
Nonlinearity
            

PAPER

Wild pseudohyperbolic attractor in a four-dimensional Lorenz system
To cite this article: Sergey Gonchenko et al 2021 Nonlinearity 34 2018

 

View the article online for updates and enhancements.

This content was downloaded from IP address 148.253.213.132 on 26/04/2021 at 14:34

https://doi.org/10.1088/1361-6544/abc794


London Mathematical Society Nonlinearity

Nonlinearity 34 (2021) 2018–2047 https://doi.org/10.1088/1361-6544/abc794

Wild pseudohyperbolic attractor in a
four-dimensional Lorenz system

Sergey Gonchenko1,2 , Alexey Kazakov2,∗ and
Dmitry Turaev2,3

1 Lobachevsky State University of Nizhny Novgorod, Scientific and Educational
Mathematical Center ‘Mathematics of Future Technologies’, 23 Prospekt Gagarina,
Nizhny Novgorod 603950, Russia
2 National Research University Higher School of Economics, 25/12 Bolshaya
Pecherskaya Ulitsa, 603155 Nizhny Novgorod, Russia
3 Imperial College, London SW7 2AZ, United Kingdom

E-mail: sergey.gonchenko@mail.ru, kazakovdz@yandex.ru and
d.turaev@imperial.ac.uk

Received 24 January 2020, revised 9 October 2020
Accepted for publication 4 November 2020
Published 17 February 2021

Abstract
We present an example of a new strange attractor which, as we show, belongs
to a class of wild pseudohyperbolic spiral attractors. We find this attractor in a
four-dimensional system of differential equations which can be represented as
an extension of the Lorenz system.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper we build an example of a new strange attractor. We show that it belongs to the class
of wild pseudohyperbolic spiral attractors. A theory of pseudohyperbolic spiral attractors was
proposed in [102], however examples of concrete systems of differential equations with such
attractors were not known. We consider a four-dimensional extension of the classical Lorenz
system, see (1), and perform a series of numerical experiments with the strange attractor of
the system which demonstrate that this attractor is indeed pseudohyperbolic, spiral (contains
a saddle-focus equilibrium), and wild (contains a hyperbolic set with homoclinic tangencies).
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Figure 1. Projections of the strange attractor existing in system (1) at σ = 10,
b = 8/3, r = 25 and μ = 7 onto: (a) the (x, y, z)-plane and (b) the (x, z,w)-plane.

We also discuss the notion of pseudohyperbolicity,as a key property that ensures the robustness
of chaotic dynamics, free from stability windows, and propose an effective method of numeri-
cal verification of the pseudohyperbolicity. The pseudohyperbolicity is a generalization of the
hyperbolicity property, which imposes much less restrictions on the system but still guarantees
that the maximal Lyapunov exponent is positive for every orbit in the attractor, both for the
system itself and for every close system.

We consider the following system of differential equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = σ(y − x),

ẏ = x(r − z) − y,

ż = xy − bz + μw,

ẇ = −bw − μz,

(1)

where σ, r, b and μ are parameters. Note that when μ = 0 the hyperplane w = 0 is invariant
and, in restriction onto this hyperplane, the system is exactly the Lorenz model. Model (1) was
proposed in [94] (see part 2, appendix C, problem C.7. No. 86) as a possible candidate for a
system with a wild spiral attractor. We find such attractor at μ = 7, σ = 10, b = 8/3, r = 25,
see figure 1, and provide numerical evidence for its pseudohyperbolicity.

The pseudohyperbolicity is a key word here. It means that certain conditions hold (see
definition 1) which guarantee that every orbit in the attractor is unstable (i.e. it has a posi-
tive maximal Lyapunov exponent). Moreover, this instability property persists for all small
perturbations of the system.

We recall that one of the main problems of the theory of dynamical systems is that most of
the strange attractors discovered in various applications may, in fact, contain stable periodic
orbits. These periodic orbits may have quite narrow attraction domains, so we do not see them in
numerical experiments, however their existence (either in the system itself or after an arbitrar-
ily small variation of parameters) can be inferred from the existence of homoclinic tangencies
[26, 27, 39, 48, 51, 75]. In this case one can observe a chaotic behaviour (with positive
Lyapunov exponents) but can never be sure that increasing the accuracy or the computation
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time would not make the maximal Lyapunov exponent vanish or get negative. Such strange
attractors, ‘pregnant’ by stable periodic orbits, were called quasiattractors by Afraimovich and
Shilnikov [3], see also [49]. The corresponding dynamics may appear chaotic for all practi-
cal purposes. However, from the purely mathematical point of view, it is a complicated and,
quite probably, unsolvable [55, 56] question whether the dynamics in a given system with a
quasiattractor are truly chaotic or become periodic after a long transient process.

Examples of the Afraimovich–Shilnikov quasiattractors are ubiquitous. They include
‘torus-chaos’ attractors arising after the breakdown of two-dimensional tori [4] and after a
period-doubling cascade, the Hénon attractor [10, 61], attractors in periodically perturbed two-
dimensional systems [53], attractors in the Lorenz model beyond the boundary of the region
of the Lorenz attractor existence [15, 91], spiral attractors in three-dimensional systems with
a Shilnikov loop [5–7, 22, 24], etc. In all these cases, we observe chaotic dynamics but there
is no proper mathematical theory which would describe the main properties of such dynamics
independently of small perturbations of the system.

However, there exist certain classes of genuinely chaotic attractors which are not destroyed
by small perturbations. These are uniformly hyperbolic attractors, see e.g. book [63] and ref-
erences therein, and Lorenz-like attractors [1, 2, 70, 77, 92, 99]. Both the uniformly hyper-
bolic and Lorenz attractors are partial cases of pseudohyperbolic attractors, as proposed
in [102].

The following definition generalizes the corresponding definition from [102].

Definition 1. Let a compact set A be forward invariant with respect to an n-dimensional
Cr-flow F (i.e., Ft(A) ⊂ A for t > 0). The set A is called pseudohyperbolic if it possesses
the following properties.

(a) For each point x of A there exist two continuously dependent on x linear subspaces, E1(x)
with dim E1 = k and E2(x) with dim E2 = n − k, which are invariant with respect to the
differential DF of the flow:

DFtE1(x) = E1(Ft(x)), DFtE2(x) = E2(Ft(x)),

for all t � 0 and all x ∈ A.
(b) The splitting to E1 and E2 is dominated, i.e., there exist constants C1 > 0 and β > 0 such

that

‖DFt(x)|E2‖ · ‖(DFt(x)|E1)−1‖ � C1 e−βt

for all t � 0 and all x ∈ A. (This means that if we have a contraction in E2(x), then any
possible contraction in E1(x) is uniformly weaker than the contraction in E2(x), and if we
have an expansion in E1(x), then it is uniformly stronger than any possible expansion in
E2(x)).

(c) The linearized flow DF restricted to E1 stretches all k-dimensional volumes exponentially,
i.e., there exist constants C2 > 0 and σ > 0 such that

det(DFt(x)|E1 ) � C2 eσt

for all t � 0 and all x ∈ A.

A similar definition can be given for diffeomorphisms. Just let the time variable t take
discrete values, i.e., t ∈ Z, and replace Ft in the above definition by the tth iteration of a
diffeomorphism f, i.e., Ft = f t.
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In this paper we consider the case where there is a uniform contraction along the subspaces
E2(x). Thus, using the standard notations of the normal hyperbolicity theory, we will call E2(x)
the strong-stable subspaces and denote them Ess(x); the centre-unstable subspaces E1(x) will
be denoted as Ecu(x).

If the pseudohyperbolic set A is an attractor, we call it a pseudohyperbolic attractor. There
can be different definitions of an attractor [58] but we expect that, in reasonable cases, an
attractor should have an absorbing domain, i.e., a strictly forward-invariant open region D
that contains A. We use the Ruelle’s notion of an attractor [86]. Namely, following [54] we
define the Conley–Ruelle–Hurley attractor as a chain-transitive compact invariant set, stable
with respect to permanently acting perturbations4. Such attractor is always an intersection of a
countable sequence of nested absorbing domains.

