a) stable fixed point, (b) and (c) stable closed invariant curve, (d)
and (e) loss of smoothness and breakdown of the invariant curve and (f) super-spiral attractor “sitting” on resonant points of
period 4.
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Fig. 5. Attractors of map (2) at B = 0.7, M1 = −0.195: (a) closed invariant curve, (b) the curve has doubled, (c) and (d)
period-3 orbit gets involved, and chaotic attractor is created, (e) and (f) the saddle-focus fixed point gets included into the
attractor.
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Fig. 5. (Continued)

colliding with a homoclinic structure of a nearby
orbit of triple period; the corresponding bifurcation
diagram is in Fig. 6 (see [Gavrilov, 1977; Arnold,
1977; Kuznetsov, 1998]). This determines the trian-
gle shape of the funnel. Since the zone in the param-
eter space that is associated with the resonance 1:3
is quite wide, this characteristic shape should be
observed quite often.

Fig. 6. Resonance 1:3.

3. Lorenz-Like Scenario for Maps

3.1. Quasiattractors and true
strange attractors.
Pseudohyperbolicity

It is well-known that hyperbolic attractors and
Lorenz attractors are two types of “true” chaotic
attractors. Namely, every orbit in such attractor
has positive maximal Lyapunov exponent and this
property is robust (it persists at small changes of the
system). Hyperbolic attractors are structurally sta-
ble; Lorenz attractors are not, but their chaoticity
is persistent [Afraimovich et al., 1977, 1982; Guck-
enheimer, 1976; Williams, 1977; Guckenheimer &
Williams, 1979].

We note that this property (of keeping
“strangeness” at small smooth perturbations) does
not seem to hold for many “physical” attrac-
tors observed in numerical experiments, where the
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apparent chaotic behavior can easily correspond to
a stable periodic orbit with a very large period (plus
inevitable noise); see more discussion in [Newhouse,
1974; Afraimovich & Shilnikov, 1983a]. In particu-
lar, Hénon-like strange attractors [Benedicks & Car-
leson, 1991; Mora & Viana, 1993] that are often
in two-dimensional maps may transform into stable
long-period orbits by arbitrarily small changes of
parameters [Ures, 1995]. The same is true for spi-
ral attractors of various types and, in particular, for
Poincaré–Shilnikov attractors presented in the pre-
vious section. The point is that homoclinic tangen-
cies to the saddle-focus periodic orbit can emerge
within the spiral attractor. When three-dimensional
volumes are contracted, bifurcations of such tan-
gency lead to the birth of periodic sinks [Gonchenko
et al., 1993, 1996; Gonchenko et al., 2012c].

In general, nontransverse homoclinics and hete-
roclinics are ubiquitous in nonhyperbolic attractors.
Without special restrictions [Turaev, 1996] such
bifurcations lead to the birth of stable long-period
orbits, so “windows of stability” emerge in chaos,
and the better the accuracy of observations the
more of these stability windows can be seen. This
makes the whole concept of strange attractor ques-
tionable (in respect to its applicability to reality).
In order to resolve this problem Afraimovich and
Shilnikov introduced the term quasiattractor, or
ε-quasiattractor [Afraimovich & Shilnikov, 1983a],
that means an attractive closed invariant set which
contains a saddle periodic orbit with a transverse
homoclinic (i.e. a chaotic component) and may con-
tain stable periodic orbits too, but the period of
every stable orbit must be larger than ε−1. So, for ε
small enough, even if there are stable periodic orbits
within the attractor, they will not be recognized.

The spiral attractor discussed in the previous
section is, thus, a quasiattractor which contains a
transverse homoclinic to a saddle-focus fixed point
or a periodic orbit. The discrete Lorenz-like and
figure-eight attractors which we discuss below are
examples of a strange attractor (maybe, a quasi-

attractor) which contains a transverse homoclinic
to a fixed or periodic point which is a saddle, i.e.
its leading (nearest to the unit circle) multipliers
are real. An important feature of these attractors
is that they can, under certain conditions, be true
strange attractors, i.e. one can guarantee the robust
absence of stable periodic orbits.

A universal structure which prevents the birth
of stable periodic orbits was proposed in [Turaev &
Shilnikov, 1998]. Namely, if an attractor has the
so-called pseudohyperbolicity property, then neither
the system itself nor any close system can have
stable periodic orbits in a certain neighborhood
of the attractor. This property (the term volume-
hyperbolicity can also be used in the same con-
text [Bonatti et al., 2005]) is formulated as follows.
Let a map F (the case of a flow is treated anal-
ogously) have an absorbing domain D (a strictly
forward-invariant neighborhood of an attractor A)
and let the tangent space at each point x ∈ D
admit a decomposition into the direct sum of two
subspaces Ess

x and Euc
x which are invariant with

respect to the differential DF and which depend
continuously on x. Moreover, let DF be strongly
contracting along Ess and let it expand in volume
in Euc. Then the map is pseudohyperbolic in D,
and every orbit in the attractor A ⊂ D has positive
maximal Lyapunov exponent; moreover, this prop-
erty persists at small smooth perturbations of the
system (see [Turaev & Shilnikov, 1998, 2008] for
more detail). Note that one can derive easily verifi-
able sufficient conditions for the pseudohyperbolic-
ity, as given by the following result (a reformulation
of Lemma 1 of [Turaev & Shilnikov, 1998]).

