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We provide numerical evidence for the existence of the Lorenz and Rovella (contracting Lorenz) attractors in the
generalization of the Lorenz model proposed by Lyubimov and Zaks. The Lorenz attractor is robustly chaotic (pseudo-
hyperbolic) in contrast to the Rovella attractor which is only measure-persistent (it exists for a set of parameter values,
which is nowhere dense but has a positive Lebesgue measure). It is well known that in this model, for certain values of
parameters, there exists a homoclinic butterfly (a pair of homoclinic loops) to the symmetric saddle equilibrium, which
is neutral, i.e., its eigenvalues λ2 < λ1 < 0 < γ are such that the saddle index ν =−λ1/γ is equal to 1. The birth of the
Lorenz attractor at this codimension-two bifurcation is established by means of numerical verification of the Shilnikov
criterion. For the birth of the Rovella attractor, we propose a new criterion which is also verified numerically.

It is well-known that in the classical Lorenz and Shimizu-
Morioka models, in the regions of parameters correspond-
ing to chaotic attractors, expansion always prevails over
contraction near the saddle equilibrium. This impor-
tant property allows such attractors to be pseudohyper-
bolic, i.e., robustly chaotic in an open region of parame-
ter values. Recall that pseudohyperbolicity implies that
each orbit in the attractor has the positive maximal Lya-
punov exponent, and this property persists under small
perturbations1,2. In this paper, we consider the general-
ization of the Lorenz model proposed by Lyubimov and
Zaks3, in which the existence of Lorenz-like attractors of
two different types was shown: attractors that contain the
saddle near which expansion prevails over contraction and
attractors containing the saddle near which contraction
prevails over expansion. The latter attractors are called
contracting Lorenz attractors or Rovella attractors be-
cause their theory was developed by Rovella4. Note that
the Rovella attractors cannot be pseudohyperbolic, unlike
the Lorenz attractors. For the example of the Lyubimov-
Zaks model, we study mechanisms of the pseudohyperbol-
icity violation at the transition between the Lorenz attrac-
tor and the Rovella attractor. Concerning the Lorenz at-
tractor, we give numerical evidence of its existence in this
model. For the Rovella attractor, we provide a criterion of
its birth from a codimension-two bifurcation. This result is
similar to the well-known Shilnikov criterion5 giving effec-
tively verifiable conditions for the birth of the Lorenz at-
tractor at the codimension-two bifurcation of a symmetric
homoclinic butterfly to the neutral saddle (near which ex-
pansion is equal to contraction). Finally, by analysing the
1D factor map, we explain: (i) when only a region of the
existence of the Lorenz attractor adjoins a codimension-
2 point; (ii) when both the Lorenz attractor region and
the region of the Rovella attractor existence adjoin to this
bifurcation point; (iii) when only the Rovella attractor re-
gion adjoins to this point.

a)Electronic mail: kazakovdz@yandex.ru

I. INTRODUCTION

We study chaotic dynamics in the Lyubimov-Zaks model
ẋ = σ(y− x)+σDy(z− r)
ẏ = x(r− z)− y
ż = xy−bz

(1)

proposed in Ref. [3] as a generalization of the well-known
classical Lorenz model6. This system describes convection in
a horizontal liquid layer under the action of high-frequency
vibrations. Here b,r,σ are the Lorenz model parameters, and
D is a vibration parameter. In what follows, we fix

b = 8/3 and σ = 10

and study the dynamics of system (1) as a function of the pa-
rameters D and r. In the absence of vibration (when D = 0)
it is exactly the Lorenz system. For D 6= 0, system (1) also
exhibit chaotic attractors associated with the saddle equilib-
rium O(0,0,0) for a vast region of parameter values (yellow-
colored areas in the Lyapunov diagram, see Figure 1). De-
pending on the saddle index

ν =−λ1/γ

where λ1 < 0 < γ are the two nearest to the imaginary axis
eigenvalues of the saddle O, chaotic attractors we study in sys-
tem (1) belong to one of the two different types: Lorenz-like
– when ν ∈ (0,1) and Rovella-like – when ν > 1. Both types
of the attractors, as well as the structure of their existence re-
gions, are studied in this paper.

On the Lorenz attractors in system (1).
We give numerical evidence for the existence of the Lorenz

attractors in system (1) for an open region of parameter values.
Here under the Lorenz attractor we mean a chaotic attractor of
a three-dimensional flow whose Poincare map satisfies condi-
tions of the Afraimovich-Bykov-Shilinikov (ABS) geometric
model7,8. These conditions imply that the attractor is pseu-
dohyperbolic. The latter means that, at every point of the at-
tractor, there exist both a direction of strong contraction and a
subspace, transverse to it, in which the two-dimensional vol-
umes are expanded. The notion of pseudohyperbolicity was
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FIG. 1. Bifurcation diagram superimposed with the chart of Lyapunov exponents (see the palette in the top-right corner) on the (D,r)-parameter plane of system
(1) (here b = 8/3 and σ = 10): lPF – pitchfork bifurcation of the equilibrium O: below the codimension-2 point C this bifurcation is supercritical while above
this point it is subcritical; lAH – Andronov-Hopf bifurcations of the equilibriua O1 and O2: between the codimension-two points GH1 and GH2 (corresponding to
the generalized Andronov-Hopf bifurcation) this bifurcation is supercritical and this bifurcation is subcritical outside this segment; lSN – saddle-node bifurcation
due to which O1 merges with O3 (by the symmetry, O2 merges with O4); point BT, corresponding to a Bogdanov-Takens bifurcation, divides lSN onto two parts,
more detailed diagram near this point is presented in Fig. 2; l1 and l2 – homoclinic butterfly and doubled homoclinic butterfly bifurcations, see the phase portraits
with these homoclinics in the inserts. Point S of the intersection of l1 with the neutral saddle curve lν=1 gives the origin of the Lorenz attractor existence region
LA and the Rovella attractor existence region RA. The LA-region is bounded on the left by the curve lhet where the unstable separatrices of O asymptotically
approach the saddle limit cycles C1 and C2 (which are born above l1); the RA-region is bounded from below by the limit curve lRA. The curve lA=0 corresponds to
the tangency between the strongly-contracting and volume-expanding subspaces. System (1), for considered parameter values, has always negative divergence,
therefore, two zero Lyapunov exponents can appear only for nonhyperbolic limit cycles (or stable equilibria with double zero eigenvalue), i.e., the chart does
not contain black-colored regions, only some curves (in particular, curves p1, p2, . . . corresponding to pitchfork bifurcations with symmetric stable limit cycles
shown in Fig. 4). Two points L and R, inside the regions LA and RA, correspond to the parameter values for which we present the detailed studies of chaotic
attractors in Sections III and IV.

introduced by D. Turaev and L.P. Shilnikov1,2, for a definition
see also Refs. [9, 10] and Section III. Here we would like to
emphasize that the Lorenz attractor (as well as any other pseu-

dohyperbolic attractor) is robustly chaotic, i.e., each its orbit
has positive maximal Lyapunov exponent and this property
persists under small perturbations (changing parameters).
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We show that, in the (D,r)-parameter plane of system (1),
the region of existence of the Lorenz attractor originates from
the codimension-2 point S corresponding to the homoclinic
butterfly to the neutral saddle O, i.e., ν(O) = 1, see Fig. 1.
Note that S is the intersection point of the homoclinic butterfly
bifurcation curve l1 with the neutral saddle curve lν=1.