If all forward orbits from a bounded absorbing domain D enter a sufficiently small neigh-
bourhood of a pseudohyperbolic attractor A, then it can be shown that the closure of D is also
a pseudohyperbolic set. In this case, condition (c) in definition 1 obviously guarantees that
the maximal Lyapunov exponent is positive for every orbit from D. Importantly this property
is preserved after any C1-small perturbation. Indeed, since D is strictly forward-invariant, it
will remain forward invariant for any perturbed system. The dominated splitting conditions (a)
and (b) are also known to survive [72, 81, 82] and the same is obviously true for the volume-
expansion condition (c). Thus, cl(D) remains a pseudohyperbolic set and, even if the attractor
A inside D changes drastically, it will anyway remain pseudohyperbolic and, for every orbit of
A, its maximal Lyapunov exponent will remain positive. In other words, if an attractor is pseu-
dohyperbolic, then stability windows typical for the Afraimovich–Shilnikov quasiattractors
cannot arise.

In fact, we believe that in the case of diffeomorphisms the following conjecture is true:
P or Q conjecture. If an attractor is not pseudohyperbolic, it is a quasiattractor.
This formulation is very wide. For example, if the attractor is just a stable periodic orbit, it

is, formally, a quasiattractor in the sense of our definition. This conjecture becomes meaningful
when we speak about attractors of systems with chaotic behaviour of unknown nature (when
we have a complete knowledge of the structure of the attractor and of its bifurcations, it really
does not matter how we name it).

The rationale behind this conjecture is as follows. If we have a chaotic attractor, then it is
natural to expect that the attractor should have saddle periodic orbits inside. If the attractor
is not pseudohyperbolic, then it is not hyperbolic by definition. Now, in the absence of the
uniform hyperbolicity one can expect that nontransverse intersections of stable and unstable
manifolds of the saddle periodic orbits can be created by small perturbations of the system. It is
natural to assume that if the attractor is not pseudohyperbolic, then at least some of such newly
created homoclinic tangencies are not pseudohyperbolic5. In all known cases, bifurcations of
non-pseudohyperbolic homoclinic tangencies of a diffeomorphism lead to creation of stable
periodic orbits [26, 27, 39, 42, 47, 51, 59, 98].

We stress that by a small perturbation of the system we mean a perturbation which is small
along with a sufficiently large number of derivatives. In such setting, it is absolutely unclear
how to transform the above arguments into a mathematical proof (up to date, similar in spirit

4 Recall that a set is called chain-transitive if for any two points in this set and for any ε > 0 there exists an ε-orbit
which connects these points. A set is called stable with respect to permanently acting perturbations if for any δ > 0
there exists ε > 0 such that ε-orbits starting at this set never leave its δ-neighbourhood.
5 The closure of a homoclinic orbit is formed by two orbits, the homoclinic orbit itself and the saddle periodic orbit
to which it tends both in forward and backward time. These two orbits form a compact invariant set which can be
pseudohyperbolic or not according to definition 1.
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results have been proven in the C1-topology only [14]). Moreover, for the case of flows, there
can be mechanisms of pseudohyperbolicity violation other than homoclinic tangencies (e.g.
Bykov cycles [16–18]) and formulating the analogous conjecture for flows requires a certain
modification of the notion of pseudohyperbolicity [13]. In any case, it is plausible that without
the pseudohyperbolicity or some its extended version (for flows) any chaotic attractor is an
Afraimovich–Shilnikov quasiattractor.

In accordance with this philosophy, in order to reliably establish the robustly chaotic dynam-
ics by numerical experiments with a given system, it is not enough to evaluate Lyapunov
exponents—one also needs to check the pseudohyperbolicity of the numerically observed
attractor. In terms of numerical simulations, if we take a representative trajectory in the attrac-
tor and compute Lyapunov exponentsΛ1 � Λ2 � · · · � Λn, then condition (c) from definition
1 transforms into

Λ1 + · · ·+ Λk > 0, (2)

and condition (b) becomes

Λk > Λk+1. (3)

To satisfy the remaining condition (a) one needs to check that the splitting into a pair of invari-
ant subspaces depends continuously on the point in the attractor. This requires the computation
and analysis of the invariant subspaces E1 and E2 corresponding to the Lyapunov exponents
Λ1, . . . ,Λk and Λk+1, . . . ,Λn, respectively.

In this paper we propose an effective method of verifying condition (a), see the descrip-
tion of the method in section 2 and test examples in section 3. We apply this methodology to
system (1). We show numerically that at μ = 7, σ = 10, b = 8/3, r = 25, the system has an
absorbing domain with a pseudohyperbolic attractor (with dim(Ess) = 1 and dim(Ecu) = 3).
We also check (see section 4.1) that the system has a three-dimensional cross-section in the
absorbing domain and the structure of the Poincaré map is in agreement with the geometrical
model described in [102]. Moreover, we verify that the attractor contains the equilibrium state
at zero.

This equilibrium state is a saddle-focus with a one-dimensional unstable manifold and a
three-dimensional stable manifold. The fact that this equilibrium is a saddle-focus means that
the eigenvalues nearest to the imaginary axis are complex. This implies that the trajectories in
the attractor that pass near the saddle-focus have a characteristic spiral shape.

Many examples of strange attractors where trajectories spiral around a saddle-focus
equilibrium have been observed in models of different nature, e.g. Rössler system [84],
Arneodo–Coullet–Spiegel–Tresser systems [5–7], Rosenzweig–MacArthur system [8, 64],
chemical oscillator systems [25], Chua circuit [22], etc. The chaoticity of such attractors is
explained by the classical Shilnikov theorem [89, 90]: if a system has a homoclinic loop to
a hyperbolic equilibrium state for which the two nearest to the imaginary axis eigenvalues
are complex, then there exists a hyperbolic set in any neighbourhood of the homoclinic loop6.
Thus, if we observe a ‘spiral attractor’, then we can expect the existence of Shilnikov loop for
nearby values of parameters, and the hyperbolic set predicted by Shilnikov theorem can be a
part of the attractor.

6 This formulation is correct for three-dimensional systems; in higher dimensions one needs additional conditions of
general position, see e.g. [94].
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However, in many cases the spiral attractor is a quasiattractor. For example, in three-
dimensional systems of differential equations for which the divergence of vector field is nega-
tive (in particular, for all systems mentioned above), every numerically observed spiral attractor
must be a quasiattractor. This just follows from the results of [78, 79] that arbitrarily small per-
turbations of a three-dimensional system with a homoclinic loop to a saddle-focus with negative
divergence give rise to stable periodic orbits which coexist with the Shilnikov hyperbolic set.

As our example of system (1) shows, spiral attractors in dimension 4 and higher can carry
a pseudohyperbolic structure and, therefore, be not quasiattractors. Homoclinic loops (and
the Shilnikov hyperbolic sets) can still be a part of the attractor but the pseudohyperbolicity
prevents the birth of stable periodic orbits from such loops.

We believe that in system (1) parameter values corresponding to homoclinic loops to a
saddle-focus (Shilnikov loops) are dense in the region of existence of the pseudohyperbolic
spiral attractor, see more discussion on such conjecture in [102, 103].7 We provide a numerical
evidence for this in section 4.2, see the so-called ‘kneading diagrams’ in figure 17. By [78, 79]
bifurcations of such homoclinic loops lead to emergence of homoclinic tangencies. In turn,
bifurcations of homoclinic tangencies create the so-called wild hyperbolic sets [57, 76, 80].
Moreover, these wild sets may accumulate to the Shilnikov loops.

