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Abstract—In this paper, we present some results on chaotic dynamics in the Suslov problem
which describe the motion of a heavy rigid body with a fixed point, subject to a nonholonomic
constraint, which is expressed by the condition that the projection of angular velocity onto
the body-fixed axis is equal to zero. Depending on the system parameters, we find cases
of regular (in particular, integrable) behavior and detect various attracting sets (including
strange attractors) that are typical of dissipative systems. We construct a chart of regimes with
regions characterizing chaotic and regular regimes depending on the degree of conservativeness.
We examine in detail the effect of reversal, which was observed previously in the motion of
rattlebacks.
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1. INTRODUCTION

We note that the recently increased interest in problems of nonholonomic mechanics is due, first,
to the development of new methods of numerical analysis and, second, to a great importance of
such problems for applications in mobile robotics.

For more on the stages of historical development of nonholonomic mechanics see, for example, [1].
Here we would only like to note that systems of nonholonomic mechanics exhibit a greater variety
of dynamical behaviors than Hamiltonian systems [2]. This variety of behaviors stems, on the one
hand, from the presence (or absence) of various tensor invariants in the system (such as first
integrals, invariant measure, and Poisson structure) and, on the other hand, from the reversibility
of the system and the number and type of involutions.

As an example of the variety of behaviors in nonholonomic systems we consider two particularly
interesting problems which are fundamentally different from a dynamical point of view: the
Chaplygin ball rolling problem [3] and the problem of motion of a rattleback [4, 5]. The former is
described by an integrable system, while the latter is nonintegrable and, moreover, exhibits strange
attractors [6, 7].

In this paper we consider the nonholonomic Suslov problem describing the motion of a heavy
rigid body with a fixed point, subject to a nonholonomic constraint, which is expressed by the
condition that the projection of angular velocity onto the body-fixed axis is equal to zero. For
convenience, we call such a body the Suslov top.

In the problem considered here we find integrable cases and cases of existence of an invariant
measure. The inertial motion of a rigid body was studied by Suslov [8] and Vagner [9] and in more
recent works [10-12], from which it is known that under certain restrictions to the moments of
inertia of the body the system possesses an invariant measure with constant density and, in the
general case, a measure with singular density (i.e., having singularities at certain points of phase
space).

In the present paper we show that in the general case (in a gravitational field) the Suslov problem
does not possess an invariant measure. In this case, in the phase space of the system (depending on
parameters) there can exist different limiting regimes ranging from regular attractors (which are
not always expressed in terms of quadratures) to strange attractors.

In Section 2 we present equations of motion for the Suslov top and find first integrals. In Section 3
we consider various particular cases in which the system possesses additional first integrals and an
invariant measure. In Section 4 we describe the procedure of constructing a Poincaré map for
numerical analysis of the system and present a complete list of involutions in the system.

Section 5 contains results on the “regular” dynamics of the Suslov top which are related to the
existence of stable and unstable (due to reversibility) equilibria in the system, to which in absolute
space there correspond rotations of the Suslov top about the vertical axis. Owing to the presence of
stable and unstable equilibria the top can execute a reversal. We recall that the reversal of a rigid
body is understood to mean a change in the direction of the body’s rotation when the trajectories
pass from a neighborhood of an unstable equilibrium to a stable one. The phenomenon of reversal
was first discovered in rattleback dynamics [4, 5]. Quite recently the reversal has been detected in
the nonholonomic model describing the motion of the Chaplygin top (a dynamically asymmetric
ball with a displaced center of mass [13]). In Section 5.3 we show that for the Suslov top the
phenomenon of reversal can be of two types: like that of a rattleback, when the body reverses the
direction of rotation about the vertical axis, or like that of the Thompson top [14] (or a dynamically
asymmetric ellipsoid of revolution [15]), when the axis of rotation of the body turns over. It can
be said that one of the results of this paper is the observation that reversal is a fairly universal
property of nonholonomic systems (see also [16]).

Section 6 presents results on chaotic dynamics, which have been obtained by analyzing the charts
of Lyapunov exponents, and introduces numerical criteria for the classification of chaotic dynamics.
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This criterion made it possible to show that in addition to simple attractors and repellers (by virtue
of reversibility) and complex strange attractors, the system has zones in which due to reversibility
the behavior of the system is close to conservative (more detailed analyses of such zones using the
construction of involutive networks were carried out previously in [17, 31]). In the conclusion of
Section 6 we construct a chart of Lyapunov exponents, when the (two-dimensional) Poincaré map
possesses no involutions, describe equilibrium bifurcations of the system and show that the system
can have strange attractors of Feigenbaum type [37].

In Section 7 we consider the Suslov problem in the case of an inhomogeneous constraint. As a
rule, in this case there is no energy integral. We present a new case of integrability (the generalizing
Kozlov case for a homogeneous constraint) and show that in the general case the problem reduces
to the investigation of an (essentially) three-dimensional Poincaré map (i.e., when two additional
integrals are absent).

The dynamics have been explored using the software package “Computer dynamics: Chaos”,
which was developed at the Institute of Computer Science of the Udmurt State University and
which allows one to construct charts of regimes and charts of Lyapunov exponents, to investigate
bifurcations of fixed points and to visualize the motion of the body. Highly efficient numerical
experiments were conducted using the software package “Computer Dynamics: Chaos” by means
of a computational cluster of the laboratory LATNA of the National Research University Higher
School of Economics.

2. EQUATIONS OF MOTION

Consider the motion of a heavy rigid body with a fixed point in the presence of the nonholonomic
constraint

(w,e) =0, (2.1)

where w is the angular velocity of the body and e is the unit vector fixed in the body.