Let us clarify that by the homoclinic butterfly bifurcation
we mean here the simultaneous appearance of two homo-
clinic orbits (loops) to the saddle equilibrium O, when both
one-dimensional unstable separatrices Γ1 and Γ2 belong to
the two-dimensional stable invariant manifold W s(O), see the
right insert in Fig. 1. For generic three-dimensional systems,
it is a codimension-2 bifurcation. However, system (1) is sym-
metric with respect to the transformation

x→−x, y→−y, z→ z. (2)

due to which the appearance of one homoclinic loop to the
saddle O at the origin automatically implies the appearance of
the other loop, hence the homoclinic butterfly bifurcation has
codimension one here.

It is well-known (see e.g. Chapter 13 in Ref. [11]) that near
the point S the two-dimensional Poincaré map of the ABS
model can be reduced to the one-dimensional factor map

Xn+1 = (−µ +A|Xn|ν +o(|Xn|ν))sign(Xn), (3)

where the point S corresponds to µ = 0 and ν = 1. Here µ is
a separatrix splitting parameter for the symmetric butterfly, ν

is the saddle index of the equilibrium, and A is the separatrix
value. More precisely |A| can be described as the maximal ex-
pansion, to which infnitesimal two-dimensional areas can be
stretched by the system linearized along the homoclinic loop
(the sign of A determines whether the orientation of the areas
with the maximal expansion is changed with the propagation
along the loop); more details on the definition of A can be
found in Refs. [12, 13, 9].

According to the Shilnikov criterion5, when 0 < |A| < 2 at
the point S, bifurcations of the corresponding system lead to
the birth of the Lorenz attractor. By computing the separatrix
value A in system (1) we show that the Shilnikov criterion is
fulfilled, i.e., the Lorenz attractor existence region LA indeed
originates from the point S.

Let us recall that in papers by A. Shilnikov14–16, and by
A. Shilnikov, L.P. Shilnikov, and D. Turaev17, the fulfilment of
this criterion was shown numerically for the Shimizu-Morioka
model18. In Ref. [9] this fact was rigorously established by
means of computer-assisted proof methods. Here we employ
an indirect numerical method for computing the separatrix
value. We estimate it by fitting the 1D map (3) to the 1D map
generated by equations (1) near the point S, see Section III B.

On the Rovella attractor in system (1).
Note that ν(O)> 1 to the right of the curve lν=1. The corre-

sponding Rovella-like attractors populate the region RA (see
Fig. 1). Since the Rovella attractors contain the saddle O they
cannot be pseudohyperbolic unlike the Lorenz attractors.

Indeed, in the case of the Lorenz attractor, the equilibrium
O itself is pseudohyperbolic. Here, the strong contraction
takes place along the eigenvector corresponding to λ2, and

the expansion of volumes takes place along the plane Sλ1,γ

spanned by the eigenvectors corresponding to λ1 and γ (here
λ1 + γ > 0, since ν < 1). The Rovella-like attractor is imme-
diately not pseudohyperbolic, because areas in Sλ1,γ are con-
tracted (here λ1 + γ < 0, since ν > 1).

Dynamical properties of such attractors were studied in de-
tail by A. Rovella in Ref. [4] where it was proved that this
attractor is chaotic (almost all its orbits have positive maxi-
mal Lyapunov exponent) for a closed set of parameter values
having a positive Lebesgue measure, see also Refs. [19–21].
We call it the Rovella set. These results are of great interest,
because they give a new class of attractors in systems of differ-
ential equations that fit into the Benedicks-Carleson-Jacobson
theory22–24 of measure-persistent attractors.

A bifurcation scenario leading from the stable equilibrium
O to the Rovella attractor was described in Ref. [3], see also
Ref. [25]. It has been conjectured that the Rovella attractor
appears via an infinite cascade of alternating homoclinic but-
terfly and pitchfork bifurcations accumulating to some limit
curve (lRA in Fig. 1).

In Section IV, we propose a conjecture (similar to the
Shilnikov criterion) about the birth of the Rovella attractor at
the codimension-two bifurcation corresponding to the point S.
Avoiding details it can be formulated as follows:

• the Rovella set is adjacent to the point S from the side
ν > 1 whenever |A|> 1.

For the case |A|> 2, with additional restrictions on the eigen-
values of the saddle equilibrium, this statement was proven
in Ref. [26]. Our preliminary analysis shows that it is also
true when |A| > 1, the full proof of this fact will be given in
a forthcoming paper. Also note that this conjecture can be re-
formulated for the asymmetric case, when the corresponding
homoclinic bifurcation has codimension three.

According to the «P or Q conjecture» from Ref. [10], all
strange attractors can be divided into two types: pseudohy-
perbolic attractors and quasiattractors. The notion of quasiat-
tractors was introduced by Afraimovich and L.P. Shilnikov in
Ref. [27]. When the system has a quasiattractor it either con-
tains stable periodic orbits (POs) with very narrow absorbing
domains or such orbits appear under arbitrarily small pertur-
bations. Usually such stable periodic orbits are born at saddle-
node bifurcations caused by homoclinic tangencies between
invariant manifolds of saddle periodic orbits (including the
Lorenz model6 beyond the boundary of the Lorenz attractor
existence8).

In this paper we show that the Rovella attractor is a quasi-
attractor of another nature. Saddle-node bifurcations, giving
rise to the stable periodic orbits inside the RA-region, are
caused here by the codimension-two bifurcations correspond-
ing to the appearance of multi-round homoclinic butterflies
to the neutral saddle O. Here homoclinic tangencies are ab-
sent, i.e., invariant manifolds of saddle periodic orbits inter-
sect transversally. We show it by a check of the angles28,29

between strongly-contracting and central-unstable subspaces.
In Section IV B, we present a detailed two-parameter anal-

ysis of bifurcations leading to the destruction of pseudohy-
perbolicity at the transition through the neutral saddle curve
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lν=1. It is known that in the existence region of the Lorenz
attractor homoclinic bifurcations are dense8. We believe that
this density persists on the curve lν=1. The unfolding of each
homoclinic bifurcation point on this curve gives rise to the
region of stability30. Thus, the region RA contains infinitely
many periodicity windows. Passing through these windows
leads to the formation of multi-round Rovella attractors. Note
that in the RA-region periodicity windows form a dense and
open set, the complement to which (a nowhere dense closed
set) corresponds to the mentioned above measure-persistent
attractors.

On the birth of both Lorenz and Rovella attractors from
the point S.

Finally, we would like to pay attention to the structure of
the bifurcation diagram in system (1). Regions with chaotic
dynamics originate from the point S on both sides of the curve
lν=1, see Fig. 1. This characteristic feature distinguished sys-
tem (1) from other known 3D systems with the Lorenz attrac-
tors. In particular, in the Shimizu-Morioka model18, where
the Shilnikov criterion is also applicable9,16, the region with
chaotic attractors lies entirely on the side of the curve lν=1
where the saddle equilibrium has ν ∈ (0,1), see Fig. 18.

Analysing the truncated factor map (3), we show that de-
pending on the absolute value of A three cases of bifurcation
diagram near the point S are possible.

1. When 0 < |A|< 1, only a region of the existence of the
Lorenz attractor adjoins to the point S, see Fig. 16a.

2. When 1 < |A|< 2, both the Lorenz attractor region and
the region of Rovella-like attractor existence adjoin to
the point S, see Fig. 16b.

3. When |A|> 2, only the Rovella-like attractor region ad-
joins to the point S, see Fig. 16c.

The rest of the paper is organized as follows. In Section II,
we describe bifurcations in the (D,r)-parameter plane of sys-
tems (1). In Section III, we recall main ideas of the theory
of pseudohyperbolic attractors, illustrate them for the Lorenz
attractors and provide the numerical evidence that, in system
(1), the region with the Lorenz attractor is adjacent to the point
S. In fact, we show that the Shilnikov criterion is fulfilled for
this system at point S. In Section IV, we study the Rovella
attractor in system (1) and bifurcations of the destruction of
pseudohyperbolicity along the transition through the neutral
saddle curve lν=1. Also we discuss the Conjecture 1 on the
birth of the Rovella attractor at bifurcations of homoclinic but-
terflies to a neutral saddle equilibrium. Section V is devoted
to the analysis of the truncated map (3) for various values of
parameter A. Using these results we explain why both regions
with the Lorenz and Rovella attractors originate from the point
S in system (1) unlike the Shimizu-Morioka system in which
only the region with Lorenz attractors originates from such a
point9,14,16.