The notion of a ‘wild hyperbolic set’ was introduced by Newhouse [74, 76]; this is a
uniformly hyperbolic closed invariant set which has a pair of orbits such that the unsta-
ble manifold of one orbit has a nontransversal intersection with the stable manifold of the
other orbit in the pair and this property is preserved for all C2-small perturbations—when
we perturb the system, the tangency for a given pair of orbits may disappear, but a tangency
between the invariant manifold for another pair of orbits inside the wild hyperbolic set appears
inevitably.

Since our attractor is the set of all points which are attainable from the saddle-focus equi-
librium by ε-orbits for all arbitrarily small ε > 0, it follows that a wild hyperbolic set belongs
to the attractor in this case. Then, the entire unstable manifold of the wild hyperbolic set is also
attainable from the saddle-focus and, hence, belongs to the attractor.8 In particular, the orbits
of tangency between the unstable and stable manifolds of the wild hyperbolic set also belong
to the attractor. It is important because bifurcations of any homoclinic tangency create homo-
clinic tangencies of arbitrarily high orders, i.e., they cannot be completely described within
any finite-parameter unfolding [50, 55].

Thus, bifurcations of the pseudohyperbolic attractor in system (1) cannot admit a finite-
parameter description. In particular, there can be no good two-parameter description. There-
fore, a two-parameter bifurcation diagram (the ‘kneading diagram’ presented in figure 17)
has a characteristically irregular structure. We borrowed the idea of constructing the knead-
ing diagram from [9, 104]. In these papers, kneading diagrams were built for the clas-
sical three-dimensional Lorenz and Shimizu–Morioka systems and it was noted that the
kneading diagrams in the regions of the existence of the Lorenz attractor have a nice

7 In the C1-topology, this result would follow from the Hayashi connecting lemma [60]; a result from [103] provides
a C1+ε version.
8 Under additional assumptions, one can also show that the attractor can contain heterodimensional cycles [12] involv-
ing saddle periodic orbits with different dimensions of the unstable manifold [67, 68]. This is a hallmark of the so-called
hyperchaos, see e.g. [23, 85, 97, 101, 108].
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foliated structure, while in the parameter regions where the attractor becomes a quasiat-
tractor the kneading diagrams become ‘blurred’, thus indicating the emergence of homo-
clinic tangencies. A similar blurred structure of the kneading diagram obtained for sys-
tem (1) confirms the wildness of the pseudohyperbolic attractor we have found in this
system.

2. How to verify the pseudohyperbolicity

The property of pseudohyperbolicity can be expressed in the form of explicitly verifiable
cone conditions (see e.g. condition (∗) in [1] for Lorenz attractors or lemma 1 in [102] and
theorem 5 in [103] for a more general case). This, in principle, opens a way for developing
interval arithmetics based numerical tools which could be used for a rigorous establishment
of the pseudohyperbolicity (hence, robust chaoticity) of some attractors observed in con-
crete dynamical systems, similarly to the Tucker’s computer-assisted proof of the chaoticity
of the classical Lorenz attractor [99]. Such computations are bound to be time-consuming,
so one also needs easier to implement non-rigorous numerical methods for a fast—and still
reliable—verification of the pseudohyperbolicity.

The approach we have used in recent papers [33, 34, 37] is based on computing Lyapunov
exponents and checking the fulfilment of inequalities (2), (3) for open regions of param-
eter values, by building the so-called modified Lyapunov diagrams. The idea was that the
robustness of conditions (b), (c) with respect to parameter changes is an indirect indication
of pseudohyperbolicity (providing, in fact, conditions (b) and (c) of definition 1). In this
paper we propose a more reliable approach based on a direct verification of condition (a) of
definition 1.

In our computations we take a very long trajectory of a system, remove a sufficiently long
initial segment (to get rid of the transient) and presume that the remaining part of the trajec-
tory gives a good approximation of the attractor. Then we compute the Lyapunov exponents
for this piece of the trajectory, along with the corresponding covariant Lyapunov vectors, see
more about Lyapunov analysis in [31, 65, 66, 107]. In such approach the existence of the
invariant subspaces E1(x) and E2(x) is automatic. So, verifying condition (a) reduces to check-
ing the continuous dependence of E1 and E2 on the point x in the attractor. If E1 and E2

depend continuously on x, then the angle between E1 and E2 stays bounded away from zero (by
compactness of the attractor). This observation is used in [66] for verifying the pseudohyper-
bolicity: one concludes pseudohyperbolicity if the angles between E1 and E2 do not get close
to zero.

Our method is different. We plot the graph of the distance between E2(x) and E2(y) as a func-
tion of the distance between x and y for every pair of points in the attractor (i.e., on the piece
of the trajectory which we use for the approximation of the attractor). If dist(E2(x), E2(y)) → 0
as dist(x, y) → 0, then we conclude that E2 depends on the point continuously. Importantly, we
endow the numerically obtained E2 with an orientation, invariant with respect to the linearized
flow, so we measure the distance between oriented spaces E2(x) and E2(y). Thus, we check
more than required by the pseudohyperbolicity condition (a). Namely, we establish the exis-
tence and continuity of an orientable field of subspaces E2(x). Such a field may not exist for
all pseudohyperbolic attractors (for example, for nonorientable Lorenz attractors [2, 95]). It
always exists when the absorbing domain D (to which the pseudohyperbolicity property of the
attractor is extended) is simply-connected. But for a general topology of the attractor, the orien-
tation of E2 may switch when continued along a non-retractable loop. This makes our method
applicable to a somewhat narrower class of attractors, however it is enough for our purposes,
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and taking the orientation into account makes the method more sensitive and reliable, as is seen
from the examples below.

After the continuity of E2 has been verified, we also check the continuity of the field of
subspaces E1, also endowed with an invariant orientation. If both the fields E1(x) and E2(x) are
continuous, we conclude the pseudohyperbolicity of the attractor.

In this paper we consider only the cases when the spaces of strong contraction E2(x) =
Ess(x) are one-dimensional and, thus, the subspaces E1(x) = Ecu(x) have codimension 1.
Therefore, the continuity of Ecu(x) is equivalent to the continuity of the field of normals Ncu(x)
to the hyperplanes Ecu(x). By the definition, Ess(x) and Ncu(x) are line fields; introducing an ori-
entation makes them vector fields. We build the vector fields �Ess(x) and �Ncu(x) by the following
procedure.

Consider a system of differential equations

ẋ = F(x), x ∈ R
n. (4)

Let X = {x1, . . . , xm} be a sequence of points on a trajectory9 of this system corresponding to
time moments t1, . . . , tm.

We compute Lyapunov exponents Λ1, . . . ,Λn for this trajectory and check conditions (b),
(c), which in our case take the form

Λ1 + · · ·+ Λn−1 > 0, (5)

Λn−1 > Λn. (6)

Next, we take an arbitrary unit vector um at the point xm and define a sequence of unit vectors us

at the points xs, s = 1, . . . , m, by the following inductive procedure: if us is the vector obtained
on the (m − s)-th iteration, then us−1 is defined as us−1 = Us−1/‖Us−1‖, where Us−1 is the
solution at t = ts−1 of the variation equation

U̇ = DF(x(t)) U (7)

with the initial condition U(ts) = us; here DF stands for the matrix of derivatives of F and
x(t) is the solution of (4) with the initial condition x(ts) = xs. We emphasize that we solve
equations (4), (7) in backward time (from t = ts to t = t1). In order to suppress instability in x,
we use, at every step, the stored value of xs as the initial condition, precomputed by integration
of (4) in forward time. By (6) the sequence of the unit vectors us exponentially converges to
the covariant Lyapunov vector corresponding to the Lyapunov exponent Λn, for almost every
initial conditions um. Thus, if m1, m2, and m are sufficiently large, then the segment of the
orbit X corresponding to s ∈ [m1, m − m2] gives a good approximation to the attractor and the
vectors us give a good approximation to �Ess(xs).