Lemma 1. Let a map T be defined on a closure
of an open region D, and T (cl(D)) ⊂ D. Suppose
that in some coordinates (x, z) on D the map T :
(x, z) �→ (x, z) can be written as z = f(x, z),
x = g(x, z) where f, g are at least C2-smooth,

and det( ∂g
∂x) �= 0. Denote A = ∂f

∂z − ∂f
∂x( ∂g

∂x)−1 ∂g
∂z ,

B = ∂f
∂x( ∂g

∂x)−1, C = ( ∂g
∂x)−1 ∂g

∂z , D = ( ∂g
∂x)−1. If

max

{
sup

(x,z)∈D

√
‖A‖‖D‖, sup

(x,z)∈D
‖A‖, sup

(x,z)∈D

√
|detD|

}
+

√
sup

(x,z)∈D
‖B‖ sup

(x,z)∈D
‖C‖ < 1,

then the attractor of the map T in the absorbing
domain D is pseudohyperbolic.

This lemma is based on the Afraimovich–Shilnikov
“annulus principle” [Afraimovich & Shilnikov,

1974a, 1974b, 1977; Shilnikov et al. 1998, 2001]
which gives sufficient conditions for the existence
of what is now called a dominated splitting. It also
generalizes the hyperbolicity conditions proposed in
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[Afraimovich et al., 1977, 1982] for the Poincaré
map of the Lorenz attractor.

Hyperbolic and Lorenz attractors satisfy the
pseudohyperbolicity property, however there are
other pseudohyperbolic attractors. For example,
in [Turaev & Shilnikov, 1998] an example of a
wild-hyperbolic strange attractor was constructed
for a four-dimensional flow. Unlike hyperbolic and
Lorenz attractors, wild-hyperbolic ones may con-
tain homoclinic tangencies. However, these tangen-
cies are such that their bifurcations do not lead
to stable periodic orbits (as the conditions from
[Gonchenko et al., 1993, 1996, 2008] for the birth of
periodic sinks from homoclinic tangencies are auto-
matically violated by the pseudohyperbolicity).

Another example of a wild-hyperbolic attrac-
tor with the pseudohyperbolicity property can be
obtained by a small time-periodic perturbation of
a flow that possesses a Lorenz attractor [Turaev &
Shilnikov, 2008]. By taking a discrete forward orbit
of the corresponding Poincaré map (the map for
the period of the perturbation), we obtain a strange
attractor which looks quite similar to the canonical
(continuous time) Lorenz attractor. We call such
attractors discrete Lorenz attractors (see exact defi-
nitions in [Gonchenko et al., 2013b]). Importantly, a
normal form for the bifurcations of periodic points
with the triplet of multipliers (−1,−1,+1) is an
(exponentially small) periodic perturbation of the
Shimizu–Morioka system [Shilnikov et al., 1993];
this system is known to have a Lorenz attractor
[Shilnikov, 1986, 1993]. Therefore, discrete Lorenz-
like attractors can appear at the bifurcations of
an arbitrary map which has a periodic orbit that
undergoes the (−1,−1,+1)-bifurcation [Shilnikov
et al., 1993; Gonchenko et al., 2005; Gonchenko
et al., 2013b].

In particular, a class of Henon-like maps was
considered in [Gonchenko et al., 2013b]:

x = y, y = z, z = Bx + f(y, z), (3)

where f is a smooth function. The Jacobian of such
map is constant and equals B. The fixed points are
given by x = y = z = x0, x0(1 − B) = f(x0, x0).
The characteristic equation at the fixed point is
λ3 − Aλ2 − Cλ − B = 0, where A = f ′

z(x0, x0),
C = f ′

y(x0, x0). At (A = −1, C = 1, B = 1),
the fixed point has multipliers (−1,−1,+1). Take
a smooth three-parameter family of maps (3) which
at zero parameter values has a fixed point with mul-
tipliers (−1,−1,+1), and let the fixed point exist

for a region of parameter values adjoining to zero.
Move the origin to the fixed point. The map takes
the form

x = y,

y = z,

z = (1 − ε1)x + (1 − ε2)y − (1 + ε3)z

+ αy2 + βyz + γz2 + · · · ,

(4)

where ε1,2,3 are small, α= 1
2f ′′

yy(x0, x0), β = f ′′
yz(x0,

x0), γ = 1
2f ′′

zz(x0, x0), and the dots stand for cubic
and higher order terms.