The constraint (2.1) was introduced by G.K.Suslov in [8, p.593]. The realization of the
constraint (2.1) by means of wheels with sharp edges rolling over a fixed sphere was proposed
by V. Vagner [9] (see Fig. 1). The sharp edges of the wheels prevent the wheels from sliding in the
direction perpendicular to their plane.

Fig. 1. Realization of the Suslov problem.

Choose two coordinate systems:

— an inertial (fixed) coordinate system Oxyz;

— a noninertial (moving) coordinate system Oxjxoxs rigidly attached to the rigid body in
such a way that Ozs|le and the axes Ox; and Oz are directed so that one of the components
of the tensor of inertia of the body vanishes: 15 = 0.
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To parameterize the configuration space, we choose a matrix of the direction cosines Q € SO(3)
the columns of which contain the unit vectors a, B and ~ of the fixed axes Oz, Oy and Oz projected
onto the axes of the moving coordinate system Oxqzoxs

ar Bf1om
Q - a2 ﬁ2 72 € SO (3) .
as B3 73

In the moving coordinate system Ox1zoxs the constraint equation (2.1) and the tensor of inertia
I of the rigid body have the form

(2.2)

Iig Iz I33

Let ¢ = (c1,c2,c3) be the vector of displacement of the center of mass of the body relative to
the fixed point O and assume that the entire system is in a gravitational field with the potential
U= (bv 7)7 b= —mgc,

where m is the mass of the rigid body and g is the free fall acceleration.
The equations of motion for w in the moving coordinate system Ozjzozs have the form

Iw:waw+)\e+7><8—U,
oy

Oy
(e,I-1e) ’

(Iw X Wy X a—U,I_1e>
A=

where e = (0,0,1).
Adding to the system (2.3) the kinematic Poisson equations governing the evolution of the unit
vectors «, 3, and ~:

d=axw, B=0Bxw, Y=7Xxuw, (2.4)

we obtain a complete system governing the motion of the rigid body.
In Egs. (2.3) and (2.4), a closed system for the variables (w1, w2, 71, 72,73) decouples. In view of
the constraint (2.2) this system can be represented as

I161 = —wa(I13wr + Tazws) + b3ya — bays,

Inowy = wi(L13w1 + Ia3wa) + biys — b3v1,

1= —3w2, (25)
Y2 = Y3wi,

Y3 = Y1w2 — Y2wW1.

The system (2.5) possesses an energy integral and a geometric integral:

1
E= §(Inw% + Ipw3) + (b,y), Fi=~*=1. (2.6)

Thus, on the fixed level set of the energy integral E' = h and F} = 1 the system (2.5) defines the
flow on the three-dimensional manifold M3:

Mj = {(w1,w2,71,72,73), | E=h, Fy =1},
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DYNAMICS OF THE SUSLOV PROBLEM IN A GRAVITATIONAL FIELD 609
for it to be integrable by the Euler —Jacobi theorem [19], an additional first integral F, and an
invariant measure are necessary.

In order to reconstruct the motion of the rigid body in the fixed coordinate system Oxyz from
the known solutions w(t) and () of (2.5), we have to define e and 3 from the system (2.4), which
reduces to an equation for the precession angle 1, i.e., to the quadrature

w1(t)71(t) + wa(t)y2(t)
Vi(t) +5(t)

Therefore, the properties of the resulting system (2.5) determine in many respects the properties
of the dynamics of the entire system.

b= (2.7)

3. FIRST INTEGRALS AND INVARIANT MEASURE

Depending on the type of the tensor of inertia and the displacement of the center of mass of
the rigid body, the system (2.5) can possess an additional first integral and a (possibly singular)
invariant measure. In this section we shall consider the following particular cases:

— a balanced rigid body (b = 0) for which I%; + I35 # 0;

— an unbalanced rigid body (b # 0) in which e is directed along one of the principal axes of
inertia of the body: I13 = Is3 = 0;

— an unbalanced rigid body (b # 0) for which 75 + I2; # 0.

3.1. A Balanced Rigid Body (b = 0)

In the system (2.5) the equations for the angular velocities w; and we decouple. The phase
portrait on the fixed level set of the energy integral £ = h is shown in Fig. 2, in which the straight
line I13wy + Iogwe = 0 is entirely filled with fixed points.

On each level set of the energy integral there are two (isolated) fixed points, one of them is
asymptotically stable and the other is asymptotically unstable (see, e.g., [10]).

A w2
=h

1130.)1 +1 23Wa = 0

Fig. 2. A typical phase portrait of the system (2.5).
Due to asymptotic behavior the system (2.5) possesses in this case an invariant measure with
singular density [10]
p = (Iizwy + Tozws) ™t
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Explicitly integrating, we find
wol22 2113V Th1I2e¥0t & 11 Io3(1 — e*0t)

t =
WI( ) 1111223 + 1221123 1+ e2wot )
w (t) = C()(]Ill 2123\/EGWOt :l: _[22_[13(]_ — 62W0t) (3 1)
? 111]223 + 1221123 1 + e2wot ) .
I} I3wi

IR+ Il

For the known w;(t) and wa(t) the unit vector - is defined according to (2.5) by a linear
nonautonomous system of equations, which by a complex change of variables reduces to the Riccati
equation (see, e.g., [9]). However, in the general case its solution bifurcates on the complex plane
of time [20] and hence is not represented in quadratures.