We use an analogous procedure to construct vectors �Ncu(xs) = ws. We start with a unit vector
w0 and define, inductively, ws+1 = Ws+1/‖Ws+1‖, where Ws+1 is the solution at t = ts+1 of
the adjoint variation equation

Ẇ = −[DF(x(t))]� W (8)

9 Note that rigorous integration of differential equations is a very non-trivial matter [19–21, 62, 99, 100]. We however
do not attempt to completely control the accuracy of integration. In the current paper, a Runge–Kutta six method [105]
is used.
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with the initial condition W(ts) = ws. Obviously, if u(t) is a solution of (7) andw(t) is a solution
of (8), then the inner product (u(t),w(t)) stays constant:

d
dt

(u,w) = (Au,w) − (u, A�w) = 0

(where we denote A(t) = DF(x(t))). Therefore, given any codimension-1 subspace orthogonal
to w0, the sequence of its iterations by variational equation (7) will remain to be orthogonal to
Ws at t = ts. Since for a typical choice of such subspace its iterations converge exponentially
to Ecu, it follows that Ws gives a good approximation to �Ncu(xs) (orthogonal to Ecu) for all
sufficiently large s.

The same procedure works for discrete dynamical systems. We consider a diffeomorphism
x �→ F(x) and take its trajectory x1, . . . , xm, where xs+1 = F(xs). Then, the vectors us and ws

are determined by the rule

us−1 =
DF(xs)−1us

‖DF(xs)−1us‖
, ws+1 =

[
DF(xs)�

]−1
ws

‖DF(xs)�
]−1

ws‖
.

Note, that the attractor of the map F can have orientable fields of subspaces �Ess and �Ncu, but
the orientation may flip with each iteration of F. To avoid problems with that, we can simply
remove from the sequence (xs, us,ws) every second term.

Finally, once the orbit xs, s ∈ [m1, m − m2], and the vectors us and ws are computed, we
plot the �Ess- and �Ncu-continuity diagrams. These are graphs in the (ρ,ϕ)-plane, where for each
pair of points (xi, x j), m1 � i < j � m − m2, we plot a point whose coordinate ρ equals to the
distance between xi and x j and the coordinate ϕ equals to the angle between ui and u j for the
�Ess-continuity diagram or between wi and w j for the �Ncu-continuity diagram.

These diagrams look like clouds of points in the (ρ,ϕ)-plane. When both the �Ess and �Ncu

clouds touch the axis ρ = 0 only at the single point (ρ,ϕ) = (0, 0), this is a convincing evidence
towards the continuity of the fields Ess and Ncu and, therefore, the pseudohyperbolicity of the
attractor.

On the other hand, if one of the clouds touches the ϕ-axis at nonzeroϕ or there is no visible
gap between the cloud and the ϕ-axis, then, the corresponding field of subspaces is discontin-
uous (hence the attractor is not pseudohyperbolic) or it is non-orientable. The latter case may
happen only when the cloud touches the axis ρ = 0 just at two points ϕ = 0 and ϕ = π; in
this case, one needs more analysis in order to decide whether the attractor is pseudohyperbolic
or not. In particular, in the case of discrete dynamical systems (maps) we consider only even
indices i and j, to avoid possible problems with orientation flipping.

3. Test examples

Before applying the method to system (1), we test it on several examples of strange attrac-
tors. We try both the well-known classical models (Lorenz system, Hénon map, Lozi map,
Anosov diffeomorphism) and those that entered the nonlinear dynamics relatively recently
(three-dimensional Hénon maps).

3.1. Two-dimensional maps

In the two-dimensional case the pseudohyperbolicity of the attractor is equivalent to uni-
form hyperbolicity, so our method should distinguish between the uniformly-hyperbolic
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Figure 2. (a) Attractor of the Hénon map (9) for b = 0.1, M = 1.7. (b) and (c) �Ess- and
�Ncu-continuity diagrams for the attractor.

attractors and not uniformly-hyperbolic ones (the latter can include e.g. Benedicks–Carleson
non-uniformly hyperbolic attractor [10, 73, 106]).

First, we consider the two-dimensional Hénon map

x̄ = y,

ȳ = M − bx − y2.
(9)

In figure 2 we show numerical results for the Hénon attractor at b = 0.1, M = 1.7. The
attractor is shown in figure 2(a). The attractor’s absorbing domain appears to be simply-
connected, so would it be uniformly hyperbolic, the corresponding invariant line fields Ess

and Ecu should be orientable. However, since the attractor apparently contains a saddle fixed
point with negative multipliers, each iteration of the map will flip the orientation. There-
fore, in constructing the continuity diagrams we consider only every second iteration of
the map.

The continuity diagrams are shown in figures 2(b) and (c). The presence, in these graphs,
of points close to (0,ϕ) with ϕ bounded away from zero indicates the discontinuity of the
vector fields �Ess and �Ncu. This confirms the well-known fact that Hénon map (as an area-
contracting diffeomorphism of a plane) cannot have uniformly-hyperbolic strange attractors
(i.e., any strange attractor in the Hénon map must be a quasiattractor according to our ‘P or Q’
conjecture).

Note that in the �Ess-continuity diagram the only points close to ρ = 0 axis are close to
ϕ = 0 or ϕ = π—this means that the line field Ess (i.e., without orientation) would appear
continuous here. This demonstrates that taking the orientation of the invariant subspaces into
account indeed increases the sensitivity of the method.

In figure 3 analogous results are shown for b = −0.3, M = 1.4. Both figures 3(b) and (c)
confirm the discontinuity of Ess and Ecu.

The next example is the Lozi map

x̄ = 1 + y − M|x|,
ȳ = bx.

(10)

It is well-known that this map has a singularly-hyperbolic attractor for suitable values of the
parameters M and b (e.g. we take b = 0.5 and M = 1.7). The singularity appears due to the
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Figure 3. (a) Attractor of the Hénon map (9) for b = −0.3, M = 1.4. (b) and (c) �Ess-
and �Ncu-continuity diagrams for this attractor.

Figure 4. (a) Lozi attractor of map (10) for b = 0.5, M = 1.7. (b) and (c) �Ess- and �Ncu-
continuity digrams for this attractor.

discontinuity of the derivative at x = 0. Thus, we should not expect continuity from the invari-
ant line fields Ess and Ecu. However, because the map is piecewise affine, the values of the
jump in the direction of �Ess or �Ncu at the points of discontinuity must form a certain dis-
crete set. One can, indeed, clearly see this from figure 4 where the �Ess- and �Ncu-continuity
diagrams are formed by horizontal lines that touch the line ρ = 0 at a certain discrete set of
ϕ values.

Now we consider Anosov diffeomorphisms of a torus. By definition, these maps are
uniformly hyperbolic. The classical example is given by the linear map

x̄ = 2x + y (mod 1),

ȳ = x + y (mod 1).
(11)

Both the �Ess- and �Ncu-continuity diagrams in this case are, quite expectably, just the lines
ϕ = 0.
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Figure 5. (a) Attractor of the perturbed Anosov map (12) for ε = 0.6; (b)–(d) �Ess-, �Ncu-
and �Eu-continuity diagrams. Note, that at ε = 0 all the continuity diagrams flatten just
to the straight line ϕ = 0.

Small perturbations do not destroy the hyperbolicity of map (11). As an example, we
consider the two-dimensional map from [28]:

x̄ = 2 arctan

(
(1−ε2) sin 2πx

2ε+ (1+ε2) cos 2πx

)
+ y (mod 1),

ȳ = arctan

(
(1−ε2) sin 2πx

2ε+ (1+ε2) cos 2πx

)
+ y (mod 1).

(12)

The attractor and the corresponding �Ess- and �Ncu-continuity diagrams at ε = 0.6 are presented
in figure 5, as well as a similarly constructed continuity diagram for the unstable direction �Eu.
The pictures clearly confirm the uniform hyperbolicity of map (12).