II. MAIN BIFURCATIONS: FROM A STABLE
EQUILIBRIUM TO THE LORENZ AND ROVELLA
ATTRACTORS.

The detailed bifurcation analysis of system (1) can be found
in Refs. [3], [31], [32]. Let us recall some important fea-
tures of the corresponding bifurcation diagram. Bifurcations
curves on the (D,r)-parameter plane superimposed with the
chart of Lyapunov exponents are presented in Figure 1. Most
of bifurcation curves are found by means of the MatCont
package33,34. The Lyapunov diagrams are computed using our
toolkit35. For their calculation, at each parameter values, we
take an orbit with the initial point near the origin and esti-
mate Lyapunov exponents using the standard scheme36. De-
pending on values of Lyapunov exponents, each point in the
(D,r)-parameter diagram is colored according to the palette
presented in the upper-right corner of Fig. 1.

Recall that system (1) possesses the symmetry (2). It al-
ways has the symmetric equilibrium state O at the origin. De-
pending on parameter values, it can have two or four addi-
tional equilibrium states. On the curve lPF given by the equa-
tion

D =
R−1

R2 ,

the equilibrium O undergoes a pitchfork bifurcation. This
curve consists of two segments separated by a point C, see
Fig. 1. Below this point the pitchfork bifurcation is supercriti-
cal: O becomes saddle and a symmetric pair of stable equilib-
ria O1 and O2 appears in its neighborhood when crossing the
curve lPF upwards. The upper segment of lPF corresponds to
the subcritical pitchfork bifurcation: when the upward cross-
ing this segment, the equilibrium O becomes again stable and
a symmetric pair of saddle equilibria O3 and O4 is born.
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FIG. 2. Sketch of bifurcation diagram near the BT-point (see Fig. 1) cor-
responding to the Bogdanov-Takens bifurcation. Here, a behavior of orbits
on the corresponding central two-dimensional manifold CBT is shown, this
invariant manifold is asymptotically stable in the case under consideration.

The equilibria O1 and O3 (and, by the symmetry, O2 and
O4) collide and disappear at the saddle-node bifurcation curve
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FIG. 3. Illustrations towards the scenario of the Lorenz attractor appearance in system (1). We fix D = 0.03 and change r: (a) the separatrices Γ1(O) and Γ2(O)

tend to the stable equilibria O1 and O2; (b) homoclinic butterfly bifurcation on the curve l1; (c) after this, Γ1 (Γ2) tends to O2 (O1) and a pair of saddle cycles C1

and C2 together with a nontrivial hyperbolic set are born; (d) on the curve lhet , the separatrices Γ1 and Γ2 lie on the stable manifold of C2 and C1, respectively;
(e) after this, the Lorenz attractor is born; (f) on the curve lAH , the equilibria O1 and O2 lose stability via the subcritical Andronov-Hopf bifurcation (the cycles
C1 and C2 merge with O1 and O2, respectively, and these equilibria become saddles), and the Lorenz attractor remains the only attractor of the system.

lSN originating from the point C and given by the equation
D = 0.25. A point BT on this curve corresponds to the
Bogdanov-Takens bifurcation, see Figure 2. Below this point
the stable equilibrium O1 (and O2 by the symmetry) and the
saddle equilibrium O3 (and O4 by the symmetry) are born to
the left of lSN . Above the BT-point all newly born equilibrium
states are saddles (O1 and O2 with the 2D unstable manifold,
while O3 and O4 with the 1D unstable manifold). On the curve
lAH originating from the BT-point the equilibrium states O1
and O2 undergo an Andronov-Hopf bifurcation: these equi-
libria are stable below this curve and they become of a saddle-
focus type above lAH . Below lAH a homoclinic bifurcation
curve (not shown in Fig. 1) with the saddle O1 (and O2 by the
symmetry) also originates from the BT-point. We note that
near the BT-point the Andronov-Hopf bifurcation is subcriti-
cal. However this bifurcation changes its type to supercritical
and back at points GH2 and GH1 (see Fig. 1) of the general-
ized Andronov-Hopf bifurcation.

As was shown by Lyubimov and Zaks3, system (1) can
demonstrate two principally different scenarios of transition
from simple dynamics (the stable equilibrium O) to chaotic
ones. The first scenario is associated with the birth of the
Lorenz attractor existing to the left of the curve lν=1. This
scenario is the same as in the classical Lorenz model37, see
Figure 3 where we fix D = 0.03. Here, between the curves lPF
and l1 the unstable separatrices Γ1(O) and Γ2(O) tend to the
stable equilibria O1 and O2, respectively, see Fig. 3a. On the
curve l1 homoclinic butterfly bifurcation occurs, see Fig. 3b.
As a result, a pair of saddle cycles C1 and C2 together with
a nontrivial hyperbolic invariant set are born above l1. Also
note that just after this the separatrices Γ1 and Γ2 tend to the
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FIG. 4. Enlarged fragment of the diagram presented in Fig. 1 near the point
S. Here the curves ln (n = 1,2,4, . . . ) correspond to the n-round homoclinic
butterfly bifurcation; and pn (n = 1,2,4 . . . ) correspond to the supercritical
pitchfork bifurcation with a stable symmetric (n+1)-round cycle. Points s1,
s2, and s3 near S are used as “samples” for estimating the separatrix value at
the point S.

equilibria O2 and O1, respectively, see Fig. 3c. On the curve
lhet , the separatrices Γ1 and Γ2 lie on the stable manifold of
the saddle cycles C2 and C1, respectively, see Fig. 3d, and the
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FIG. 5. Illustrations for the first steps towards the creation of the Rovella attractor in system (1). We fix D = 0.054 and change r: (a) the unstable separatrices
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1 and S1
2 which are born together with saddle ones (U1

1 and U1
2 ) via a saddle-node bifurcation on the curve lt ; (b) S1

1
and S1

2 degenerate into the homoclinic butterfly on the curve l1; (c) after this, the symmetric stable two-round cycle S2
0 is born; (d) the pair of stable cycles S2

1
and S2

2 is born after the supercritical bifurcation of the cycle S2
0; (e) the cycles S2

1 and S2
2 degenerate into the two-round homoclinic butterfly on the curve l2; (f)

after this, the stable four-round cycle S4
0 is born.

Lorenz attractor is born above this curve. Note that between
the curves lhet and lAH , the Lorenz attractor coexists with the
stable equilibria O1 and O2, see Fig. 3e. On lAH , the saddle
cycles C1 and C2 collide with O1 and O2 via the subcritical
Andronov-Hopf bifurcation, and the Lorenz attractor remains
the only attractor of the system, Fig. 3f.

The second scenario, studied in Ref. [3], leads to the birth
of a Rovella-like attractor. In contrast to the above scenario,
it consists of an infinite cascade of bifurcations. Let us briefly
explain them. For convenience, we show an enlarged frag-
ment of the bifurcation diagram near the point S in Figure 4.
Some illustrations towards this scenario for D = 0.054 are
shown in Figure 5. At the beginning, as in the Lorenz case,
the unstable separatrices Γ1(O) and Γ2(O) tend to O1 and O2
(as in Fig. 3a). On the curve lt a saddle-node bifurcation for
cycles occurs and, as a result, a pair of saddle U1

1 and stable S1
1

cycles is born around the stable equilibrium states O1 (by the
symmetry cycles U1

2 and S1
2 are born around O2). After this,

the unstable separatrices of O tend to the newly born stable
cycles, Fig. 5a. Note that the curve lt originates at the point S,
where the homoclinic butterfly to the neutral saddle O occurs,
and terminates at the GH1-point corresponding to the general-
ized Andronov-Hopf bifurcation.