In [10] it is noted that under the following restrictions on the moments of inertia:
0. Iy = Iyt 2y _ 3.2
Ii3=0, Ill—IQQ—i—I k“, where k=2n+1, neZ ()
22
the system (2.5) admits the additional integral F» [10]

Fy = ffk)(whm)’h + fQ(k)(wlaw2)72 + f:)fk)(whm)’m,

where the coefficients fl(k), 2(k) and fék) are polynomials of odd degree k in the velocities wy and ws.

For example, for £k = 1 we obtain

_[2
7= <I22 + i) i, f3) = Tnwa, fYV = Ingws.

An explicit solution of «(¢) in this case was obtained in [11].

Let us describe the motion of the rigid body in absolute space, i.e., in the fixed coordinate system
Oxyz. The fixed points of the system (2.5) in Ozyz correspond to steady rotations about w. All the
other motions of the rigid body are transitions from one unstable steady rotation to another stable
one. The connection of such an asymptotic problem with the phenomenon of reversal is shown
in [21], where analogous effects in other nonholonomic problems are discussed.

In this case the axis of rotation rotates through some angle A®, which turns out to be
independent of energy and for I13 = 0 is defined by [11]:

Tk
cos (?) _ M k2 = %(111 — In). (3.3)
cosh (%ﬁ) 23

Thus, for odd k, i.e., when the above-mentioned integral exists, the axis of rotation reverses
direction: A® = 4.

3.2. An Unbalanced Heavy Rigid Body (b # 0)

Suppose that the center of mass of the rigid body does not coincide with the geometrical center
of the shell (i.e., b # 0). In this case, the system (2.5) can be called the Suslov top (by analogy with
the Lagrange top).

As shown in [12], a necessary and sufficient condition for the existence of an invariant measure

is 17, + I3, = 0. Consider the conditions for the existence of an additional integral in the presence
and in the absence of an invariant measure.

Case I3 = I3 = 0. The system (2.5) preserves a standard invariant measure (p = const), and
the additional integral F5 has been found in two cases:

— the Kharlamova case (bg = 0) [22] and Fy = I11b1wy + Iaobows;
— the Kozlov case (by = by = 0, Iyo = I11) [12] and F5 = w1y1 + wave.
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In [23] it was proved that if the center of mass is displaced only along Oxs (i.e., by = by = 0,
bs # 0), an additional meromorphic integral exists only for Iso = I17. The absence of an additional
meromorphic integral under more general restrictions on b was proved in [24, 25]).

Remark. The Suslov problem with I;3 = 0 and Is3 = 0, but in different integrable potential fields

U = U(v1,72) possesses unusual topological properties, which are described in [10, 26-28], and the
two-dimensional integral manifolds can have genus g > 2, i.e., they are no tori. In this case the

equations of motion can be represented in Hamiltonian form, after rescaling time as dt = 75 Ydr,
which is undefined for 3 = 0.

Case I%; + IZ; # 0. Here we present a new case in which there exists the additional integral Fy.
In this case the system is nonintegrable by the Euler — Jacobi theorem, but its dynamics are regular.
If the components of the tensor of inertia and the displacement of the center of mass satisfy the
relations
Li3 =0, I3 — In(Iin — Ix) =0,
b1 =0, Ia2by + I23b3 = 0,
then the system (2.5) possesses the additional integral

Fy = (I3, + I53)nwi + T22(T2272 + Tozys)wa.
We note that the family (3.4) is simultaneously a generalization of the family (3.2) for £k =1 and
of the Kozlov case.

Thus, for (3.4) the system (2.5) defines the flow without a smooth invariant measure on some
two-dimensional manifold

Mi = {(w1,w2,71,72,78) | E=h, FL =1, F = f}.

(3.4)

Remark. Flows on the two-dimensional manifold without a smooth invariant measure were also
found in other nonholonomic systems (see, e.g., [29, 30]).

The question of the topological type of /\/l,% 7 and the structure of the bundle defined by the
integrals H, F and F5 remains open.

4. THE POINCARE MAP AND INVOLUTIONS
In the general case, Eqgs. (2.5) define the flow F on the three-dimensional manifold

M:fgl = {(w17w2771772773) ‘ E = h7 Fl = 1}

To parameterize this flow, we shall use the variables w1, v, and 2 by expressing ws and 3 in terms
of the integrals (2.6):

(d)h’ylu;yQ) = ‘F(whrylaf}?)l)'
Choosing the plane 7, = const as the secant of the three-dimensional flow F, we obtain a two-
dimensional Poincaré map?

(32,@1) = P(y2,w1)- (4.1)

Since the variables 3 and wsy are defined in terms of the integrals repeatedly, the resulting map
is many-leaved (the choice of the signs 3 and wy defines a specific leaf). For definiteness, in what
follows we shall choose a leaf corresponding to positive values of the variable wo.

On the constructed two-dimensional Poincaré map P, the fixed points correspond to periodic
orbits (cycles) in the initial system (2.5).

D1In this case wy and s are easily expressed in terms of the energy and geometric integrals. Since the variables w;
and ws appear in Egs. (2.5) equivalently, we can write in a similar way the three-dimensional flow in the variables
(w2,71,72)-

2 For more on the procedure of constructing Poincaré maps for various problems of rigid body dynamics, see the
book [32].
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4.1. Reversibility and Involutions

The studies [13, 17, 31] show that the presence of reversibility and the number of involutions
in the system considerably influence the type and complexity of the dynamics of nonholonomic
systems. The papers [17, 31] are concerned with the motion of rigid bodies of different forms
moving on the surface without slipping and spinning. In these papers it is shown that, depending
on the geometrical and dynamical properties of the body, the system can have different numbers of
involutions, which ultimately determines the type of chaotic dynamics in the system. The results
of investigation of the Chaplygin top (a dynamically asymmetric ball with a displaced center of
mass) are presented in [13]. In the case of an arbitrary displacement of the center of mass of this
top the system is reversible under the only involution, and the top itself can execute a reversal
(like a rattleback). Moreover, a strange attractor of figure-of-eight type was found in this case. The
papers [6, 7] are concerned with the motion of a rattleback. In these papers it is also noted that
the rattleback dynamics is also connected with involutions.