3.2. Classical Lorenz model

An example of a three-dimensional flow which possesses a pseudohyperbolic attractor for an
open set of parameter values is given by the Lorenz model

⎧⎪⎪⎨
⎪⎪⎩

ẋ = σ(y − x),

ẏ = x(r − z) − y,

ż = xy − bz,

(13)

where σ, r, and b are parameters. By means of rigorous numerics, it was established by
Tucker [99] that ‘the Lorenz attractor exists’ in this system at (σ = 10, r = 28, b = 8/3).
Namely, it follows from the Tucker’s result that this system satisfies conditions of the
Afraimovich–Bykov–Shilnikov geometrical model [1, 2].

This implies that the attractor of this system at these parameter values is pseudohyper-
bolic. Thus, there exists a forward invariant absorbing domain D within which the Lorenz
attractor resides; at each point of D there is a pair of linear spaces Ess and Ecu with
dim Ess = 1 and dim Ecu = 2 such that conditions of definition 1 are satisfied for E1 = Ecu and
E2 = Ess.

By robustness of the pseudohyperbolicity property, the system has the pseudohyperbolic
attractor also for some neighbourhoodof these parameter values. Numerically (non-rigorously)
the region LA in the (σ, r)-parameter plane which corresponds to the existence of the pseudo-
hyperbolic Lorenz attractor for fixed b = 8/3 was determined in [15, 29]. The left boundary of
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Figure 6. Poincaré map T of the section Π (the section z = r − 1 for the Lorenz model)
for values of parameters (a) in LA, when the Lorenz attractor exists; (c) to the right of
lA=0. (b) The domain LA in the (σ, r)-parameter plane (for b = 8/3) corresponding to the
existence of the pseudohyperbolic Lorenz attractor; the curves l1, l2 and l3 are described
in [91], the curve lA=0 was first computed in [15] and studied in more detail in [29].

LA (see figure 6(b)) is the curve l2 that corresponds to the moment when the unstable separa-
trices of the saddle equilibrium O(0, 0, 0) lie on the stable manifolds of certain saddle periodic
orbits L1 and L2. These periodic orbits were born from a homoclinic butterfly (to the sad-
dle O) which exists when (σ, r) belong to the bifurcation curve l1. Along with the orbits L1,2

a non-attracting hyperbolic set is born as the homoclinic butterfly splits. This set becomes
attracting (so the Lorenz attractor forms) upon crossing the curve l2 and its attraction basin
is bounded by the stable manifolds of L1 and L2. To the left of l2 the separatrices of O tend
to stable equilibrium states O1 and O2, while to the right of l2 they tend to the Lorenz attrac-
tor. However, initially, the Lorenz attractor coexists with the stable equilibria O1 and O2; they
loose stability on the curve l3 that corresponds to the subcritical Andronov–Hopf bifurcation
[83]. Here, the periodic orbits L1 and L2 merge with the equilibria O1 and O2 (it happens at
r = r3 	 24.74 if we fix b = 8/3 and σ = 10). In the region to the right of l3, the equilib-
ria O1 and O2 become saddle-foci with two-dimensional unstable manifolds and the Lorenz
attractor becomes the only attractor of the system; see more details in [2, 91] and in chapter 5
of [93].

The right boundary lA=0 of the region LA corresponds to the emergence of ‘hooks’ in the
Poincaré map, see figure 6(c). System (13) has a cross-section, the surface Π : {z = r − 1}.
The Poincare map T has a discontinuity line Π0 corresponding to the intersection of Π. This
line divides the cross-section into two parts, Π+ and Π−. The images T(Π+) and T(Π−) have
a triangular shape, with the vertices at the points M− and M+ where the unstable separatrices
of O intersect Π for the first time. Note that the triangles become infinitesimally thin close
to the points M±. In the region of the existence of the Lorenz attractor, the Poincare map
T is (singularly) hyperbolic (the hyperbolicity of the Poincare map is equivalent here to the
pseudohyperbolicity of the flow). The hyperbolicity implies the existence of a smooth invariant
foliation Fss, along which the map T is contracting, see figure 6(a). One may conjecture that
this foliation still exists at the boundary lA=0 and this boundary corresponds to the tangency
of the triangles T(Π±) at their tip points M± to the foliation. Upon crossing the boundary,
the hyperbolicity of the map T gets destroyed. A plausible conjecture is that the curve lA=0 is
densely filled by points corresponding to the existence of homoclinic loops to O with the so-
called separatrix value A equal to zero. Bifurcations of such loops give rise to stable periodic
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Figure 7. Different attractors of the Lorenz system (at the top) and the correspond-
ing continuity diagrams for �Ess(x) (in the middle) and for �Ncu(x) (at the bottom) for
the parameter values (a) r = 28, σ = 10, b = 8/3, when the attractor is pseudohyper-
bolic, and (b) r = 35, σ = 10, b = 8/3, when condition (a) of the pseudohyperbolicity
(definition 1) is violated. Note that there is hardly to find any visual difference between
the shape of these two attractrors, despite the difference in dynamics.

orbits [94]. Therefore the boundary lA=0 separates the region of the pseudohyperbolicity of the
Lorenz attractor from the region where it becomes a quasiattractor.

We built �Ess- and �Ncu-continuity diagrams for the flow of the Lorenz model for parameter
values to the left and to the right of the curve lA=0, see figure 7. The diagrams confirm the pseu-
dohyperbolicity of the Lorenz attractor in the region LA and the loss of the pseudohyperbolic
structure upon crossing the border of this region.

Note also that the continuity diagram for �Ess touches the line ρ = 0 only atϕ = 0 andϕ = π.
As we explained, this means either the discontinuity of the line field Ess or its non-orientability.
The latter possibility cannot be rejected straight away, as the neighbourhood of attractor is not
simply-connected (it is a ball around the saddle equilibrium state O and two handles around

2031



Nonlinearity 34 (2021) 2018 S Gonchenko et al

the two unstable separatrices of O). Moreover, bifurcations of a pair of symmetric homoclinic
loops with zero separatrix value A can lead to the birth of a non-orientable Lorenz attractor [11,
32, 95]—such pairs must exist for parameter values on the boundary curve LA=0, so we can
predict the existence of ‘thin’ non-orientable pseudohyperbolic Lorenz-like attractors outside
the region LA for the parameter values from the so-called ‘Shilnikov flames’ [104]. Nonethe-
less, the difference between the �Ess-continuity diagrams in figures 7(a) and (b) clearly indicates
that the classical orientable pseudohyperbolic attractor that exists in the region LA is destroyed
when the boundary line lA=0 is crossed.

3.3. Lorenz-like attractors in three-dimensional maps

It is shown in [103] that adding a small time-periodic perturbation to a system with a pseu-
dohyperbolic attractor does not destroy the pseudohyperbolicity. In particular, the Poincaré
map (here—the map over a period of the perturbation) for a small time-periodic perturbation
of a system with a Lorenz attractor will have a discrete Lorenz attractor—a pseudohyper-
bolic attractor similar in shape to the Lorenz attractor of the continuous-time flow [46]. One
of the consequences of this is that discrete Lorenz attractors emerge at local bifurcations of
periodic orbits in systems of arbitrary nature. Indeed, it was shown in [95] that the normal
form for bifurcations of a periodic orbit with multipliers (−1,−1, 1) is a map whose second
iteration is the Poincaré map of a small time-periodic perturbation of the Shimizu–Morioka
system [96]. This system has the (continuous-time) Lorenz attractor for some region of param-
eter values [87, 88], a rigorous computer assisted proof for this fact was given in [19].
Therefore, the codimension-3 bifurcation corresponding to a periodic orbit with multipliers
(−1,−1, 1) can lead, under additional assumptions [41, 95], to the birth of a discrete Lorenz
attractor10.