On the curve l1 the symmetric pair of stable cycles S1
1 and

S1
2 degenerates into the homoclinic butterfly to O, Fig. 5b.

As a result, above l1 a symmetric stable two-round cycle S2
0

is born30, Fig. 5c. The cycle S2
0 undergoes the supercriti-

cal pitchfork bifurcation on the curve p1. It becomes saddle
and a symmetric pair of stable two-round cycles S2

1 and S2
2

is born in its neighborhood, Fig. 5d (here also the subcritical

Andronov-Hopf bifurcation on the curve lAH occurs and the
equilibria O1 and O2 become saddle-foci). These cycles de-
generate into a two-round homoclinic butterfly on the curve
l2, Fig. 5e. Above this curve, a symmetric stable four-round
cycle S4

0 is born, Fig. 5f. It undergoes the supercritical pitch-
fork bifurcation on the curve p2. Then, on the curve l4, the
newly born stable cycles S4

1 and S4
2 degenerate into a four-

round homoclinic butterfly, and so on. This cascade of the
alternating homoclinic butterfly bifurcations and pitchfork bi-
furcations accumulates to the limit curve lRA above which a
chaotic attractor is born3.

The same as Feigenbaum-like attractors, occurring via the
cascade of period-doubling bifurcations, this attractor, just af-
ter its birth, has lacunae containing the symmetric 2n-round
saddle cycles (appearing as a result of the pitchfork bifurca-
tions with the cycles S2n

0 ) which do not belong to the attractor.
With a further increase in r, these cycles, in the reverse order,
start to be captured by the attractor via heteroclinic bifurca-
tions, which occur when the unstable separatrices Γ1 and Γ2
lie on stable manifold of these symmetric saddle cycles. As
was shown by Rovella4, such heteroclinic bifurcations (under
some additional restrictions on the eigenvalues of the equilib-
rium O) imply the measure-persistence of the corresponding
attractors.

Rovella-like attractors populate the region RA, see Figs. 1
and 4. The curves lRA, lPF , lν=1, and lA=0 form the boundaries
of this region.

At the end of this section, we would like to note that the
Rovella attractor can appear immediately (from the Lorenz
attractor) when passing through the curve lν=1.
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III. ON PSEUDOHYPERBOLICITY AND THE LORENZ
ATTRACTORS IN SYSTEM (1)

In the Lyapunov diagrams presented in Figs. 1 and 4, one
can see that the region LA of the Lorenz attractor existence
is free of stability (periodicity) windows, in contrast to the
region RA where infinitely many such windows complement
a nowhere dense set of parameter values with chaotic attrac-
tors. Such organization of the Lyapunov diagrams in LA is
typical for pseudohyperbolic attractors, to the class of which
the Lorenz attractors belong. Let us recall the definition of
pseudohyperbolicity given in Refs. [9], [10].

Definition 1 A flow Ft in Rn is called pseudohyperbolic in a
strictly forward-invariant domain A ∈ Rn (i.e., Ft(A )⊂A
for t > 0) if it possesses the following properties:

(A) For each point x of A there exist two continuously de-
pendent on x linear subspaces, E1(x) with dimE1 = k
and E2(x) with dimE2 = n−k, which are invariant with
respect to the linearized flow DF:

DFtE1(x) = E1(Ft(x)), DFtE2(x) = E2(Ft(x)),

for all t ≥ 0 and all x ∈A .

(B) The splitting to E1 and E2 is dominated, i.e., there exist
constants C1 > 0 and β > 0 such that

‖DFt(x)|E2‖ · ‖(DFt(x)|E1)
−1‖ ≤C1e−β t

for all t ≥ 0 and all x ∈A . (This condition means that
any possible contraction in E1(x) is uniformly weaker
then any contraction in E2(x), and any expansion in
E1(x) is uniformly stronger than any possible expansion
in E2(x)).

(C) The differential DF restricted to E1 exponentially ex-
pands all k-dimensional volumes, i.e., there exist con-
stants C2 > 0 and σ > 0 such that

det(DFt(x)|E1)≥C2eσt

for all t ≥ 0 and all x ∈A .

Now, following Ref. [9], we can consider the Lorenz attrac-
tor of the Afraimovich-Bykov-Shilnikov model as the attrac-
tor of a pseudohyperbolic flow with dim(E1) = 2.

In this paper, we deal only with the three-dimensional sys-
tem (1). In this case, dim(E2) = 1 and, since all vectors are
contracted in E2, it is convenient to use denotations Ecu and
Ess instead of E1 and E2, respectively.

In Ref. [10] (see also [38]) it was shown how to check the
conditions of Def. 1 numerically. For verification of the con-
ditions (B) and (C), one should calculate the spectrum of Lya-
punov exponents Λ1 ≥ Λ2 ≥ Λ3:

• condition (B) equals to Λ2 > Λ3 ;

• condition (C) equals to Λ1 +Λ2 > 0.

Note that these conditions should be satisfied for all orbits in
the attractor. An efficient method to verify them is to take
only one sufficiently long “representative” orbit in the attrac-
tor, cut it into many quite short pieces and, then, check con-
ditions (B) and (C) for each such piece10,38. For the attractor
presented in Fig. 3f, some results of the corresponding Lya-
punov analysis are shown in Figure 6 (top row). For this ex-
periment, we take an orbit returning 105 times to the cross-
section z = 16, cut it into 2 ·104 or 104 pieces of length Ts = 5
or Ts = 10, respectively, and compute, for both cases, his-
tograms of finite-time Lyapunov exponents39,40 Λ2 (Fig. 6a),
Λ3 (Fig. 6b), and Λ1 +Λ2 (Fig. 6c). Histograms for Ts = 5
are colored in blue and histograms for Ts = 10 – in orange.
Condition (B) is obviously satisfied since the always-negative
exponent Λ3 is clearly separated from the near-zero exponent
Λ2. Fig. 6c shows the fulfilment of condition (C).
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FIG. 6. Results of pseudohyperbolicity verification for the attractor of sys-
tem (1) presented in Fig. 3f (point L: (D,r) = (0.03,17) in Fig. 1): (a), (b),
(c) histograms of finite-time Lyapunov exponents Λ2,Λ3, as well as the sum
Λ1 +Λ2, which are computed by an orbit returning 105 times to the cross-
section z = 16 cut into 2 · 104 (blue-colored bins) and 104 pieces (orange-
colored bins) of length 5 and 10, respectively; (d), (e) continuity diagrams
for Ess and Ncu, (f) histogram of the angles between the subspaces Ess and
Ecu. These graphs show that all pseudohyperbolicity conditions of Def. 1 are
fulfilled, i.e., the attractor is pseudohyperbolic.

Verification of condition (A) is much more delicate prob-
lem. It is based on calculation of the Lyapunov co-variant
vectors28,29 and construction (using these vectors) of either
the so-called Ess- and Ecu-continuity diagrams, as was pro-
posed in Ref. [10], or angles between the subspaces Ess and
Ecu, as was done in Refs. [40] and [38]. The latter method
is based on the fact that the Ess- and Ecu-continuity condition
(A) of Def. 1 implies to the absence of tangencies between
these subspaces38. Results of both methods are presented in
Figure 6d–f. The corresponding graphs show the continuity
of Ess (see Fig. 6d) and Ecu (see Fig. 6e, where the graph
for normal vectors Ncu is presented), as well as the absence
of zero angles between Ess and Ecu along a sufficiently long
(T = 106) orbit (see Fig. 6f). In general, these results confirm
the fulfilment of condition (A) and, thus, pseudohyperbolicity
of the attractor presented in Fig. 3f.
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A. Shilnikov criterion

We also propose an alternative method which not only helps
to confirm pseudohyperbolicity of observed attractors but also
allows to establish the existence of the Lorenz attractor in sys-
tem (1) for an open set of parameter values. This method is
based on the verification of the Shilnikov criterion5. A de-
tailed description of this criterion can be found in book [11],
see also recent papers [9] and [41]. Let us recall it.