We now turn to analysis of reversibility in the system (2.5). In the general case (with any
parameters) the system is reversible only under one involution

t — —t. (4.2)

Remark. We recall that a system is said to be reversible under involution R if this system
is invariant under R and the time reversal ¢ — —t, and the transformation Ro R is an identity
transformation.

Ry:wi — —wi, wy— —wsg,

Due to this involution the phase portrait of the system (2.5) possesses the following properties:

e For each trajectory F(vy1,72,w1) there exists a symmetric (relative to Fiz(Rp) = {w1 = we =
0}) trajectory F~1(Ro(y1,72,w1)) which is in involution with the initial one.

e If the set A is an attractor, then the set Rq(A) is attracting for the flow in reverse time F 1,
i.e., it is a repeller.

In Section 5 it will be shown that the properties described above give rise to a reversal in the
system (2.5) and that this reversal can be of the same type as for rattlebacks.

Consider the Suslov top whose center of mass is displaced only along the axis Ouxs, i.e.,
b = (0,0,b3). In this case, depending on the tensor of inertia I, additional involutions may appear
in the system (2.5). A complete list of these involutions is presented in the table below:

Table 1. Additional involutions of the system (2.5) for b = (0,0, bs).

Ii3=0,I3=0 | I1z3=0,I3 #0 | I13#0, Is3 =0 | I13#0, Io3 #0
Ri: wi — —wi1, 1 — —71, + + - -
t— —t
Ry: wy — —waz, 72 — —72, + - + B
t— —t

In order to carry over the above-mentioned involutions to the Poincaré map (4.1), we have to
define as a secant a manifold that is invariant under an involution. Therefore, the most suitable
secant for the system (2.5) is the hyperplane ;3 = 0. We note that on the Poincaré map (4.1) we
work with a leaf that corresponds to a specific positive value of the variable ws, and hence some
involutions (for example, Ry and R2) cannot be carried over.

Thus, under the choice of the secant v, = 0 and the additional condition I73 = 0 the constructed
Poincaré map (4.1) can possess the only involution

Wl W, (4.3)
whose set of fixed points forms the straight line
Fiz(r1) = {w; = 0}.
REGULAR AND CHAOTIC DYNAMICS Vol. 20 No. 5 2015
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In Section 6 we will need the straight line Fiz(r;) for the investigation and classification
of chaotic dynamics. For convenience, we introduce the following definitions. We use the term
reversible attractor for a limiting set formed by iterations (on the Poincaré map) of the line wy = 0
in direct time and the term reversible repeller for a limiting set consisting of iterations of this
line in reverse time. By the Poincaré reversibility theorem [34], in the case of existence of a
smooth invariant measure in the system, the reversible attractor and the reversible repeller are
undistinguishable. Otherwise these sets are distinguishable, but symmetric to each other relative
to Fiz(r1) = {w; = 0}. In Section 6 we shall use the degree of such distinguishability for the
classification of chaotic regimes.

Figure 3 shows phase portraits of the system (2.5) with different parameters. For the Suslov top
for which I;3 = 0, the Poincaré map is involutive relative to the straight line w; = 0 (see Fig. 3a).

In the general case, the Poincaré map (4.1) admits no involutions and exhibits visible crowdings
of points (practically black regions) corresponding to simple attractors, which are fixed and periodic
points (see Fig. 3b). As is well known, the existence of any attractors is an obstacle to the existence

of a smooth invariant measure. Moreover, the presence of a chaotic layer is indicative of the absence
of the additional first integral F.

10

-1 -05 a 05

a) 11320 b) 113:0.1

Fig. 3. Phase portrait on the Poincaré map (4.1). All parameters, except for I3, are chosen as follows:
E=50,I1 =4,1Is = 3,123 = 0,b = (0,0,100). a) Due to the presence of the involution r; the phase portrait
on the Poincaré map looks symmetric relative to the horizontal axis. b) When I3 # 0, the involution 74
disappears, and the phase portrait on the Poincaré map becomes nonsymmetric. Moreover, on the Poincaré
map one can see crowdings of trajectories near asymptotically stable points of different periods.

5. REVERSAL AND FIXED POINTS

In this section we present results on the equilibria of the system (2.5) for an unbalanced Suslov
top (b # 0) whose mass distribution is given by the nondiagonal tensor of inertia (I% + I # 0).

5.1. Fixed Points of the Reduced System

On the fixed level set of the geometrical integral (Fy = 1), for b# 0 and I + I35 # 0 the
system (2.6) exhibits three families of equilibrium points:

1. Pair of isolated equilibrium points

_ _ _ o bl . b3 . b3
0= o =0 =0 =t = s =

REGULAR AND CHAOTIC DYNAMICS Vol. 20 No. 5 2015
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2. One-parameter family of equilibrium points of the form:
: bs bs :
QQZ Wi = S Z,wQZCOSQO Z,’Yl:SlngO,’)/QZCOSgO,’Yg:O N
3. One-parameter family of equilibrium points of the form:

) b3 b3 )
Q3 =L w; =—singp TWr = —cos Z,’yl:SlngO,’yQ:COSgO,’yg:O .