An example of such bifurcation was considered in [46] where discrete Lorenz-like attractors
were found for the three-dimensional Hénon map

x̄ = y, ȳ = z, z̄ = M1 + Bx + M2y − z2, (14)

in a certain region of the values of parameters M1, M2, and B adjoining to the point
(M1 = 1/4, M2 = 1, B = 1). This point corresponds to the existence of a fixed point with
multipliers (−1,−1, 1), and it was checked in [46] that the normal form for this bifurcation
in this map satisfies to the conditions for the birth of the Lorenz attractor. This implies the
existence of the pseudohyperbolic attractor for a region of parameter values close enough to
this point, see [19]. However, attractors which look very similar to the Lorenz attractor of the
Shimizu–Morioka system were found also at a sufficient distance from the bifurcation point.
For them, the pseudohyperbolicity is not evident and needs to be verified.

In figure 8, examples of discrete Lorenz-like attractors are shown for map (14) at B = 0.7.
The continuity diagrams were computed for every second iteration of the map (the map must
flips the orientation in Ess, as the smallest, i.e., the strongly stable, eigenvalue of the fixed point
is negative). Attractors in figures 8(a) and (b) show the continuity of the field of subspaces
Ess(x) and Ecu(x), so we can conclude the pseudohyperbolicity, see also [36] (the necessary
conditions Λ1 + Λ2 > 0 and Λ2 > Λ3 were checked in [46]).

10 This fact was used in [43–45, 47, 52] to show that small discrete Lorenz-like attractors can emerge under global
bifurcations of multidimensional diffeomorphisms with homoclinic tangencies and with nontransversal heteroclinic
cycles. More general universal bifurcation scenarios leading to discrete Lorenz-like attractors were proposed in [37].
Such scenarios are realized in three-dimensional Hénon-like maps [33, 34, 40] and in nonholonomic models of Celtic
stone [35, 38].
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Figure 8. Discrete Lorenz-like attractors of map (14) (at the top) and their �Ess-
continuity graphs (middle) and �Ncu-continuity graphs (bottom). Parameter values are
(a) M1 = 0.044, M2 = 0.77, B = 0.7, (b) M1 = 0.0275, M2 = 0.8, B = 0.7, and (c)
M1 = 0, M2 = 0.85, B = 0.7. Attractor shown in (c) is not pseudohyperbolic.

In spite of the positivity of the numerically determined in [46] maximal Lyapunov exponent
the attractor in figure 8(c) is not pseudohyperbolic (the fields of subspaces Ess(x) and Ecu(x) are
not continuous). In fact, one can show that a stable periodic orbit exists at these parameter value
and the ‘chaotic attractor’ seen in this figure 8(c) is an artifact of the (very small) round-off
numerical noise [30].

4. Pseudohyperbolic spiral attractor

The concept of pseudohyperbolic attractors was proposed in [102]. In the same paper,
a geometric model of the wild spiral attractor for flows in dimension four and higher
was constructed. This geometrical model can be considered as a generalization of the
Afraimovich–Bykov–Shilnikov model of the classical Lorenz attractor [1, 2]: in the model
of [102] the saddle equilibrium state of the Lorenz system is replaced by a saddle-
focus and the condition of singular hyperbolicity of the Poincaré map is replaced by the
pseudohyperbolicity.

In [94], system (1) was proposed as a possible candidate for a four-dimensional flow which
can be described (for some open set of parameter values) by the geometric model from [102].
The idea was that at μ = 0 system (1) has an invariant three-dimensional hyperplane w = 0,
restricted to which the system is exactly the Lorenz system. So, when we fix the classical
Lorenz parameters r = 28, σ = 10, b = 8/3 and take μ = 0, system (1) has the Lorenz attrac-
tor lying entirely in the hyperplane w = 0. At small μ 
= 0 the plane w = 0 is no longer
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invariant as the saddle equilibrium O at zero becomes a saddle-focus (with a pair of com-
plex conjugate eigenvalues −b ± iμ), and one numerically observes a strange attractor which
includes orbits spiralling around the saddle-focus, see figure 1.

However, the pseudohyperbolicity conditions are not fulfilled for small μ 
= 0. To see this,
note that at μ = 0 the Lorenz attractor for the restriction of the system to the invariant hyper-
plane w = 0 is pseudohyperbolic as guaranteed by the expansion of two-dimensional areas,
but at μ 
= 0 we need expansion of three-dimensional volumes. Indeed, the eigenvalues of the
linearization at the saddle-focus O are equal to

λ1 =
1
2

(√
(σ − 1)2 + 4σr − σ − 1

)
,

λ2,3 = −b ± iμ,

λ4 = −1
2

(√
(σ − 1)2 + 4σr + σ + 1

)
.

At r = 28, σ = 10, b = 8/3 this gives λ1 ≈ 11.83,λ2,3 = −8/3 ± iμ,λ4 ≈ −22.83. There-
fore, the space Ess at the point O is one-dimensional (it corresponds to the smallest eigenvalue
λ4). By continuity of Ess, would we have a pseudohyperbolic attractor the space Ess would
be one-dimensional at every point of the attractor. Accordingly, the space Ecu must be three-
dimensional. This condition is not satisfied for small μ—the sum of the first three Lyapunov
exponents is negative. Indeed, it is well known that the first two Lyapunov exponents for the
Lorenz system at the classical parameter values are Λ1 ≈ 0.906 and Λ2 = 0. In system (1)
at μ = 0 the Lyapunov exponents Λ1 and Λ2 remain the same and Λ3 = −8/3. This gives
Λ1 + Λ2 + Λ3 ≈ −1.761 < 0 and it cannot become positive for small μ.

In this paper we show that the pseudohyperbolicity is gained for a certain interval of suf-
ficiently large values of μ. We also slightly deviate from the classical value of r = 28. For
example, the pseudohyperbolicattractor is found atσ = 10, b = 8/3, r = 25, and 6 < μ < 12.

Figure 9 shows a diagram of Lyapunov exponents on the (r, μ)-parameter plane for attrac-
tors of system (1) with fixed σ = 10 and b = 8/3. Different colours correspond to different
spectra of the Lyapunov exponentsΛ1 > Λ2 > Λ3 > Λ4 and, respectively, to different dynam-
ical regimes. Green domain 1 and blue domain 2 correspond to the existence of regular attrac-
tors: a stable equilibrium (Λ1 < 0) and a stable limit cycle (Λ1 = 0,Λ2 < 0), respectively.
Yellow domain 3 and red domain 4 correspond to the existence of strange attractors, where
Λ1 > 0,Λ2 = 0 and Λ1 + Λ2 + Λ3 < 0 in the yellow domain 3 while Λ1 + Λ2 + Λ3 > 0 for
the red domain 4. Note that the numerically observed attractors for the values of parameters
from domains 3 and 4 are always spiral attractors that appear to contain the saddle-focus O at
zero. The necessary condition for the pseudohyperbolicity of the attractor

Λ1 > 0, Λ2 = 0, Λ1 + Λ2 + Λ3 > 0 (15)

is fulfilled only in the red domain 4. In particular, the attractor in figure 10(a) (point A in the
diagram of figure 9) is not pseudohyperbolic.

The focus of our investigation will be the attractor at

r = 25, σ = 10, b = 8/3, μ = 7. (16)

The corresponding point (r = 25, μ = 7) (point B) belongs to domain 4 from figure 9. There-
fore, the attractor satisfies necessary condition (15) for pseudohyperbolicity (the numerically
obtained exponents are Λ1 ≈ 2.19,Λ2 ≈ 0,Λ3 ≈ −1.96,Λ4 ≈ −16.56).
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Figure 9. Diagram of Lyapunov exponents on the (r, μ)-plane for fixed σ = 10,
b = 8/3. Green and blue domains correspond to simple attractors (stable equilibrium
and stable limit cycle, respectively). Yellow and red domains correspond to strange
attractors with Λ1 +Λ2 + Λ3 < 0 and Λ1 + Λ2 +Λ3 > 0. Note that Λ1 +Λ2 + Λ3 +
Λ4 = −σ − 2b − 1 < 0 everywhere in the diagram.