Lemma 2 [Gonchenko et al., 2013b]. Assume

(γ − α)(α − β + γ) > 0. (5)

Then map (4) has a pseudohyperbolic Lorenz-like
attractor for all ε from an open, adjoining to ε = 0,
subregion of {ε1 > 0, ε1 + ε3 > 0, |ε2 − ε1 − ε3| ≤
L(ε2

1 + ε2
3)} with some L > 0.

Example for which the hypothesis of the lemma
holds is given by the map

x = y, y = z, z = M + Bx + Cy − z2, (6)

for which a discrete Lorenz attractor was found in
[Gonchenko et al., 2005] for an open domain of the
parameters (M,B,C) adjoining to the point (M =
−1/4, B = 1, C = 1). At these values of the param-
eters, the map has a fixed point x = y = z = 1

2 .
After shifting the coordinate origin to this point we
have the map in the form

x = y, y = z, z = x + y − z − z2,

i.e. the fixed point has multipliers (−1,−1,+1), and
α = 0, β = 0, γ = −1. As we see, condition (5)
of the lemma holds. For numerically obtained por-
traits of Lorenz-like attractors in this map, see
Fig. 9.

Another example is given by

x = y,

y = z + γy2,

z = M0 + Bx + M1y + Az + δy3 + βyz.

(7)

Introduce znew = z + γy2. Then, map (7) takes the
standard Hénon form

x = y,

y = z,

z = M0 + Bx + M1y + Az − Aγy2 + γz2

+ βyz + (δ − βγ)y3.

(8)
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Let x = y = z = x0 be a fixed point of map (7),
i.e. M0 = x0(1 − B − M1 − A) − (δ − βγ)x3

0 − (1 +
βγ−Aγ)x2

0. By shifting the coordinate origin to this
point, we write the map in form (4):

x = y,

y = z,

z = Bx + (M1 + (β − 2Aγ)x0

+ 3(δ − βγ)x2
0)y + (A + (β + 2γ)x0)z

+ αy2 + βyz + γz2 + · · ·

where α = 3(δ − βγ)x0 − Aγ. The fixed point has
the multipliers (−1,−1,+1) at B = 1, A + x0(β +
2γ) = −1, M1 = 1 + (2Aγ − β)x0 − 3(δ − βγ)x2

0.
Condition (5) reads as x0(3δ − 2βγ + 2γ2)[(3δ −
2βγ + 2γ2)x0 − β + 2γ] < 0. For every given β,
γ and δ one can always find x0 for which this is
fulfilled, provided δ �= 2

3γ(γ − β) and β �= 2γ is ful-
filled. Therefore, by Lemma 2, for every fixed β, γ,
δ which satisfy these inequalities there is an open
region in the space of parameters (M0,M1, B,A)
which corresponds to the existence of the Lorenz-
like attractor. For numerically obtained portraits
of Lorenz-like attractors in this map, see Figs. 10
and 11.

Further, discrete Lorenz attractors were found
numerically in other models, including sys-
tems of nonholonomic mechanics [Gonchenko &
Gonchenko, 2013; Gonchenko et al., 2013a] (see
Sec. 5). Below we describe the simplest scenar-
ios leading to discrete Lorenz attractors and their
“figure-eight” analogues.

3.2. Discrete attractors of
“Lorenz-like” and
“figure-eight” shapes

In this section, we describe a basic scenario of tran-
sition to chaos in three-dimensional maps, which is
different from the Shilnikov scenario of Sec. 2. Here,
the first bifurcation that determines the future
shape of the strange attractor is the period-doubling
bifurcation (for the spiral attractor, a similar role is
played by the Andronov–Hopf bifurcation).

Consider a one parameter family fµ of three-
dimensional orientable diffeomorphisms and assume
that for the values of µ from some interval I the
diffeomorphism fµ has an absorbing domain Dµ.

Let µ1 and µ2 be certain values from I such that
µ1 < µ2. Assume that at µ ≤ µ1 the forward orbit
of every point in Dµ tend to a stable fixed point Oµ.
Assume that at µ = µ1 the point Oµ undergoes a
soft (supercritical) period-doubling bifurcation. As a
result, a stable period-2 orbit Pµ = (p1, p2), where
fµ(p1) = p2 and fµ(p2) = p1, is born from Oµ at
µ > µ1, and the point Oµ becomes a saddle. We
denote its multipliers as λ1, λ2, λ3, where λ1 < −1,
and |λ3| < |λ2| < 1. Note that we have here two
cases: λ2 < 0, λ3 > 0 and λ2 > 0, λ3 < 0.