Consider a system of differential equation in Rn possess-
ing a saddle equilibrium O with eigenvalues γ,λ1,λ2, . . . ,λn−1
such that:

γ > 0 > λ1 > Re(λi) i≥ 2.

Assume that this system is invariant with respect to a symme-
try S, such that O is a symmetric equilibrium (S O = O) and
the eigenvectors Vγ and Vλ1 corresponding to the eigenvalues
γ and λ1 are S-invariant: S Vγ = −Vγ and S Vλ1 = Vλ1 . We
also assume that this symmetry implies a symmetry of two
unstable separatrices Γ1 and Γ2 touching the eigenvector Vγ at
point O, i.e., S Γ1 = Γ2 and S Γ2 = Γ1. Further assume that
the following three conditions for the system are fulfilled:

1. both unstable separatrices Γ1 and Γ2 return to O at
t→+∞ touching the eigenvector Vλ1 , i.e., a homoclinic
butterfly bifurcation to O is created;

2. the saddle index ν of O is equal to one, i.e., ν =
−λ1/γ = 1;

3. the separatrix value A satisfies the condition

0 < |A|< 2. (4)

According to L.P. Shilnikov5, bifurcations of such system lead
to the birth of the Lorenz attractor.

It is worth noting that in the class of S-symmetric sys-
tems under consideration, conditions 1 and 2 correspond to
a codimension-2 bifurcation. Thus, if to embed such a sys-
tem into a two-parameter family Fµ,ν of systems for which
varying µ and ν we can independently split the homoclinic
butterfly and change the saddle index near 1 we can formulate
the Shilnikov criterion more precisely5,9:

Theorem 1 (L.P. Shilnikov5) If condition (4) is fulfilled in
the codimension-2 point (when system Fµ,ν has a homoclinic
butterfly with a neutral saddle), then in the (µ,ν)-parameter
plane there exists an open region with the Lorenz attrac-
tor of the Afraimovich-Bykov-Shilnikov model and the point
(µ,ν) = (0,1) belongs to its boundary.

The proof of this theorem can be found in Ref. [42].43

Concerning system (1), the homoclinic butterfly to the neu-
tral saddle O occurs here at the point S, where the curve of
homoclinic butterfly bifurcation l1 intersects with the neutral
saddle curve lν=1 (see Figs. 1 and 4). In order to apply the
Shilnikov criterion it remains only to compute the separatrix
value A at this point.

Note, in such a way the existence of the Lorenz attractor
was proven in Ref. [9] for the Shimizu-Morioka model. The

separatrix value A was computed for the homoclinic loop by
a 3D flow exactly in the codimension-2 bifurcation point by
means of computer-assisted proof methods. We propose an-
other method for estimating the separatrix value A.

B. Separatrix value from the numerically obtained 1D maps
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FIG. 7. (a) An illustration towards the geometric Afraimovich-Bykov-
Shilnikov model; (b) two-dimensional Poincaré map on the cross-section Π.

The approach for studying the Lorenz attractor, proposed
by Afraimovich, Bykov, and L.P. Shilnikov7,8, is to consider
(instead of the original system of differential equations) a ge-
ometric model – 2D singular-hyperbolic discontinuous map
which is, in a sense, a generalization of Poincaré map near
the separatrix loop to a saddle equilibrium. The term singular-
hyperbolic stresses a fact that the map has a discontinuity line.
Figure 7 illustrates main ideas of this approach. Here, a peace
of horizontal plane is a cross-section Π taken near the sad-
dle equilibrium O, transversal to its stable invariant manifold
W s(O). The unstable separatrices Γ1(O) and Γ2(O) intersect
the cross-section Π at points M∗1 and M∗2 , respectively. Note
that this cross-section is separated by a line Π0 = Π∩W s(O)
onto two parts: Π1 and Π2. All orbits starting in Π return to
this cross-section in a finite time except for those belonging to
Π0 (they tend to O when t→+∞). By continuity, the Poincaré
map T− of the cross-section Π can be defined as it is schemat-
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ically shown in Fig. 7a: a blue-colored wedge w1(w2) with a
tip at point M∗1(M

∗
2) is an image of Π1(Π2), i.e., w1 = T−(Π1)

(w2 = T−(Π2)), and w1 and w2 lie entirely in Π.
According to Afraimovich, Bykov, and L.P. Shilnikov7,8

when the map T− satisfies certain conditions (see, conditions
(*) in Ref. [7] or condition (1.1) in Ref. [8]) it is singular hy-
perbolic. Moreover, in this case a strong stable invariant fo-
liation Fss exists on Π. This foliation contains the line Π0 as
a leaf and also all its preimages which densely fill the cross-
section Π.8 A schematic representation of the action of T−
is shown in Figure 7b. The existence of the foliation Fss al-
lows to factorize map T− over the leaves of this foliation. It is
important to note that, near the codimension-two point S, the
resulting 1D factor map is exactly the map (3).11

For numerical studies, it is also convenient to consider an
analogous 2D Poincaré map T+ and its 1D factor map on a
two-component cross-section Σ into which orbits enter from
bottom to top, see Fig. 7a (it can be the same plane Π, however
another its part, where only upward crossings are observed).
One can show (analyzing the 2D Poincaré map on Σ) that the
corresponding truncated factor map has the following form

Xn+1 = µΣ−A|Xn− s|ν . (5)

Here ν and A are the same parameters (saddle index and sep-
aratrix value) as in map (3), s > 0 represents a positive preim-
age of the discontinuity point on Σ, µΣ is the image of the
unstable separatrix on this section. Note that the difference
(µΣ− s) corresponds to the value of splitting for the homo-
clinic butterfly.

For the attractor presented in Fig. 3f, both types of the 2D
Poincare maps T± : (xn,yn)→ (xn+1,yn+1) are shown in Fig-
ure 8a. Here we take a plane z = r− 1 = 16 as the cross-
section. A pair of blue-colored clouds of points in the mid-
dle of this graph corresponds to the intersections of Γ1 with
the cross-section Π (images of map T−), while a pair of red-
colored clouds Cl and Cr corresponds to the intersections with
Σ (images of map T+).
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FIG. 8. (a) Poincaré map on the cross-section z = 16 for the attractor
shown in Fig. 3f, blue (red) points correspond to 105 intersections of the
separatrix Γ1 moving downwards (upwards); (b) an enlarged fragment of
this map near the cloud of points Cr superimposed with the Lagrange poly-
nomial y(x) constructed by four points: two points on the left (xmin,ymin)

and right (xmax,ymax) edges of Cr and two middle points; (c) 1D first return
map xn+1 = T (xn,y(xn)) reconstructed by 10000 points on the regular lattice
within the segment [xmin,xmax].