The attractor is shown in figure 10(b). To establish its pseudohyperbolicity,we need to verify
that the subspaces Ess(x) and Ecu(x) depend continuously on the point of the attractor. We did
it by computing the �Ess- and �Ncu-continuity diagrams, as discussed in section 2. The diagrams
are shown in figure 10(b). They are quite similar to those for the Lorenz attractor (compare
figures 10(b) and 7(a)) and clearly show the sought continuity of Ess and Ecu.

Note that at the further increase of μ the continuity condition gets broken, i.e., the attractor
loses the pseudohyperbolicity. For example, the attractor shown in figure 10(c) corresponds
to point C (r = 25, μ = 15) in the diagram from figure 9. Here, the �Ess- and �Ncu-continuity
diagrams clearly indicate the lack of continuity.

4.1. Spiral geometry of the attractor

In the rest of the paper we study dynamical properties of the pseudohyperbolic attractor found
for the parameter values given by (16). First, we establish that the system has an absorbing
domain that contains O and has a special structure similar to that described in [102].

In [102] the system is assumed to have a cross-section Π, a three-dimensional cylinder
whose intersection with Ws(O) contains a two-dimensional annulus Π0 which divides Π into
two cylinders Π+ and Π−. Both unstable separatrices Γ+ and Γ− of O are assumed to intersect
Π. We denote as P+ and P− the points of the first intersection of Γ+ and, respectively,Γ− with
Π. Thus, the orbits starting in Π near Π0 return to Π near the points P+ and P−. Moreover,
we also assume that all the orbits starting in Π+ ∪ Π− return to Π. Thus, the Poincaré map
T : Π+ ∪ Π− → Π is defined, see figure 11. In this construction, if we take the union of all
forward orbits starting in Π and add to it the two separatrices Γ+ and Γ−, then we obtain an
absorbing domain.
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Figure 10. The Ess-continuity diagrams (top), Ncu-continuity diagrams (middle), and
phase portraits of the attractors (bottom) for parameters values corresponding to the
points (a) A(r = 25, μ = 3), (b) B(r = 25, μ = 7), and (c) C(r = 25, μ = 15) in the
(r, μ)-plane at σ = 10, b = 8/3; see the corresponding points in the Lyapunov diagram
shown in figure 9. The corresponding attractors in bottom (a) and (c) figures, i.e., for
parameter points A and C, are quasiattractors (for (a) the necessary condition (15) is
not fulfilled, for (c) Ess and Ecu are discontinuous) while the attractor shown in bottom
(b) figure is pseudohyprbolic (parameter point B).

It happened to be difficult to find an explicit expression for the cylindric cross-section Π
in our system. However, in the above described construction, instead of the cylinder Π we
may take, as a cross-section, a pair of disjoint balls Σ+ and Σ− transverse to Γ+ and Γ−,
respectively, see figure 11. Since every point starting atΠ+ before returning toΠ must intersect
Σ+ and every point starting at Π− before returning to Π must intersect Σ−, the analysis of the
Poincaré map on Π is equivalent to the analysis of the Poincaré map T̃ on Σ = Σ+ ∪ Σ−.

We can represent the map T̃ as T̃ = T0 ◦ T1, where T1 takes Σ into Π and T0 takes Π+ into
Σ+ andΠ− intoΣ−. The image T1(Σ+) inΠ is divided byΠ0 into two regions, one further goes
to Σ+, the other goes to Σ−. Since orbits passing near W s(O) come close to the saddle-focus
and, therefore, spiral around the unstable separatricies Γ+ and Γ−, the image T̃(Σ+) ∩ Σ+ has
a form of a wedge spiralling to the point M+ = T−1

1 P+ and the image T̃(Σ+) ∩ Σ− has a form
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Figure 11. The scheme of Poincaré maps for the wild spiral attractor.

Figure 12. (a) At small μ the Poincaré map expands two-dimensional areas transverse
to the strong stable direction only near Π0 (the image of this region is shown by a darker
colour). The attractor is not pseudohyperbolic (the sum of the three largest Lyapunov
exponents is negative). (b) The attractor becomes pseudohyperbolic at larger μ: the
Poincaré map expands areas transverse to Ess everywhere in a neighbourhood of the
attractor. (c) Scheme of the Poincaré map at μ = 0.

of a wedge spiralling to the point M− = T−1
1 P−. The same is true for the image of Σ−. On the

cross-section Π the images of these spiral wedges by the map T1, i.e., the set T1 ◦ T̃(Σ), have
the form schematically presented in figures 12(a) and (b). Would the equilibrium O be a saddle
instead of the saddle-focus, the picture would be as shown in figure 12(c), i.e., the same as in
the Lorenz model with an additional contracting direction (compare with figure 6(a)).

Thus, figure 12(c) depicts the action of the Poincaré map for system (16) at μ = 0, while
figure 12(a) shows the behaviour at small μ 
= 0. As we mentioned, the sum of the three largest
Lyapunov exponents atμ = 0 is negative, and it cannot become positive for smallμ 
= 0, there-
fore we do not have pseudohyperbolicity at small μ 
= 0. Namely, the Poincaré map does not
expand two-dimensional areas transverse to Ess (it can expand the two-dimensional areas only
near the surface Π0). Our understanding for the onset of pseudohyperbolicity as μ grows to
non-small values is that at such values of μ the images T1

(
T̃(Σ) ∩ Σ+

)
and T1

(
T̃(Σ) ∩ Σ−

)
start spiral around their tips P+ and P− with higher amplitude, giving enough room for the
expansion of areas everywhere on the cross-section, as shown in figure 12(b).
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Figure 13. Projections of the attractor and cross-section Σ onto (a) the hyperplane
(x, y, z) and (b) the hyperplane (x, z,w).

In order to construct the cross-section Σ in system (1) we take the three-dimensional
hypersurface

z =
√

9x2 − w2 − 550. (17)

The boxes Σ+ and Σ− are the parts of this surface defined by the inequalities

x ∈ [10, 30], y ∈ [−20, 20], w ∈ [−60,−10] (18)

and, respectively,

x ∈ [−30,−10], y ∈ [−20, 20], w ∈ [−60,−10]. (19)

We check that the orbits of the flow intersect such chosen Σ transversely, see figure 13. It
is worth noting that we can not use the hyperplane z = const as a cross-section. Such choice,
inherited from the Lorenz system, could be natural at small μ, but in the case of non-small μ
we consider here the orbits that wind around the saddle-focus inevitably touch such planes.
In general, the problem of choosing a good cross-section in problems of such kind is not
trivial.

In our case, we encountered a problem that not all the orbits starting in Σ return inside it.
Namely, all the points starting in Σ return to the hypersurface (17), however not all of them
satisfy conditions (18) or (19). We resolve this issue by considering the tenth return to the
hypersurface (17). For the uniform grid of 200 × 200 × 200 of initial conditions on Σ+ and
Σ−, we checked that the image after the tenth return to the hypersurface lies strictly inside Σ,
see figure 14. This confirms the existence of the absorbing domain.

We also checked that the one-dimensional unstable separatrices of O intersect Σ; the inter-
section points M± are shown in figure 15. In the same figure we show the attractor A of the
separatrices, obtained numerically by computing 6 × 105 intersections of the separatrices with
Σ and omitting the first 105 intersection points.

We use the following colour coding: the images of green and black points by T̃ belong to
Σ− and the images of red and blue points by T̃ belong to Σ+ while the images of green and
blue points by T̃−1 belong to Σ+ and the images of red and black points by T̃−1 belong to Σ−.
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Figure 14. The image of the cross-section Σ− after 10 iterations of the return map in
the intersection with x < 0 lies strictly inside Σ−.

