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ABSTRACT

We study geometrical and dynamical properties of the so-called discrete Lorenz-like attractors. We show that such robustly chaotic (pseu-
dohyperbolic) attractors can appear as a result of universal bifurcation scenarios, for which we give a phenomenological description and
demonstrate certain examples of their implementation in one-parameter families of three-dimensional Hénon-like maps. We pay special
attention to such scenarios that can lead to period-2 Lorenz-like attractors. These attractors have very interesting dynamical properties and
we show that their crises can lead, in turn, to the emergence of discrete Lorenz shape attractors of new types.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037621

The topic related to the study of the Lorenz attractors has
always been a priority for Shilnikov. The results obtained in
this area by himself and his co-authors, including the famous
Afraimovich–Bykov–Shilnikov geometrical model,1,2 constitute
the foundation of the theory of the Lorenz attractors. The present
paper can be viewed in the context of the development of this
theory but already for the so-called discrete Lorenz-like attrac-
tors of three-dimensional maps. Such attractors were discovered
in Ref. 3. In the current study, we describe the main proper-
ties of various types of discrete Lorenz-like attractors of three-
dimensional maps, paying special attention to both bifurcation
scenarios of their appearance and properties of robustness (pseu-
dohyperbolicity) of its chaotic dynamics. Among the obtained
results, we would like to mention the following ones: (i) new real-
istic scenarios of the appearance of the discrete Lorenz-like attrac-
tors and examples of their implementation in one-parameter
families of three-dimensional maps; (ii) discrete Lorenz-like
attractors of principally new types (period-2 homoclinic and het-
eroclinic such attractors); and (iii) the numerical evidence of
pseudohyperbolicity for attractors under consideration.

I. INTRODUCTION

In the theory of dynamical chaos, problems related to the study
of strange attractors of multidimensional systems (with a dimension
of phase space ≥4 for flows and ≥3 for diffeomorphisms) are among

the most important and interesting ones. Naturally, the solution to
these problems should be based on fundamental results obtained in
the theory of chaos in smaller dimensions. First, the results that are
associated with the discovery of the Lorenz attractor4 and the cre-
ation of its mathematical models,1,2,5 as well as with the proof of its
robust chaoticity, should be noted.6–9 These results, as well as studies
on Hénon-like attractors of two-dimensional diffeomorphisms,10–14

served as a kind of foundation on which the basic elements of
the theory of strange attractors of three-dimensional maps were
built.3,15–20

Recall that a strange attractor of a diffeomorphism is called
discrete homoclinic attractor17 if it contains only one fixed point, a
hyperbolic saddle, and entirely its unstable invariant manifold that
possesses transversal homoclinic points (points where stable and
unstable manifolds of the saddle intersect transversally). In the case
of two-dimensional maps, examples of discrete homoclinic attrac-
tors are well known: for example, there are the above Hénon-like
attractors and attractors in periodically perturbed systems with a
homoclinic figure-8 of a saddle, or attractors in the corresponding
double separatrix maps (see Ref. 21).

In the present study, we consider three-dimensional diffeo-
morphisms which, on the one hand, are an independent subject of
the theory of dynamical systems and, on the other hand, can be
represented as Poincaré maps of four-dimensional flows or, when
the diffeomorphism is nonorientable (its Jacobian is negative at all
points of the phase space), as a model for studying Poincaré maps of
five-dimensional flows.
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The first explicit examples of discrete homoclinic attractors in
the case of three-dimensional diffeomorphisms were given in Ref. 3,
in which they were found in three-dimensional maps of the form

x̄ = y, ȳ = z, z̄ = M1 + Bx + M2y − z2, (1)

where M1, M2, and B are parameters, and B is the Jacobian
of map (1). Note that map (1) is a three-dimensional exten-
sion for the standard Hénon map ȳ = z, and z̄ = M1 + M2y − z2

(the latter is obtained at B = 0, when the coordinate x is sepa-
rated); therefore, we will call map (1) the three-dimensional Hénon
map.

In Fig. 1, phase portraits of some attractors of map (1)
(based on Ref. 3) are shown. The first two examples, shown in

Figs. 1(a) and 1(b), relate to discrete homoclinic attractors
[containing a saddle fixed point O

(

x = y = z = B
+M2 − 1)] that are very similar to the classical Lorenz
attractor.4

More informally, we define a discrete Lorenz-like attractor A as
follows:

(i) A is a homoclinic attractor containing a saddle fixed point O
with eigenvalues γ , λ1, λ2 such that |γ | > 1, 0 < |λ2| < λ1 < 1,
|λ1λ2γ | < 1, and σ ≡ |λ1γ | > 1;

(ii) let 01 and 02 be the unstable separatrices of O, i.e., connected
components of the set Wu(O)\O; then, all points belonging to
01 ∩ Ws

loc(O) and 02 ∩ Ws
loc(O) reside exactly in the same part

FIG. 1. Plots of attractors of map (1), based on Ref. 3. Figures (a) and (b): discrete Lorenz-like attractors at B = 0.7;M1 = 0; (a) M2 = 0.85; and (b) M2 = 0.815.
Figure (c): an attractor similar to the 2D Hénon attractor for B = 0.1;M1 = 1.4; and M2 = 0.2. Figure (d): a period-2 attractor (containing period-2 saddles p1 and p2) for
B = −0.95;M1 = 1.77; and M2 = −0.925. For each plots, there are shown about 105 forward iterations of some initial point after a large number of preliminary iterations.
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FIG. 2. (a) Skeleton scheme for a discrete
Lorenz-like attractor: D is an adsorbing domain
(a solid pretzel); the curves 0i ∪ [hi ,O] are non--
contractible in D; h1 and h2 reside in the same
part of W s

loc\W
ss. (b) Periodically perturbed the

Lorenz attractor in the Poincaré map by period
t = 2π of the Shimizu–Morioka system (5) (here,
α = 0.35, λ = 0.9 with the perturbation εz sin t
in ż, where ε = 0.01).