The variable A and the angle ¢ (depending on the sign of parameter b3) for the families Q9 and Q3
are expressed as follows:
A = I13sin ¢ + I3 cos ¢,
v e (p,m+@)if by >0,
pe(m+@,2r+@)if by <0,

_ I3
= —arctan—.
I3

A pair of isolated equilibrium points of the family € lies on the fixed level set of the energy
integral h = +b3 and has a characteristic polynomial of the form

b+ b3 b3+ b3 b3
P\ =\ —A4i(1 3 4 2 3))\2— 3 > 5.1
» ( IoVb2  I59Vb2 111159 (5-1)

We note that at isolated equilibrium points the energy integral £/ = h and the geometric integral
Fy =1 are dependent, therefore the characteristic polynomial has only one zero root. Analysis of
the other roots of Eq. (5.1) shows that one of the equilibrium points is a center and the other is a
conservative saddle.

Consider in more detail the second and the third families of fixed points. Substituting the
equilibrium from Qo (or Q3) into (2.6), we obtain an equation relating ¢ to the level set of the
energy integral £ = h:

b
h(p) = ﬁ([u sin? ¢ + Iy cos? ©) + by sin @ + bs cos . (5.2)

A typical dependence h(yp) in the case b3 > 0 is shown in Fig. 4.

AR

P 0 @1 T+ P

Fig. 4. Dependence h(yp).
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Thus, at small values of the parameter of energy h < h; the system (2.5) exhibits no equilibria
from the families €29 and 23; when h = hq, 2 equilibria appear, and when h > hq, there are 4 of
them.

The characteristic equation for the second family 25 of equilibria of the linearized system is
written as

P(A\) = N (1A% + paA? + p3) + pa),

p1 = —IilnA, pr = (Ii1lagsing — Il cos )/ Abs,
p3 = A(I11b1 sin @ + Iaoby cos ) — bs(I11120 + 2A2), (5.3)

p4 = 2A+/ Abs(by cos p — ba sin p)
+ (Ill — IQQ)\/ Abs sin ¢ cos ¢ + / Abg(IHIQg sin ¢ — Isa113 cos QO)

Remark. For [%; + I3; # 0 the trace of the linearization matrix is equal to —g—f = 0, which

is indicative of the absence of a smooth invariant measure in the system (2.6) in the case
considered [35].

Remark. We note that the third family of equilibrium points is in involution Ry with the
second family. Hence, if the equilibrium point O; € {2y possesses the eigenvalues Ay, ..., A5, then
O2 = Ry(O1) belongs to the family Q3 and has the eigenvalues —\q,..., —\5. Thus, in what follows
we shall investigate the equilibria belonging only to the family 2.

In the general case, on each level set of the energy integral E > hy the family (2o contains 2
equilibrium points, of which each has 3 nonzero eigenvalues (/\gl), )\gz), )\:(;)),i =1,2.
We note that the coefficients of the characteristic equation (5.3) depend not only on the system

parameters, but also on the angle ¢, which in its turn is expressed in terms of the energy integral
from Eq. (5.2). Thus, it is difficult to perform stability analysis of the equilibria analytically.

For a numerical stability analysis of equilibrium points belonging to the family 29 we construct
a diagram of stability of equilibrium points on the plane of parameters (I3, E') by fixing the other
parameters by the following values:

L1 =4I, =2,113=1.5,b; = 0,by = 0,b3 = 100. (5.4)
For the above parameters the characteristic equation always possesses one real root (for definite-

ness A1) and a pair of complex conjugate roots.

To construct the stability diagram, we divide the parameter plane (I23, ) into 200 x 200 points,
and color each of the points, depending on the number of equilibrium points and their types, in a
particular color in accordance with the following rules:

e there exist no equilibrium points — gray;

e 2 equilibri ints for which A{" Y @ ?)) <0 green;
quilibrium points for which A;” > 0,Re(Ay3) < 0 and A;” < 0,Re(Ay3) < 0 — green;

e 2 equilibrium points for which )\(11) < O,Re()\gg))) > 0 and )\(12) >0, Re()\(zg) > 0 — blue.

We comment on the stability diagram plotted in Fig. 5. For small energies (E < hy) there are
no equilibrium points in the system. When a critical level of energy E = h; is attained, a saddle-
node bifurcation occurs in the system, resulting in the birth of a saddle-node equilibrium, which
breaks up, with further increase of energy, into a stable node ()\gl) <0, Re()\gg) < 0) and a saddle
(A > 0,Re(AS)) < 0).

Further, as the energy increases to the value E = hs, the saddle equilibrium undergoes an An-
dronov — Hopf bifurcation and (when £ > hg) becomes completely unstable ()\52) > 0, Re()\%) > 0).

We note that the Andronov—Hopf bifurcation can be of two types in this case (for a detailed
description see Section 6).
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E
150
Andronov-Hopf
bifurcation
100- /
507 Saddle-node
bifurcation
I3
0 T T
0 1 2 3

A <0, Re(AS)>0, A >0, Re(AS))>0;

A >0, Re(AS2) <0, A <0, Re(AS))<0;
Fig. 5. Diagram showing the stability of equilibrium points from the family Qs for the parameters (5.4).

5.2. The Motion of a Rigid Body in Absolute Space at Fixed Points

Consider the absolute motions of the Suslov top on each of the three families of equilibrium
points.