Let the saddle point Oµ have a transverse
homoclinic orbit at µ > µ2. Then, the maximal
attractor Aµ in the absorbing domain Dµ contains
the nontrivial hyperbolic set associated with this
homoclinic, i.e. we may speak about a quasiattrac-
tor (if there are no obvious stable periodic orbits in
it). There are two distinct possibilities for the shape
of this attractor, which mainly depends on the signs
of the stable multipliers (see Fig. 7). Recall that the
unstable multiplier λ1 of Oµ is negative, therefore
its unstable separatrices (the two components into
which Oµ divides its unstable manifold) are mapped
to each other by fµ. Thus, the homoclinic orbit
belongs to both of these separatrices, i.e. they both
intersect the stable manifold W s(Oµ). Typically,
the homoclinic intersection does not belong to the
strong stable manifold W ss(Oµ) which is tangent
to the eigenspace that coresponds to the nonlead-
ing multiplier λ3. The manifold W ss(Oµ) divides
W s(Oµ) into two parts. These parts are invariant
with respect to fµ if the leading stable multiplier
λ2 is positive, and they are taken to each other by
fµ if λ2 < 0. Thus, we have two cases:

(1) if λ2 > 0, then both unstable separatrices of
Oµ can intersect W s(Oµ) on one side from
W ss(Oµ) — we say that the attractor Aµ has a
Lorenz-like shape in this case;

(2) if λ2 < 0, then the unstable separatrices
must intersect W s(Oµ) on both sides from
W ss(Oµ) — we say that Aµ has a figure-eight
shape.

Note that the loss of stability of the period-2
orbit Pµ does not need to be correlated with the
emergence of the homoclinics to the fixed point Oµ.
In fact, many different variants are possible. For
example, a cascade of period-doublings may con-
tinue and the transition to chaos may precede the
creation of homoclinics to Oµ (this is typical if

1440005-12

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

4.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
08

/3
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



August 27, 2014 11:53 WSPC/S0218-1274 1440005

Simple Scenarios of Onset of Chaos in Three-Dimensional Maps

Fig. 7. Two shapes of the attractor.

the Jacobian is small and the map is close to one-
dimensional). For nonsmall Jacobians, the period-2
orbit may undergo an Andronov–Hopf bifurcation.
A supercritical bifurcation leads to the birth of a
stable invariant curve with two closed connected
components, see Fig. 8. At the further growth of
µ this curve can get destroyed and transformed
to a “homoclinic structure” involving Oµ. If the
Andronov–Hopf bifurcation is subcritical, then a
saddle closed period-2 curve merges with Pµ. The
homoclinics to Oµ can already exist in this case,
so the period-2 curve is formed at the fringes of
the homoclinic structure. Depending on the situ-
ation, the two-dimensional stable manifold of this
curve may serve as a barrier that separates the
attraction domains of the period-2 orbit Pµ and
the Lorenz-like attractor that contains Oµ, or there
may be no such attractor separate from Pµ (this
happens when the closure of the unstable manifold
of Oµ contains Pmu; then we should speak about
the Lorenz-like attractor only after Pµ loses stabil-
ity). Similar scenarios (where the period-2 orbit is
replaced by a pair of symmetric equilibria and the
period-2 closed curve is replaced by a pair of sym-
metric limit cycles) are known to lead to the onset
of the Lorenz attractor in the Lorenz model (with
subcritical Andronov–Hopf) [Afraimovich et al.,
1977; Shilnikov, 1980; Barrio et al., 2012] and

the Shimizu–Morioka model (with supercritical
Andronov–Hopf) [Shilnikov, 1986, 1993]; see Fig. 8.
Therefore, the above described transition.

Fixed Point ⇒ Period-2 Orbit ⇒ Stable/Saddle
Period-2 Curve ⇒ discrete Lorenz-like Attractor
should be typical for Poincaré maps for small peri-
odic perturbations of these systems and, hence, for
arbitrary maps near the moment of bifurcations of
periodic orbits with multipliers (−1,−1,+1) (see
e.g. Lemma 2 in the previous section).