For a rigorous computing the 1D factor map from this 2D
map, it is necessary to know the strong stable foliation Fss.
Such foliation can be computed as an intersection of a large

piece of W s(O) with the cross-section Π or Σ (it does not
matter which one)44–46. For a sufficiently good approxima-
tion of the 1D map, we suggest another simple procedure
based on the fact that, due to the strong contraction, points of
the intersection of the Lorenz attractor with the cross-section
seem to lie on 1D curves, see Fig. 8a. First, we take one of
such “curves”, namely Cr, and parameterize it with the La-
grange polynomial y(x) using four points: two points on the
left (xmin,ymin) and right (xmax,ymax) edges of Cr and two in
the middle (Fig. 8b). Then, we compute the corresponding
1D first return map xn+1 = T (xn,y(xn)) using 10000 points
taken on the regular lattice within the segment [xmin,xmax]. Fi-
nally, we plot the resulting points (xn, |xn+1|) on the graph,
see Fig. 8c. Note that we take absolute values of xn+1 for the
representativeness of the map, since the images of points ly-
ing on different sides of the discontinuity line (where W s(O)
intersects with Σ for the first time) have opposite signs.
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FIG. 9. Factor map (5) (black-colored line) superimposed with numeri-
cally obtained 1D maps (gray-colored line) at the points (a) s1: (D,r) =
(0.048,13); (b) s2: (D,r) = (0.049,12.88); (c) s3: (D,r) = (0.04975,12.805)
approaching the point S: (D,r) = (0.0497,12.8).

Note that the numerically obtained 1D map presented in
Fig. 8c has the same form as map (5). A natural question
arises here. How to select parameters ν ,µΣ,s, and A of the
last map in order to get the best fitting with the numerically
obtained map? Parameter ν is simply computed as the sad-
dle index of equilibrium O. Parameters s and µΣ are found
from the numerically obtained 1D map: s – the preimage
of the discontinuity point, µΣ – its image. The last parame-
ter A is selected to provide the best match (by means of the
least square method) between the map (5) and the numeri-
cally obtained 1D map. Note that the numerically obtained
map cannot be well approximated by map (5) when the pa-
rameters (D,r) are chosen sufficiently far from the point S (in
this case, term O(|X − s|ν2), where ν2 = min(2ν ,−λ2/γ) are
not longer small). However, the closer to S we take a point,
the better map (5) can be fitted to the numerically obtained
one. Figure 9 confirms this fact. This figure shows (in gray
color) a series of 1D maps computed by the corresponding
2D Poincaré maps at points s1, s2, and s3 taken in the (D,r)-
parameter plane near the point S (dist(s1, S) = 0.2, dist(s2, S)
= 0.079, and dist(s3, S) = 0.004) superimposed with the re-
constructed 1D maps (5) (in black color). Parameters of the
corresponding reconstructed 1D maps are as follows:

s1 : ν = 0.947,µΣ = 8.3308,s = 8.2999, and A = 1.16;

s2 : ν = 0.976,µΣ = 8.2568,s = 8.2448, and A = 1.17;

s3 : ν = 0.999,µΣ = 8.2073,s = 8.2066, and A = 1.19.
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makes around the equilibria O1 and O2, respectively. (b)–(e) Some homoclinic loops for even n ∈ {2,4,6,8}.

Thus, we see that the saddle index ν indeed approaches 1,
the distance µΣ− s (separatrix splitting value) tends to zero,
and A ≈ 1.19. This value gives a good approximation for the
separatrix value of system (1) at the point S.

C. Vanishing A: violation of pseudohyperbolicity and
non-orientable Lorenz attractors

The upper boundary of the LA-region of the classical
Lorenz attractor existence is associated with the curve lA=0
on which the strong-stable Ess and central-unstable Ecu sub-
spaces intersect nontransversely. For the Lorenz system this
curve was found by Bykov and A. Shilnikov47,48 (see also
Refs. [49] and [46]) by means of the 1D map analysis. Below
the curve lA=0, the corresponding 1D map has two branches
without zero derivatives (see. e.g. Fig. 8c). The right branch
gets zero derivative on this curve. Further evolution of the
1D map above lA=0 results in the formation of the character-
istic hook (bend) at rightmost segment of this map (see e.g.
Fig. 11d for illustration). Note that in system (1) the curve
lA=0 consists of two parts divided by the point S1 in which
ν(O) = 1/2, see Figure 10a.

Above the first part of this curve, where 0 < ν < 1/2, the
strong stable foliation Fss is violated, the subspaces Ess and
Ecu no longer depend continuously on a point, and the attrac-
tor becomes a quasiattractor of Lorenz type. Figures 11a–c
illustrate this fact for an attractor taken at (D,r) = (0.02,30).
The corresponding 1D map (with the hook) is shown in Fig-
ure 11d.

The second part of the curve lA=0, where 1/2 < ν < 1,

a
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n+1
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r
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NcuEcu
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FIG. 11. Results of pseudohyperbolicity verification for the attractor of sys-
tem (1) taken at (D,r) = (0.02,30): (a), (b) continuity diagrams for Ess and
Ncu, (c) histogram of angles between the subspaces Ess and Ecu, (d) 1D map
with the hook on the right branch. These experiments confirm the absence of
stable foliation, i.e., we observe a Lorenz quasiattractor for these parameter
values.

does not form a boundary of the region of (pseudohyperbolic)
Lorenz attractor existence16: stable periodic orbits exist be-
low this curve while non-orientable Lorenz attractors8 popu-
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lating the so-called Shilnikov flames appear above it16,50,51. It
is important to note that non-orientable Lorenz attractors can
be pseudohyperbolic. Thus, robustly chaotic attractors exist
also above the second part of lA=0. For the Shimizu-Morioka
model pseudohyperbolicity of such attractors was established
in Ref. [38]. Questions related to the study of dynamics in the
parameter region above this curve and non-orientable Lorenz
attractors will be considered in forthcoming papers.

Finally in this Section we would like to note that the curve
lA=0 intersects (multi-round) homoclinic bifurcation curves at
the so-called inclination flip points. In such a point the sep-
aratrix value A of the corresponding homoclinic loop van-
ishes and the two-dimensional stable manifold W s(O) along
the loop changes orientation: it is an annulus below lA=0 and
a Möbius band – above this curve. Some (multi-round) homo-
clinic bifurcation curves l1n are presented in Figure 10a. Here
1 and n mean the number of turns which the unstable separa-
trix Γ1 makes around the equilibrium O2 and O1, respectively
(symmetrically for Γ2). Note that n tends to infinity when we
approach the curve lhet where the unstable separatrices lie on
the stable manifold of the saddle cycles. Homoclinic loops on
the curves l1n for n ∈ {2,4,6,8} are shown in Figure 10b–e.

IV. ON THE ROVELLA ATTRACTOR

It is interesting to note that the continuity condition (A) of
Def. 1 is preserved to the right of the curve lν=1, in the re-
gion RA. Figure 12 shows the results of pseudohyperbolicity
verification of an attractor at the point

R : (D,r) = (0.05,17) (6)

in this region (see Fig. 1).
The Ess– and Ncu– continuity diagrams (Figs. 12a,b), as

well as the histogram of angles between the Ess and Ecu sub-
spaces (Fig. 12c), illustrate that both these subspaces depend
continuously on a point in the attractor and there are no tan-
gencies between them. Moreover, this property is preserved
after small perturbation (changes in parameters).

Figure 13 shows the dependency of minimal angle between
Ess and Ecu on the parameter r along a pathway AB (shown
in Fig. 10a): D = 0.032,r ∈ [15,30] crossing the curves lν=1
and lA=0. It is clearly seen from this figure that the minimal
angle is separated from zero up to the intersection of AB with
the curve lA=0 (at r = rA=0 ≈ 28) where the minimal angle
vanishes, and the tangency between Ess and Ecu appears.

It is worth noting that the dominated-splitting condition (B)
of Def. 1 for the attractor at point R is also preserved, see
Figs. 12d,e confirming that Λ2 > Λ3 for all orbits in the attrac-
tor. Nevertheless, this attractor cannot be pseudohyperbolic
since the volume-expanding condition (C) of Def. 1 is violated
for some orbits, see Figs. 12f demonstrating that Λ1 +Λ2 can
be negative.