At isolated equilibrium points of the family ; the rigid body remains fixed in the coordinate
system Oxyz. For an equilibrium point of saddle type, the center of mass of the Suslov top lies on
the axis Oz below the fixed point, and for an equilibrium point of center type it lies above the fixed
point.

Fig. 6. The motion of a rigid body at equilibrium points belonging to the families Q2 and Q3 of the system (2.5)

At equilibrium points belonging to the families €29 and 3, the vectors w and ~ are collinear.
Therefore, the Suslov top rotates with constant velocity about the axis Oz. Since 3 = 0 on the
families under consideration, the axis Oxg is always in the plane Oxy, and the parameter ¢ defines
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the angle between Oz and Ox2. The equation of precession (2.7) takes the form

- bs
bey%

When the Suslov top rotates, the point of contact of the wheels with the (fixed) sphere moves in
a circle with the center (0,0, £Rssin(p + ©)), where Rg is the radius of the sphere and © is the
angle of rotation of the axis connecting the wheels relative to the axis Oz (see Fig. 6).

Remark. We recall that the orientation of the axes Ox; and Oxy and hence the angle © have
been chosen in such a way that one of the components of the tensor of inertia (I12) vanishes.

5.3. Reversal

Depending on the number of stable and unstable equilibria in the system (2.5), various types of
motions of the Suslov top in absolute space are possible.

For the choice of parameters corresponding to the narrow region (colored green) in Fig. 5, the
system has, along with a pair of saddle equlibria, a stable O and a completely unstable O~ equi-
librium, which are in involution Ry, i.e., O" = Ro(O™). Trajectories started from a neighborhood of
the completely unstable equilibrium O~ can pass to a neighborhood of the stable equilibrium O™ .
As a result of this transition, the axis of rotation of the top (Ox3) turns over (see Fig. 7). In absolute
space, this process corresponds to a reversal of the direction of the top’s rotation about the fixed
vertical axis. As mentioned previously, this type of reversal was first discovered in the course of
investigating the rattleback [4, 5].

’ ) 10 ) %0 10 ’ ) 10 ) %0 10
a) w1 (t) b) wg(t)
] MY s IR
] v i -] ‘J
B ) 1o zo %o 40 B ) 1o zo %o 40
c) n(t) d) v2(t)

Fig. 7. Time dependence of the phase variables at the start of the trajectory from the neighborhood of an
unstable equilibrium for £ = 100, 1; = 4,12 = 2, [13 = 1.5, 123 = 0.75,b1 = 0,b2 = 0, b3 = 100.

The large region colored blue in Fig. 5 corresponds to parameter values at which the system (2.5)
has a pair of stable equilibria and a pair of completely unstable equilibria. As numerical experiments

show, the trajectories started near one of the unstable equilibria (5*) can pass in this case to a

neighborhood of the stable equilibrium (6*), which (as opposed to the previous case) is not in
involution Ry with the initial one. During such a transition the axis of rotation Ox3 rotates through

angle Ay (see Fig. 8):
o (4) 5 (=)
Ay = arctan % — arctan % .
V2 72

In this case, the body changes orientation in absolute space. As a result, the angle between the
axes Oxo and Oz changes by Ap.
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Fig. 8. Time dependence of the phase variables at the start of the trajectory from the neighborhood of an
unstable equilibrium for £ =120, [; =4, 1o = 2, [13 = 1.5, [s53 = 0.75,b1 = 0, b2 = 0, b3 = 100.

It is evident from Fig. 4 that Ap — +7 as £ — oo. That is, at very large energies the Suslov
top started in a neighborhood of an unstable equilibrium turns over and continues a stable rotation
about the overturned axis. Previously such an effect was observed for the Thompson top (tippe-
top) [14] in a natural experiment and in the nonholonomic model of rolling of a dynamically
asymmetric ellipsoid of revolution [15].

6. CHAOTIC DYNAMICS

In this section we present numerical results on the chaotic dynamics in the nonholonomic Suslov
model and show that the system under consideration exhibits complex chaotic behavior whose type
essentially depends on the system parameters and hence on the number of involutions.

We shall classify various limiting (including chaotic) regimes by analyzing the charts of Lyapunov
exponents on the parameter plane (I3, E') by fixing the other system parameters.

We describe the scheme of constructing the charts of Lyapunov exponents®. We divide the
parameter plane ([23, ') into 400 x 400 nodes and start from each node a trajectory on the Poincaré
map (4.1) with some initial conditions (y2,w1). To preclude a transient process, the system was
integrated for T'=4-10* time units, and then the Lyapunov exponents were estimated on the
interval 7' = 10* by the Benettin method [36]. Depending on the values of A1, Ay and A3, we color
the corresponding node in the chart in a particular color.

We note that the system (2.5) possesses three essential (nonzero) exponents A\; > A2 > A3 > 0.
To exclude from consideration two zero exponents, which correspond to the integrals (2.6), we apply
the procedure of normalization of phase variables to the level sets of the integrals [37].

Further we shall consider 2 fundamentally different cases:

e [13 =0 — the system (2.5) is reversible under two involutions: Ry and Ry;

e [;3 # 0 — the system (2.5) is reversible under the only involution Ry.