As we mentioned in the previous section, the
Lorenz-like and figure-eight attractors of three-
dimensional maps can be true strange attractors,
provided they satisfy the pseudohyperbolicity prop-
erty. The pseudohyperbolicity should be verified at
each point of the absorbing domain. In particular,
at the fixed point Oµ this property requires that the
saddle value σ = |λ1λ2| is greater than 1 (as at least
some two-dimensional areas must be expanded by
the linearization of the map at the fixed point). This
is a necessary condition that is easiest to check; if
it is not satisfied, then stable periodic orbits will
be born from homoclinic tangencies to Oµ, i.e. the
attractor Aµ will be a quasiattractor. However, this
condition does not need to be sufficient. One may
also numerically estimate Lyapunov exponents at
some randomly chosen orbit in Aµ. The pseudo-
hyperbolicity requires the positivity of the sum of
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Fig. 8. A sketch of the Poincaré map for a small time-
periodic perturbation of the Lorenz or Shimizu–Morioka
models. (a) After a period-doubling, the fixed point becomes
a saddle, and a stable period-2 orbit (p1, p2) is created, (b)
creation of a thin homoclinic butterfly structure, (c) a sad-
dle period-2 closed curve (L1, L2) detaches from the but-
terfly, (d) the Lorenz-like attractor gets separated from the
stable orbit (p1, p2), (e) the orbit (p1, p2) becomes unstable
(subcritical Andronov–Hopf bifurcation), (d′) the Lorenz-like
attractor gets separated from the stable period-2 closed curve
born from (p1, p2) at a supercritical Andronov–Hopf bifurca-
tion and (e′) the stable and saddle curves of period 2 get
destroyed.

the two largest Lyapunov exponents. Again, this is
not yet a sufficient condition for the true chaotic-
ity of the attractor, even if the orbit appears to
be dense in Aµ: one also needs to verify that the
angle between the invariant subspace correspond-
ing to the two largest Lyapunov exponents and the
subspace that corresponds to the rest of Lyapunov
exponents stays bounded away from zero. The most
robust approach to prove hyperbolicity is, of course,
based on Lemma 1. In the examples below we do not
go into such depths in the verification of the pseu-
dohyperbolicity. However, we do the simple checks
of the saddle value and Lyapunov exponents. Also,
the similarity of the shape of our discrete Lorenz-
like attractors with the classical Lorenz attractor
is often very high, therefore we are quite certain
these attractors are pseudohyperbolic, hence truly
chaotic.

4. Numerical Experiments with
Hénon-Like Maps

We now present numerics that illustrates the theory
above. We consider, first, map (6) with the Jacobian
B = 0.7 (i.e. the dissipation is weak enough). In
Fig. 9 the corresponding phase portraits (numerical
iterations of a single initial condition) are shown
for fixed M2 = 0.85 and varying M1. The transition
to a Lorenz-like attractor proceeds in the follow-
ing steps: the orbit of period 2 [Fig. 9(a)] gives rise
to a stable two-component closed invariant curve
[Fig. 9(b)], which then gets destroyed by a “colli-
sion” with a saddle two-component invariant curve
that was formed from a homoclinic butterfly to the
saddle fixed point, and a Lorenz-like attractor is
formed [Figs. 9(c) and 9(d)]. This scenario is similar
to what one should observe in a periodically per-
turbed Morioka–Shimizu system.

As M1 grows, the attractor grows in size and
evolves into a strange attractor “without holes”
[Fig. 9(f)]. It reminds of the attractor of Lorenz
model after the absorbtion of the saddle-foci. This
effect is related to a creation of a heterodimen-
sional cycle where the one-dimensional unstable
manifold of the saddle fixed point intersects with
the one-dimensional stable manifold of the saddle-
focus orbit of period two; this cycle is analo-
gous to the “Bykov contour” of the Lorenz model
[Bykov, 1978, 1980, 1993]. This bifurcation (e.g. in
the Lorenz model [Afraimovich et al., 1980; Petro-
vskaya & Yudovich, 1980; Bykov & Shilnikov, 1989;
Barrio et al., 2012] and in the Shimizu–Morioka
model [Shilnikov, 1986, 1993; Shilnikov et al., 1993])
leads to the creation of stable periodic orbits. By
analogy, we expect that the same is true for the
“no hole” attractor in the Henon map (6), i.e. it
loses the pseudohyperbolic structure and becomes
a quasiattractor.

Next, we show results of numerical simulations
of map (7). We start with the case β = −3, δ = −3,
γ = 1, M0 = −2. At M1 = 4, B = 1, A = 0 this map
has a fixed point at x = y = z = 1 with the multi-
pliers of (−1,−1,+1). It is easy to check that condi-
tion (5) is satisfied, so we can expect the Lorenz-like
attractor for parameter values close to these. We
choose B = 0.7, A = 0.1, and vary M1 from 4.345
down to 4.265. The results are shown in Fig. 10. The
attractor forms in the way similar to the previous
case. The destruction of the attractor [Figs. 10(d)–
10(f)] proceeds via formation of a lacuna where a
stable closed invariant curve emerges [Fig. 10(e)]
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(e) M1 = 0.05 (f) M1 = 0.1

Fig. 9. Evolution of attractors in the 3D Hénon map (6) with B = 0.7, M2 = 0.85, as M1 varies: (a) period-2 point, (b) closed
curve of period 2 and (c)–(f) strange attractors.