Figure 14 shows a 2D Poincaré map and the corresponding
first return 1D map for the attractor observed at point R. Note
that the 2D Poincaré map for this attractor looks like for the
Lorenz attractor, cf. Fig. 8a and Fig. 14a, while the 1D map
(Fig. 14b) reveals the fundamental difference between these
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length 5 and 10, respectively. From Fig. (f) one can see the violation of
volume-expanding condition, i.e., the attractor cannot be pseudohyperbolic
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Ess and Ecu along the pathway AB: D = 0.032,r ∈ [15,30]. The minimal
angle vanishes when crossing the curve lA=0 (at r = rA=0 ≈ 28). For this
experiment for each value of parameter r we take an orbit of length T = 105.

attractors. The zero derivative prevents pseudohyperbolicity
of the Rovella attractor.

x

y

x
n

(a) (b)x
n+1

FIG. 14. (a) 2D Poincaré map on the cross-section z = 16 and (b) 1D first
return map for the Rovella attractor observed at the point R.
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The absence of pseudohyperbolicity for the Rovella attrac-
tor is in a good agreement with what is observed in the Lya-
punov diagrams (Figs. 1, 4, 10) showing that, in the RA-
domain, regions with chaotic attractors alternate with period-
icity windows. As for any quasiattractor, after an arbitrarily
small perturbation of these attractors (change in parameters)
one can observe a stable periodic orbit. Nevertheless, regions
with such chaotic attractors have positive Lebesgue measure
in a two-parameter space (see Ref. [4] and Sec. IV A for more
detail). This result is similar to the results by Benedicks, Car-
leson, and Jacobson22–24 on measure-persistence of chaotic
attractors in the 2D Hénon map.

A. Shilnikov-like criterion for the birth of Rovella attractor

Analyzing the truncated 1D map (3) at A = 1.5, Lyubi-
mov and Zaks3 showed that the region RA originates from the
codimension-two point (µ,ν) = (0,1) corresponding to the
homoclinic butterfly bifurcation with a neutral saddle. This
result can be generalized into a Shilnikov-like criterion for the
birth of the Rovella attractor. The preliminary analysis shows
that if we replace condition (4) with the condition

|A|> 1 (7)

and add the following condition on the so-called second sad-
dle index χ =−λ2/γ:

χ > 2, (8)

while keeping the remaining conditions from Sec. III A un-
changed, then bifurcations of such a system lead to the birth
of the Rovella attractor. More precisely, we believe that the
following statement is true.

Conjecture 1 (RA-conjecture) If conditions (7) and (8) are
fulfilled at the codimension-2 point (when system Fµ,ν has a
homoclinic butterfly with a neutral saddle), then in the (µ,ν)-
parameter plane there exists a nowhere dense closed set of
positive Lebesgue measure which corresponds to the existence
of the Rovella attractor, and the point (µ,ν) = (0,1) belongs
to its boundary.

For the case |A| > 2, with additional restrictions on the
eigenvalues of the saddle equilibrium, this statement was
proved in Ref. [26]. In our forthcoming paper52 we prove it
for |A|> 1.

B. On the structure of periodicity windows in the RA-region:
from the Lorenz attractor to the Rovella attractor

As mentioned above, in the RA-region there are no tangen-
cies between the subspaces Ess and Ecu. It implies that the sta-
ble and unstable invariant manifolds of periodic saddle orbits
inside the Rovella attractor can intersect only transversally.
Therefore, stable periodic orbits inside periodicity windows
in RA cannot appear through bifurcations of homoclinic tan-
gencies as it usually happens for quasiattractors. Here another

mechanism of generation of periodicity windows is realized.
This mechanism is illustrated by the bifurcation diagram pre-
sented in Figure 15.

Without loss of generality, let us consider the homoclinic
bifurcation curve l12 (the corresponding homoclinic loop is
shown in Fig. 10b). This curve intersects with the neutral sad-
dle curve lν=1 at the codimension-2 point LR12. Like the point
S, this point satisfies the conditions of Conjecture 1. Thus,
above the corresponding periodicity window, the Rovella at-
tractor originates from this point to the right of the curve lν=1
according to the scenario proposed in Refs. [3] and [25], see
also Fig. 5. As for the point S, the lower boundary of this pe-
riodicity window is formed by the curve t12 of a saddle-node
bifurcation; a pair of newly born stable cycles degenerates into
a homoclinic butterfly on the curve l12 and a symmetric cycle
is born above this curve. Then, this cycle undergoes the pitch-
fork bifurcation on a curve p12. A pair of asymmetric stable
cycles, then, collides into a doubled (with respect to the ho-
moclinic butterfly occurring on l12) homoclinic butterfly on
the curve l2

12, an so on. After an infinite cascade of alternating
homoclinic butterfly and pitchfork bifurcations the Rovella at-
tractor is born above a curve lRA

12 .
Similar picture is observed also for other curves l1n, as well

as for multiround homoclinic curves existing between l1n and
l1n+1. According to Afraimovich, Bykov, and L.P. Shilnikov8,
homoclinic butterfly bifurcations are dense inside the region
with the Lorenz attractor. Apparently, these bifurcations are
also dense in the line lν=1. In order to confirm it we em-
ploy the so-called method of kneading diagrams proposed by
A. Shilnikov49,51,53,54.

We construct the kneading diagram using the following
scheme. For given values of parameters we take one of the
unstable separatrices of O, e.g. the right one Γ2, and use it in
order to obtain the kneading sequence s0,s1,s2, . . . according
to the following rule. If, on this separatrix, the first point in
which the maximum of |x| is positive (x > 0), then we assign
s0 = 1, else, if x < 0 at the first maximum of |x|, then we put
s0 = 0. Repeating this procedure, we assign s j equal to 0 or 1
for j = 1, . . . ,q, where q is some predetermined integer num-
ber. Since we take the right separatrix Γ2, the first symbol s0
is always 1 and we take it out of the kneading sequence.

According to the Afraimovich-Bykov-Shilnikov geometric
model7,8 (see also Fig. 7), s j = 1 means that the ( j + 1)-th
point of intersection of the separatrix with Π lies in Π2, and
s j = 0 means that this point lies in Π1. If s j changes for two
close values of parameters, while symbols sk with k < j stay
the same, it means that between these values of parameters
there exist a value which corresponds to the existence of a j-
round homoclinic loop.

For each kneading sequence (s1,s2, . . . ,sq) we compute the
following sum K = ∑

q
i=1 si2q−i. Note, K can take any inte-

ger value from 0 to 2q−1 and two kneading sequences of the
same length q are equal when the corresponding values of K
are the same. Thus, in the parameter plane, boundaries be-
tween regions with different values of K correspond to homo-
clinic loops. In order to visualize these boundaries we paint
regions with different K in different colors, employing the fol-
lowing color scheme51. The values of K ∈ [0,(2q−1)/2) are
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FIG. 15. (a) Bifurcation diagram illustrating the nature of periodicity windows inside the region RA: homoclinic bifurcation curves lm
1n (n = 2,3, . . . ,

m = 2,3, . . . ) correspond to the m-th doubling of the homoclinic loop occurring on l1n; pm
1n – supercritical pitchfork bifurcations of the symmetric stable

cycle emerging from the corresponding homoclinic butterfly bifurcation; and (b) the corresponding kneading diagram illustrates, in particular, that homoclinic
bifurcation points are dense on the curve lν=1. Each such point (e.g. LR12 and LR13) gives rise to the Rovella set (e.g. above the curves lRA

12 and lRA
13 ) according

to Conjecture 1.

converted to the depth of the red channel, while the blue chan-
nel has intensity 0. The values of K ∈ [(2q− 1)/2,2q− 1)]
are converted to the depth of the blue channel, while the red
channel has intensity 0. In both cases, the depth of the green
channel is chosen randomly. We thank Andrey Shilnikov for
clarifying these important technical details which help to ob-
tain a contrasted picture.