3)For more on the methods of constructing the charts of Lyapunov exponents, see, for example, in [13, 37|, where
such charts are constructed for nonholonomic systems describing the rolling motion of a rattleback and the
Chaplygin top, respectively. However, in this paper we have slightly modified the procedure of classification of
chaotic regimes.
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6.1. Chaotic Dynamics for I13 =0

In the case considered, the Poincaré map (4.1) is symmetric relative to the straight line
Fiz(Ry) = {w; = 0}. To construct a chart of Lyapunov exponents, we fix the system parameters
by the following values:

Li3=0, Iy =3,1I=4,b; =0,by=0,bs = 100, (6.1)

and as the initial point for each node of the chart we use a point with coordinates (72, w;) =
(0.9,0.1). We give some explanations on the regimes depicted in the chart (see Fig. 9). Among the
regular regimes (A; < 0) in the chart of Lyapunov exponents we distinguish:

e )\; < 0 — equilibrium;
e M =0 A+ X2+ X3 <0 — cycle (a periodic or fixed point on the map (4.1));

e A\ =0, A+ A2+ A3 =0 — elliptic orbit (invariant curves around an elliptic point or the
elliptic point itself).

In addition to regular limiting regimes in the chart of Lyapunov exponents, we shall also classify
various chaotic (A > 0) regimes. We note that the case A\; >0, A; + A2 + A3 = 0 corresponds
to conservative chaos (see Fig. 9 on the left), in which the phase volume (invariant measure) is
conserved. In this case the reversible attractor and the reversible repeller are indistinguishable.

<0

. A =04+4,+4 <0

A =04 +4,+4=0
B =04 +4 + 4 [£0.0001

2, >0,00001 4 4 +4, +4,|<0.01
B0l 4+4,+4, 001

110

100

90

80

O Tos 0s 578 bsazs 583

Fig. 9. Chart of Lyapunov exponents and the typical phase portraits for different values of the parameters
I3 and E. The other parameters have been chosen according to (6.1).

If the system (2.5) does not possess a smooth invariant measure, then the reversible attractor
and the reversible repeller become distinguishable. Following the paper [38], which has opened
new prospects for the study of reversible systems, we shall characterize the degree of such
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distinguishability by time-average divergence, i.e., by the sum of Lyapunov exponents (coexistence
of dissipative and conservative effects in them is systematically discussed in the review [39]).
Depending on this value, we classify the chaotic regimes as follows:

e )\ >0, |A+ A2+ A3 <0.0001. The case considered is close to a conservative one. The
reversible attractor and the reversible repeller are practically indistinguishable (see Fig. 10).

e )\ >0, 0.0001 < |A;+ A2+ A3] <0.01. In this case the reversible attractor and the re-
versible repeller, although they have a large common part, are distinguishable nevertheless
(see Fig. 11). As shown in [17, 31] by constructing involutive networks, along with elliptic
points (existing due to reversibility), the stochastic layer also has log-period foci whose
boundary of attraction has a very small neighborhood. In this case, the behavior of the
system may be said to be pseudoconservative.

e A\ >0, 0.01 <|A+ A2+ Ag|. The reversible attractor strongly differs from the reversible
repeller, although it is symmetric to it (see Fig. 12). In this case, chaotic dynamics are
associated with strange attractors.

1 -0.3

0
b)
Fig. 10. Phase portraits on the Poincaré map for the parameters (6.1), I3 = 0.015, F = 115.125 (point A in

the chart of Lyapunov exponents (see Fig. 9)). (a) the reversible attractor and (b) the reversible repeller are
practically indistinguishable.

5 -0.5 05
a) b)
Fig. 11. Phase portraits on the Poincaré map for the parameters (6.1), I23 = 1.5, E = 100 (point B in the

chart of Lyapunov exponents (see Fig. 9)). The reversible attractor and the reversible repeller have a large
common part, but are distinguishable nevertheless.
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10
10

10
10

a) strange attractor b) strange repeller

Fig. 12. The strange attractor and the strange repeller on the Poincaré map (4.1) for I»3 = 1.5895 and
E =100.

6.2. Chaotic Dynamics for I13 # 0

In this section, in constructing a chart of Lyapunov exponents, we shall use system parameters
given in accordance with (5.4), in order to compare the chart of Lyapunov exponents with the
stability diagram presented in Fig. 5. In each node of the chart, as the initial point we define a
point with coordinates (y2,w1) = (0.999,0). In the chart of Lyapunov exponents we keep to the
classification of regimes given in Section 6.1. We only emphasize that in the case at hand (since
the Poincaré map possesses no involutions) the notions reversible attractor and reversible repeller
are undefined. Now the sum of Lyapunov exponents characterizes the degree of compression of the
phase volume along the trajectory. For convenience, we present the stability diagram plotted earlier
and the chart of Lyapunov exponents in one figure (Fig. 13).

E E

150

.Al <0

W =0 At <0
M =0,A+ A+ A =0

B > 0 [\ Ao s < 0.0001
A1>0,0.0001< A+ Aa+A3]<0.01

AN\ > 0,2+ Ao + Ag| > 0.01

Andronov-Hopf bifurcation
1007

4 equilibria

507 Saddle-node bifurcation

No equilibria
I3
0 T T

0 1 2 3 0 1 2 3
a) stability diagram b) chart of Lyapunov exponents

Fig. 13. Stability diagram and the chart of Lyapunov exponents for the parameters (5.4)

Consider in more detail the parameter region (denoted by S and colored green) in the chart
presented in the figure. As is shown in Section 5, in this region the system (2.5) possesses a
pair of saddle (A" > 0,Re(A{}) > 0 and A" < 0,Re(A}Y)) > 0), stable (A < 0,Re(AS)) < 0)

and unstable ()\53) >0, Re()\gj’?))) > 0) equilibria (see Fig. 14). The lower boundary of this region is
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formed by parameters giving rise to a pair of saddle-node bifurcations in the system, and the upper
boundary is formed by parameters giving rise to a pair of Andronov— Hopf bifurcations. However,
as shown in Fig. 13b, the Andronov—Hopf bifurcations qualitatively differ for the upper part (S7)
and the lower part (S2) of the region S. In particular, in the region S; we have detected, along with
the equilibria, a stable cycle with the multipliers |p;| < 1 and |u2| < 1. On the upper boundary
of the region Sy this stable cycle merges with the saddle equilibrium (Ag4) <0, Re(/\g}%) > 0); as a

result, this equilibrium becomes stable (Ag4) <0, Re(/\g}%) < 0) (see Fig. 14 a)¥.