which next breaks-down and forms a strange attrac-
tor [Fig. 10(f)] of the “wriggled” shape typical for
the “torus-chaos” quasiattractor [Afraimovich &
Shilnikov, 1974b; Curry & Yorke, 1978; Aronson
et al., 1982; Afraimovich & Shilnikov, 1983b]. Note

that the route of the destruction of the Lorenz-
like attractor via formation of a lacuna, which we
see in these figures, reminds one of the scenarios
of the disappearance of the Lorenz attractor that
was described in [Afraimovich et al., 1982] and
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Fig. 10. Creation and destruction of the Lorenz-like attractor in map (7) at β = −3, δ = −3, γ = 1, M0 = −2, B = 0.7,
A = 0.1. (a) Cycle of period 2 (after period doubling), (b) closed curve of period 2 (after Andronov–Hopf bifurcation of the
cycle), one can also see the location of the saddle curve of period 2 [cf. Figs. 8(d′) and 8(e′)], (c) Lorenz-like attractor, (d)
Lorenz-like attractor with a lacuna, (e) and (f) bifurcation stages after the destruction of the attractor (stable invariant curve
and torus-chaos).

was also discovered in the Shimizu–Morioka model
[Shilnikov, 1986, 1993; Shilnikov et al., 1993].

Another case corresponds to β = 2, δ = 1/3,
γ = 0. A fixed point at x = y = z = 1 has

multipliers (−1,−1,+1) at M0 = −2, M1 = −2,
B = 1, A = −3. Again, condition (5) is satis-
fied. Numerics was performed at M0 = 3.67, B =
0.7, A = −3.1, with M1 varying from −2.5345 to
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Fig. 11. Plots of attractors of map (7) for β = 2, δ = 1/3, γ = 0, M0 = 3.67, B = 0.7, A = −3.1 as M1 varies. (a) and (b)
As in Fig. 10, (c) strange quasiattractor and (d)–(f) stable closed invariant curves.

−2.505. The results are shown in Fig. 11. The first
stages [Figs. 11(a) and 11(b)] on the route to the
Lorenz-like attractor [Fig. 11(b)] are the same here
as in the previous cases. The destruction of the
attractor proceeds via the formation of a lacuna
where a stable invariant curve emerges [Fig. 11(d)],
which then gives place to a strange quasiattractor
[Fig. 11(c)]. These stages are as seen in Fig. 11.

However, the quasiattractor has now a different
structure, and unravels via a backward cascade
of torus-doubling bifurcations [Figs. 11(d)–11(f)].
The last invariant curve disappears by colliding
with a saddle invariant curve at a saddle-node
bifurcation at M1 ∼ −2.501. See [Chenciner, 1985;
Los, 1989; Broer et al., 1990; Braaksma et al., 1990;
Anishenko & Nikolaev, 2005] for the theory of the
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saddle-node and doubling bifurcations for invariant
curves. Numerous examples of such bifurcations in
three-dimensional diffeomorphisms can be found in
[Vitolo, 2003].

It is curious that, despite our numerics being
performed for parameter values sufficiently far from
the bifurcation of a fixed point with the multipliers
(−1, −1, 1), the bifurcation scenarios are quite sim-
ilar to those one should have in its normal form, i.e.
in the Shimizu–Morioka model with a small peri-
odic forcing. Namely, the Lorenz attractor in the
Shimizu–Morioka model transforms into a strange
quasiattractor in a variety of ways [Shilnikov, 1986,
1993; Shilnikov et al., 1993], depending on the
choice of a path in the parameter plane, and this
variety does include an absorption of saddle-foci
like in Fig. 9, or formation of a lacuna with a
consequent boundary crisis of the Lorenz attractor
and emergence of a quasiattractor which may be
accompanied by period-doubling cascades or not,
like in Figs. 10 and 11. The differences between the
destruction of the Lorenz-like attractor in our maps
and the destruction of the Lorenz attractor in the
model flow are still visible (mainly due to the effects
of loss of smoothness and breakdown of invariant
curves), but they do not seem to play a major role.