The resulting graph – kneading diagram – is presented in
Figure 15b. Here we take q = 20. In this figure, one can
see that the family of homoclinic bifurcation curves forms a
smooth foliation in the region LA.55 It seems that this foliation
is preserved on the curve lν=1. This illustrates that homoclinic
bifurcations are dense on this curve and the unfolding of each
such bifurcation gives rise to the region of stability and the
(multi-round) Rovella attractor above it.

V. ON THE BIRTH OF CHAOTIC ATTRACTORS AT
CODIMENSION-2 BIFURCATION IN CASES: 0 < |A|< 1,
1 < |A|< 2, AND |A|> 2

In system (1) the cosimension-2 point S, where the homo-
clinic butterfly to the neutral saddle occurs, belongs to the
boundaries of both the Lorenz attractor region and the region
of Rovella attractor existence. Recall that A ≈ 1.19 here, i.e.,
the case 1 < |A|< 2 takes place. Two other cases of the orga-
nization of bifurcation diagram are possible when 0 < |A|< 1
and |A| > 2. In order to illustrate it let us study the truncated
factor map (3).

Figure 16 shows Lyapunov diagrams for map (3) when
A = 0.56, A = 1.19, and A = 2.2 respectively. In these dia-
grams, lines µ = 0 and l2 correspond to the homoclinic and
doubled homoclinic butterfly bifurcations, lhet and lhet2 – het-
eroclinic bifurcations to saddle cycles. In the cases of Fig. 16a
and Fig. 16b where ν < 1, on lhet , the unstable separatrix Γ1
(Γ2) lie on the stable manifold of the saddle cycle C2 (C1); on
the curve lhet2, Γ1 (Γ2) lies on the stable manifold of the two-
round saddle cycle C2

2 (C2
1), respectively. Note that the cycles

C1 and C2 are born from the homoclinic butterfly bifurcation
on µ = 0 and the cycles C2

1 and C2
2 are born below the curve

l2. In the cases of Fig. 16c and Fig. 16b where ν > 1, on the
curve lhet , the unstable separatices lie on the stable manifold
of the symmetric pair of saddle cycles and above this curve al-
most all orbits tend to infinity in the case of three-dimensional
system, after this bifurcation orbits tend to the stable equilib-
rium O1 or O2); on the curve lhet2, both unstable separatrices
lies on the stable manifold of the the symmetric two-round
saddle cycle S2

0. Recall that after the birth (above the curve
l2), this cycle is stable and it becomes saddle via the super-
critical pitchfork bifurcation. Note that Rovella proved the
measure-persistence of chaotic attractors near such a type of
bifurcation4.

One can see that the boundaries of regions with chaotic dy-
namics near the point S depend on the mutual location of the
curves lhet , l2, and lhet2. Note that the first two curves for map
(3) are defined by the following simple equations:

lhet : Aµ
ν−1 = 2,
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and

l2 : Aµ
ν−1 = 1.

In the case 0 < |A| < 1, the curves lhet and lhet2 originate
from the point S and form the boundaries of the region LA of
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the Lorenz attractor existence near this point. The situation
changes drastically when 1 < |A| < 2. Here, to the left of the
line ν = 1, l2 and the curve lhet2, forming the upper boundary
for the LA-region (near the point S), do not originate from the
point S. They tend to infinity when ν → 1, and the curve lν=1
also becomes the boundary of the region LA. Note that for
such values of A, the doubled homoclinic bifurcation curve
l2 exists also to the right of the curve ν = 1, where ν > 1
(Fig. 16b), giving a possibility for the implementation of the
scenario leading the Rovella-like chaotic attractors.

When |A| > 2, the curve lhet originates from the point S
only where ν > 1. Another segment of this curve, existing for
ν < 1, tends to infinity when ν → 1, see Fig. 17f. Thus, only
the region RA with the Rovella-like attractors originates from
the point S (see also Fig. 16c). Recall that the lower boundary
of this region is formed by the limit curve lRA. Alternating
2n-round homoclinic and pitchfork bifurcation curves accu-
mulate to this curve.

For a clearer explanation of the reconstruction of bifurca-
tion curves near A = 1 and A = 2 we present six additional
bifurcation diagrams in Figure 17. The upper three diagrams
show the transition near A = 1 while the lower three diagrams
explain the reconstruction of bifurcation curves near A = 2.

The described results can be summarized in the follow-
ing statement. Depending on the absolute value of separatrix
value A, three cases of the organization of bifurcation diagram
near the point S (when the homoclinic butterfly to the neutral
saddle equilibrium occurs) are possible:

1. when 0 < |A| < 1, only a region of the existence of the
Lorenz attractor adjoins to the point S, see Fig. 16a;

2. when 1 < |A|< 2, both the Lorenz attractor region and
the region of Rovella-like attractor existence adjoin to
the point S, see Fig. 16b;

3. when |A|> 2, only the Rovella-like attractor region ad-
joins to the point S, see Fig. 16c.

A. Chaotic attractors in the Shimizu-Morioka model

Finally, based on the described above results, we would like
to note and explain an interesting principal difference between
the Lyubimov-Zaks system (1) and the well-known Shimizu-
Morioka system 

ẋ = y
ẏ = x−λy− xz
ż =−αz+ x2.

(9)

for which the Shilnikov criterion is also applicable9,14,16,17.
Figure 18 shows some bifurcation curves for system (9)

superimposed with the Lyapunov diagram on the (α,λ )-
parameter plane. This bifurcation diagram was obtained by
A. Shilnikov14–16. Here we use the same denotations for bifur-
cation curves and points as for system (1), cf. Figs. 1 and 18.
The homoclinic bifurcation curve l1 intersects with the neu-
tral saddle curve lν=1 at the point S. The separatrix value in

this point satisfies condition (4)9,14,16. Thus, according to the
Shilnikov criterion, the Lorenz attractor existence region LA
originates from this point. From one side, the same as in sys-
tem (1), this region is bounded by the curve lhet where the
unstable separatrices of O lie on the stable manifold of the
saddle cycles. From the other side, the region LA is bounded
by the curve lhet2 on which the unstable separatrices lie on the
stable manifold to the two-round saddle cycles which, in their
turn, are born from the doubled homoclinic butterfly bifurca-
tion (the curve l2). We note, the curve lhet2 is very close to
l2, therefore it is not plotted in Fig. 18. Also note that the
region with chaotic dynamics entirely lies to the left of the
curve lν=1 where ν(O) > 1, and the region with Rovella-like
attractors does not exist to the right of this curve.
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FIG. 18. Reproduction of the bifurcation diagram superimposed with the
chart of Lyapunov exponents for the Shimizu-Morioka model (9). This dia-
gram was obtained by A. Shilnikov14–16. For bifurcation curves and points
we use here the same denotations as for system (1), see Fig. 1.

It is known that the separatrix value in system (9) satisfies
the condition 0 < A < 19,14,16,17. Our numerics show that A≈
0.56 here. The bifurcation diagram for the truncated factor
map (3) in this case is shown in Fig. 16a. It explains why only
a region with the Lorenz attractor originates from the point S.

Finally, we would like to note that bifurcation diagrams
for the 1D map (3) and the 3D systems (1) and (9) are not
completely equal. For example, since, for a fixed A, along
the line ν = 1, the truncated map is linear and, thus, it has
a constant kneading, while in 3D systems the kneading se-
quence is changed along the neutral saddle-curve lν=1. How-
ever, such changes also can be simulated by means of map (3)
if to slightly modify it. For this goal, the separatrix value A
should be considered not as a constant but as a slightly chang-
ing function depending e.g. on the parameter µ .
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