0 eq 0eq

Saddle-node bifurcation
Saddle-node bifurcation

a) b)

Fig. 14. Bifurcation diagrams of equilibria belonging to the families 22 and 3; a) — for the parameter region
S1, b) — for the parameter region So.

No stable cycle was observed in the region S5. However, we found a saddle cycle slightly
above the upper boundary of this region. Thus, on the upper boundary of the region Ss the
saddle cycle with the multipliers |p1| > 1, |pu2| < 1 separates from the saddle point as a result
of a subcritical Andronov—Hopf bifurcation, and the saddle point becomes completely unstable

(/\gl) > 0, Re()é%) > 0). For convenience, the bifurcations described above are presented in Fig. 14b.

Continuously varying the parameter F, we observe changes in the fixed point that corresponds
to the stable cycle detected in the region S1, we detected a sequence of period doubling bifurcations,
as a result of which a strange attractor of Feigenbaum type [18] is born from the fixed point (see
Fig. 15). The detected attractor corresponds to the following Lyapunov exponents.

A = 0.3978, Ay = —0.0002, Az= —1.9277,
and the Kaplan - Yorke dimension of the attractor [37] is

Ay
D=1+ — ~1.2063.
|A3]

YDue to involution Ry the second saddle equilibrium (A" >0, Re()\gg) < 0) undergoes an Andronov—Hopf
bifurcation of the same type. After this equilibrium merges with a completely unstable cycle, it becomes unstable

(A > 0,Re(AL) > 0).
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Fig. 15. Strange attractor of Feigenbaum type detected at the boundary of regions S; and S> for the
parameters (5.4) and I3 = 0.675, E = 102.75.

7. THE SUSLOV PROBLEM IN THE CASE OF AN INHOMOGENEOUS CONSTRAINT

Various generalizations (variations) of the Suslov problem are considered in [10, 33]. In this
section we consider the case in which at the point of contact of the wheel with the fixed spherical shell
there is a constant (time-independent) slipping s. This slipping can be interpreted as a deviation
of the wheel as described by Y. Rocard. The deviation mechanics related to a deformation of the
wheel is discussed in [41, 42].

The above condition leads to a nonholonomic constraint (inhomogeneous in velocities), which
in the moving coordinate system Oxqxox3 has the form

ws =8, §= const. (7.1)

We note that theoretical research on inhomogeneous nonholonomic constraints has been started
quite recently [29, 43-45]. Rewriting the system of Egs. (2.3) and (2.4) in view of (7.1), we obtain

equations of motion on M?® = {w1,ws,v1,72,73} in the form
Iin = —wy(Iizwy + Ipsws) + (Ir — I3)swy + Ipgs® + byya — by,
Ippty = wi(Tgwi + Toswa) — (It — Is)swi — T13s” + biys — b, (7.2)
1= —Ysw2,  J2 =8wi, Y3 = w2 — Yawi.
In the case I13 = Is3 = 0 the system (7.2) possesses a standard invariant measure (p = const).

As is well known (see [29]), nonholonomic systems with constraints inhomogeneous in velocities
are not energy-preserving. Therefore, in the general case the system (7.2) possesses only the
geometric integral

F1 = ")’2 =1.

However, there is a particular case in which it is possible to find a generalization of the energy
integral — the Jacobi integral. In [29] it is shown that under the following restrictions to the
parameters

Ly =13=0, Ipp=1I, b=0b=0 (7.3)

the system (7.2) possesses the Jacobi integral

1
H = %(w% + w3) + bss.
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We note that conditions (7.3) coincide with the Kozlov case, in which there exists an additional
integral Fy for s =0 (see Section 5). Moreover, it turns out that for s # 0 this integral admits the
immediate generalization

Fy = L1 (w11 + wavy2) + sl337s.

Thus, the system (7.2), when restricted to the parameters (7.3), is integrable by the Euler —Jacobi
theorem.

However, in the general case the system (7.2) is nonintegrable. Figure 16 shows the phase portrait
of the system (7.2) on the three-dimensional® Poincaré map. We note that the Poincaré map (see
Fig. 16) is not foliated into invariant surfaces; hence, in the general case the system (7.2) possesses
neither of two additional integrals.

wy  (1,10,10)
w2 U

(-1,10,10) w1

10

(-1,-10,10)

V2

-~ (1,10,-10)

(-1,10,-10)

10
(1-10,-10) -1 0.5 0 0.5 1

(-1,-10,-10)

Fig. 16. Poincaré map and the section formed by its intersection with the plane ws =1 for fixed I11 = 3,
122:4, ]33:5, ]13212320, b1 262:0, b3:100, s=1

Remark. If the center of mass of the rigid body is at the geometric center of the shell, i.e.,
b=0 and I% + I3; # 0, a closed subsystem governing the evolution of w; and ws decouples in
the system (7.2). This subsystem is considered in detail in [43], where cases of first integrals
transcendental in velocities have been found.
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