5. Discrete Lorenz-Like and
Figure-Eight Attractors in
Models of Nonholonomic
Mechanics

In this section, we show how the strange attrac-
tors described in Sec. 3.2 emerge in the dynamics
of rigid bodies moving on a plane without slipping.
This means that we consider a nonholonomic model
of motion for which the contact point of the body
has zero velocity, i.e. v + ω × r = 0, where r is
the vector from the center of mass C to the contact
point, v is the velocity of C and ω is the angular
velocity. By introducing a coordinate frame rigidly
rotating with the body the equations of motion can
be written in the form [Borisov & Mamaev, 2003]:

Ṁ = M × ω + mṙ× (ω × r) + mgr × γ,

γ̇ = γ × ω,

M = [J + m(r, r)I − mr · rT ] · ω,

γ = − ∇F (r)
‖∇F (r)‖ ,

(9)

where M is the angular momentum with respect to
the contact point, γ is the unit vector normal to
the surface of the body at this point (all the vec-
tors are taken in the rotating frame), F is the func-
tion which defines the shape of the body such that
F (r) = 0 is the equation of its surface, mg is the
value of the gravity force, J is the inertia tensor, I is
the 3 × 3 identity matrix and (·) means the matrix
product. We choose the axes of the rotating coor-
dinate frame to coincide with the principal axes of
inertia, i.e. J = diag(J1, J2, J3).

Equation (9) admits two conserved quantities,
the energy integral E = 1

2(M,ω) − mg(r,γ) and
(γ,γ) = 1. By restricting system (9) to a constant
energy level, we obtain a four-dimensional system
of differential equations. By choosing an appro-
priate cross-section, we obtain a three-dimensional
Poincaré map which depends on the value of energy
E. Below we study two different examples of how
attractors of this map evolve as E changes.

5.1. Discrete Lorenz attractors in a
Celtic stone dynamics

A Celtic stone is a rigid body such that one of
its inertia axes is vertical and the two others are
rotated by an angle δ with respect to the horizon-
tal geometrical axes. Namely, we consider a Celtic
stone in the shape of elliptic paraboloid, i.e.

F (r∗) =
1
2

(
r∗21
a1

+
r∗22
a2

)
− (r∗3 + h) = 0,

where a1 and a2 are the principal radii of curvature
at the paraboloid vertex (0, 0,−h) and

r∗ =




cos δ sin δ 0

−sin δ cos δ 0

0 0 1


 r.

(a) (b)

Fig. 12. (a) Celtic stone and (b) unbalanced ball.
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(a) E = 748.4 (b) E = 748.4395

(c) E = 748.5 (d) E = 750.0

(e) E = 752.0 (f) E = 752.0

Fig. 13. The main stages of evolution of the Lorenz-like attractor in the Poincaré map for the Celtic stone: (f)–(i) show
iterations of a single point and (a)–(e) show the unstable manifold of the saddle fixed point O.
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(g) E = 754.0 (h) E = 755.0

(i) E = 765.0

Fig. 13. (Continued)

We take J1 = 2, J2 = 6, J3 = 7, m = 1, g = 100,
a1 = 9, a2 = 4, h = 1, δ = 0.485. Figure 13 illus-
trates the evolution of the attractor of the Poincaré
map as the energy E grows from E = 748 to
E = 765.

Initially the attractor is a stable fixed point O.
At E ∼ 747.61 this point undergoes a period-
doubling bifurcation and becomes a saddle; the sta-
ble orbit P = (p1, p2) of period two becomes an
attractor, Fig. 13(a). At E = E2 = 748.4395, a
homoclinic butterfly of the unstable manifold of the
saddle O has been formed, Fig. 13(b); as E grows,
this homoclinic structure gives rise to a saddle peri-
odic curve L = (L1, L2) of two components, L1

that surrounds the point p1 and L2 that surrounds
p2. At the same time, the unstable manifold of O
tends to the stable periodic orbit P , Fig. 13(c). At
E ∼ 748.97 (not shown in the figure) the separa-
trices touch the stable manifold of the curve L and

then leave it, after which the discrete Lorenz-like
attractor is formed. Almost immediately after that,
at E ∼ 748.98, the period-2 orbit P loses stability at
a subcritical torus bifurcation: the saddle periodic
closed curve L merges with P , the cycle becomes
a saddle and the curve disappears. The discrete
Lorenz-like attractor is shown in Figs. 13(d)–13(g).
Note that the scenario of the attractor formation is
very similar to that in the Lorenz system subject to
a small periodic perturbation [see Figs. 8(a)–8(e)].
Note also that close to the moment of the attractor
creation [Fig. 13(d)] the behavior of the unstable
manifold of the fixed point O is quite similar to
the behavior of the separatrices of the saddle equi-
librium state in the Lorenz model (here we have
a difference with the Henon-like maps described in
Sec. 4 where the transition to the Lorenz-like attrac-
tor was similar to that in the Shimizu–Morioka
model).
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(a) E = 455 (b) E = 455

(c) E = 457.904 (d) E = 457.910

(e) E = 457.911 (f) E = 457.913

Fig. 14. The main stages of the evolution to the figure-eight attractor.
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As E grows the unstable manifold starts form-
ing visible wriggles [see Fig. 13(e)], so the dynam-
ics of the discrete Lorenz-like attractor is no longer
“flow-like”, even though it still looks quite simi-
lar to the classical Lorenz attractor [see Figs. 13(f)
and 13(g)]. In order to check the pseudohyperbolic-
ity of the attractor, we computed the multipliers of
the saddle fixed point O at E = 752.0: λ1 = −1.312,
λ2 = 0.996, λ3 = −0.664; the spectrum of Lyapunov
exponents for a randomly chosen trajectory is Λ1 =
0.0248; Λ3 = −0.2445, 0.00007 < Λ2 < 0.00015.
Evidently, the necessary conditions for area expan-
sion, |λ1λ2| > 1 and Λ1 + Λ2 > 0, are fulfilled, so
we, probably, have a true strange attractor here.