Figure 15. (a) Attractor of system (1) for parameter values (16) in the intersection with
the cross-section Σ. Green and black points are those whose iterations by T̃ belong to
Σ−; red and blue points are those whose images by T̃ belong to Σ+. The images of
green and blue points by T̃−1 belong to Σ+ and the images of red and black points
by T̃−1 belong to Σ−. The surface Ws is a piece of the stable manifold of the point O
defined as T−1

1 Π0; it separates green and black poits in the attractor from red and blue
ones. The visible presence of the intersection of the attractor with the stable manifold of
the saddle-focus O confirms that O belongs to the attractor, i.e., this is a spiral attractor.
(b) The part of the attractor that lies in Σ− (an enlarged version of the corresponding
fragment of (a)).

Obviously, the boundary between ‘green and black’ and ‘red and blue’ points corresponds
to the intersection of Σ with T−1

1 Π0, a piece of the stable manifold Ws(O). We computed this
surface by a numerical procedure independent of the computation of the attractor. We took the
uniform grid of 200 × 200 × 200 initial points and interpret as W s the boundary between the
points whose first iteration by the Poincaré map T̃ lies in the region x < 0 and the points whose
first iteration by T̃ lies in x > 0.
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Figure 16. Schematic model for the Poincaré map for a hypothetical case of a pseudo-
hyperbolic spiral attractor with a Lorenz-like geometry.

It is clearly seen in figure 15 that the attractor A intersects the surface Ws. Therefore, we can
conclude that the attractor of the separatrices of O for the flow of system (1) for the parameter
values given by (16) intersects the stable manifold of O. Hence, it contains the saddle-focus O
itself. This shows that this is indeed a spiral attractor and explains the similarity of the shape of
the intersection of the numerically obtained attractor with the cross-section and the schematic
figure 12(b).

Remark 4.1. In the attractor we found in system (1), the point M+ lies in Σ+ and M− lies in
Σ−. This is different from what we have for the classical Lorenz attractor (cf figures 12(b) and
(c)). It would be interesting to find examples of pseudohyperbolic spiral attractors for which
M+ ∈ Σ− and M+ ∈ Σ+, like in figure 16. In the kneading diagrams shown in figure 17 the
case M+ ∈ Σ+ corresponds to region coloured in blue, while the Lorenz-like case M+ ∈ Σ−
corresponds to orange colours (these regions are separated by the curve l1 of a homoclinic
butterfly similar to that in the Lorenz model, see figure 6(b)).

4.2. Verification of the wild nature of the attractor

Our final goal is to demonstrate that the pseudohyperbolic attractor we have found in system
(1) for values of parameters close to (16) is wild, i.e., it admits homoclinic tangencies. The
direct search of such tangencies inside the attractor could be a hard computational problem (it
requires finding saddle periodic orbits, to construct their invariant manifolds, etc). Instead, we
employ an indirect approach based on the method of kneading diagrams.

Kneading diagrams were introduced in papers [9, 104] as a very fast and effective tool
for visualization of the complicated bifurcation set corresponding to homoclinic loops to a
hyperbolic equilibrium with one-dimensional unstable manifold. We use the kneading diagram
to demonstrate the density of parameter values corresponding to the existence of homoclinic
loops to the saddle-focus O. The latter, by [78, 79], implies the existence of sought orbits of
homoclinic tangencies which pass arbitrarily close to O. Since O belongs to the attractor (see
section 4.1), this indicates the wildness of the attractor.

We construct the kneading diagram in the following way. Given a parameter value, we take
one of the unstable separatricies of O and use it to build the kneading sequence s0, s1, s2, . . .
(by the symmetry, computations with the other separatrix will give equivalent results). If, on
this separatrix, the first point corresponding to the maximum of |x| has x > 0, then we assign
s1 = 1, and if the first maximum of |x| corresponds to x < 0, then we put s0 = 0. Repeating
the procedure, we can compute the numbers s j equal to 0 or 1 for j = 1, . . . , q, where q is any
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Figure 17. (a) Kneading diagram for the four-dimensional Lorenz system (1) in
the (r, σ)-plane for fixed b = 8/3 and μ = 7; (b) zoomed fragment near the point
(r = 25, σ = 10). The figure suggests that homoclinic loops to the saddle-focus exist
for a dense set of parameter values. The irregular structure of the kneading diagram
supports the claim of wildness of the attractor.

aforehand given integer. We always take the right separatrix, so s0 = 1 and we take it out of
the kneading sequence.

We have shown in section 4.1 that system (1) for values of parameters close to (16) has
a cross-section Σ that consists of two disjoint boxes Σ+ and Σ−. In this region of parameter
values, s j = 1 means that the ( j + 1)th point of intersection of the separatrix with Σ lies in
Σ+, and s j = 0 means that this point lies in Σ−. If for two close parameter values the value
of s j changes while sk with k < j stay the same, this means that there is a parameter value
inbetween which corresponds to the existence of a j-round homoclinic loop—it makes exactly
j intersections with Σ before closing up. Note that the existence of a cross-section is important
for making such conclusion—without this the change in the kneading sequence can happen
due to events other than formation of a homoclinic loop.

For each kneading segment (s1, s2, . . . , sq) we define D =
∑q

i=1 si2q−i. Note that D can
run integer numbers from 0 to 2q − 1, and two length-q kneading segments are equal if and
only if the corresponding D values are the same. As we just explained, this means that the
boundaries in the parameter space between regions with different values of D correspond to
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Figure 18. (a) Kneading diagrams for the Lorenz system (13) in the (r,σ)-plane for
b = 8/3, cf figure 6(b); (b) its zoomed fragment LA near the point (r = 28, σ = 10)
where the classical Lorenz attractor exists; (c) zoomed fragment QA near the point
(r = 43, σ = 10)—in this region the system has a quasiattractor.

homoclinic loops. To visualize these boundaries we paint the regions of different D in differ-
ent colours—the resulting picture is the kneading diagram. To do this, we convert each integer
from [0, (2q − 1)/2) to RGB colours following the scheme proposed in [104]. The values of D
from the segment [0, (2q − 1)/2) are converted to the intensities of red channel, while the blue
channel has intensity 0. The values of D ∈ [(2q − 1)/2, 2q − 1)] are converted to the intensities
of the blue channel, while the red channel has intensity 0. In both these cases the intensity of the
green channel takes a random value. This scheme allows to obtain a nicely contrasted picture;
we are grateful to Andrey Shilnikov for explaining us these important technical details.

In figure 17, kneading diagrams are presented for system (1) in the (r, σ) parameter plane
for b = 8/3, μ = 7. Figure 17(a) gives a panoramic picture and figure 17(b) shows a zoomed
fragment around the point (r = 25, σ = 10). The rapid change of colours in this figure supports
our claim that parameter values corresponding to homoclinic loops to the saddle-focus O are
dense. As we explained before, this indicates the presence of homoclinic tangencies inside the
attractor.

We also mentioned that bifurcations of homoclinic tangencies cannot be described by a
finite-parameter analysis, meaning that for any finite-parameter unfolding the structure of the
bifurcation set is sensitive to small perturbations of the unfolding [55, 56]. In other words,
for any finite-parameter unfolding, the bifurcation set for a system with a wild attractor must
have an irregular structure, which is quite convincingly confirmed by the ‘blurred’ kneading
diagram of figure 17(b).

In order to illustrate this, we show in figure 18 the kneading diagram for the classical Lorenz
system (13) on the (r, σ)-parameter plane at b = 8/3 [9]. In figure 18(a) the diagram of knead-
ing segments of length q = 16 is presented. We can see that this diagrams is not informative
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in the domain LA where the Lorenz attractor exists. A more detailed diagram (corresponding
to longer kneading sequences) is shown for this domain in figure 18(b). As we see, the strips
with the same kneading segments have a regular structure and are separated from each other by
smooth curves corresponding to homoclinic loops to the saddle O. It is due to the fact that the
kneading sequence is the topological invariant for the Lorenz attractor [69, 71]. The situation is
drastically changed beyond the curve lA=0 where the Lorenz attractor becomes a quasiattractor
(see section 3.2). Kneading diagram becomes here blurred quite similar to what we observe in
figure 17(b), reflecting the fact that homoclinic tangencies appear, see figure 18(c).
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