Figures 13(h) and 13(i) show the destruction of
the discrete Lorenz attractor. As E grows, a stable
invariant curve is formed in a lacuna [Fig. 13(h)];
later, the invariant curve gets destroyed and we see
a characteristic shape of the torus-chaos quasiat-
tractor [Fig. 13(i)]. The latter disappears at E >
790 and the orbits tend to a new stable regime, a
spiral attractor, is observed in [Gonchenko et al.,
2012b; Borisov et al., 2012].

5.2. Figure-eight attractor in the
dynamics of the unbalanced
ball

A model of an unbalanced ball (a ball with displaced
center of gravity) rolling on the plane is given by
Eqs. (9) with F (r) = (r − b)2 − R2, where b is
the vector of the displacement of the center of mass
from the geometric center of the ball; R is the ball’s
radius. We choose the following parameters: J1 = 2,
J2 = 6, J3 = 7, m = 1, g = 100, R = 3, b1 = 1,
b2 = 1.5, b3 = 1.9. A figure-eight, seemingly pseudo-
hyperbolic attractor was numerically found in this
model in [Borisov et al., 2014].1 Figure 14 shows the
development of the attractor of the Poincaré map
in the model as the energy E varies from E = 455.0
to E = 457.913.

At first, for E1 � 417.5 < E < E2 � 455.95
[Fig. 14(a)] the attractor is a period-2 orbit (O1, O2)
that emerges at E = E1 along with a saddle orbit
S = (s1, s2) as a result of a saddle-node bifurca-
tion. Simultaneously, the system has a saddle fixed
point S1: this point, a saddle-focus then a saddle,

has a two-dimensional unstable manifold; then at
E = E3 � 456.15, the fixed point becomes a sad-
dle with one-dimensional unstable manifold as a
result of a subcritical period-doubling bifurcation
when the saddle orbit (s1, s2) merges to S1. At
E = E2 � 455.95 the orbit (O1, O2) loses the
stability at a supercritical Andronov–Hopf bifur-
cation and a stable period-2 closed curve appears.
Thus, at E > E3 the one-dimensional unstable sep-
aratrices of the saddle fixed point S1 (with multi-
pliers λ1 < −1, |λ2,3| < 1 and λ2λ3 < 0) wind up
onto a stable closed curve of period-2, Fig. 14(b).
Next, several doublings of the invariant curve take
place, see Figs. 14(c)–14(e). The further growth of
E leads to a figure-eight attractor, Fig. 14(f).

Note that at E = 457.913, the fixed point S1

has the multipliers λ1 � −1.00907, λ2 � −0.99732,
λ3 � 0.98885. Thus, the area-expansion conditions
|λ1λ2| > 1 is fulfilled. Moreover, the Lyapunov
exponents for a random trajectory in the attrac-
tor are as follows: Λ1 � 0.00063, Λ2 � −0.00003,
Λ3 � −0.00492, which gives Λ1 + Λ2 > 0 and hints
the pseudohyperbolicity.
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attractors by homoclinic tangencies,” Ergod. Th. Dyn.
Syst. 15, 1223–1229.

Vitolo, R. [2003] “Bifurcations of attractors in 3D diffeo-
morphisms: A study in experimental mathematics,”
Doctoral thesis, University of Groningen Press.

Williams, R. F. [1977] “The structure of Lorenz attrac-
tors,” Lect. Notes Math. 615, 94–112.

1440005-25

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

4.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
08

/3
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.


	1 Shilnikov Chaos in Flows
	2 Shilnikov Scenario for Maps
	3 Lorenz-Like Scenario for Maps
	3.1 Quasiattractors and true strange attractors. Pseudohyperbolicity
	3.2 Discrete attractors of ``Lorenz-like'' and ``figure-eight'' shapes

	4 Numerical Experiments with Hénon-Like Maps
	5 Discrete Lorenz-Like and Figure-Eight Attractors in Models of Nonholonomic Mechanics
	5.1 Discrete Lorenz attractors in a Celtic stone dynamics
	5.2 Figure-eight attractor in the dynamics of the unbalanced ball