of the set Ws
loc(O)\Wss(O) [see Fig. 2(a)] [and also Figs. 3(b)

and 4(b)]; and
(iii) there is an adsorbing domain D for A that has a solid pret-

zel shape (a ball with two holes) and such that a closed curve
Li, i = 1, 2, is non-contractible in D, where Li is composed
from a piece of 0i from O to the point hi of the first inter-
section of 0i with Ws

loc and a simple arc between hi and O
[see Fig. 2(a)].

As an example, we show in Fig. 2(b) an attractor in the Poincaré
map for period t = 2π in a periodically perturbed Shimizu–Morioka
model (5) with the additional term εz sin t in the right side of ż,
where ε = 0.01. One can check that conditions (i)–(iii) are ful-
filled for this attractor. In particular, here γ = 58.13, λ1 = 0.11,
λ2 = 6.02 × 10−5. By the way, in the case of the attractors in
Figs. 1(a) and 1(b), the point O has eigenvalues γ = −1.35,
λ1 = 0.85, λ2 = −0.6, and γ = −1.23, λ1 = 0.86, λ2 = −0.66,
respectively.

Discrete attractors in Figs. 1(a), 1(b), and 2(b) are certainly
Lorenz-like ones. Moreover, as in the case of flow attractors, we
can see a certain difference between these attractors: the attractors
in Figs. 1(a) and 2(b) look homogenous, without lacunae, while the
attractor in Fig. 1(b) has a lacuna. Recall that in the case of the clas-
sical Lorenz attractor, a (trivial) lacuna is an open region (a hole
inside the attractor) that contains a saddle limit cycle whose sta-
ble manifold does not intersect the attractor.2 Accordingly, in the
case of a discrete Lorenz-like attractor, a lacuna contains a sad-
dle closed invariant curve with the same property. When varying
parameters, lacunae can appear and disappear due to the appear-
ance/disappearance of homoclinic intersections. The corresponding
bifurcations belong to the class of the so-called internal bifurcations
of attractor (see more details in Refs. 2, 22, and 23).

The attractor presented in Fig. 1(c) is also a discrete
homoclinic attractor [it contains the fixed point O(x = y = z
≈ 0.88)], which is similar to the two-dimensional Hénon attractor,10

while the attractors in Figs. 1(a), 1(b), and 1(d) are essentially
three-dimensional. Besides, the attractor in Fig. 1(d) is nonori-
entable (here, B = −0.95 < 0), and it contains a period-2 sad-
dle orbit (p1, p2) but does not contain fixed points. In the case
under consideration, p1 = (x0, y0, x0) and p2 = (y0, x0, y0), where
x0 ≈ 0.85 and y0 ≈ 0.126.

Note that map (1) is a representative of a class of maps

x̄ = y, ȳ = z, z̄ = Bx + G(y, z), (2)

which are called three-dimensional generalized Hénon maps. Such
maps have the constant Jacobian B and are, in a sense, the simplest
three-dimensional nonlinear maps. Because of this, their use for
the purpose of searching and studying strange attractors, including
homoclinic ones, is very convenient and beneficial in many respects.
Therefore, we use maps of form (2) as a source of main examples
illustrating our results (see also Ref. 20).

In Sec. II, we give a qualitative description of the discrete
Lorenz-like attractors dealing more accent to their geometric prop-
erties and a comparison with the classical Lorenz attractors of
three-dimensional flows. We discuss also on geometric properties
of other types of discrete Lorenz-like attractors for orientable and
nonorientable three-dimensional maps.

One of remarkable properties of discrete homoclinic attrac-
tors, including the mentioned above discrete Lorenz-like attractors,
consists in the fact that they can arise in various kinds of mod-
els as a result of rather simple and universal bifurcation scenarios.
Moreover, these scenarios can be freely observed in one-parameter
families starting from those parameter values when the attractor is
simple, e.g., a stable fixed point.17,19 In Sec. III, we consider these sce-
narios phenomenologically and supplement them with new content,
focusing on those bifurcations that support geometric structures of
discrete Lorenz-type attractors that may arise. Thus, the proposed
modified scenarios are not only phenomenological, as presented in
Refs. 17 and 19, but also empirical, since they can be confirmed by
numerical experiments.

We show two typical examples of implementation of these sce-
narios in the case of the three-dimensional Hénon map (1) (see
Fig. 7), and in the case of Poincaré map for a Celtic stone model
(see Fig. 8). For comparison, we also schematically show in Fig. 9
the well-known scenario (see, for example, Ref. 24), of the Lorenz
attractor appearance in the one-parameter family of the Lorenz
model

ẋ = −σ(x − y), ẏ = −xz + rx − y, ż = xy − bz, (3)

where the parameters b and σ are fixed, b = 8/3, σ = 10, and the
parameter r is governing. Note that if we compare the two scenarios,
in the case of a Celtic stone model (see Fig. 8), and in the case of the
Lorenz model (see Fig. 9), the first thing that catches your eye is the
astonishing similarity in their main details.

The fact that discrete Lorenz-like attractors can appear as a
result of very simple and realistic bifurcation scenarios shows that
they should be met in various models from applications. As we
know, the first such model is a nonholonomic model of Celtic
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stone.25 More recently, discrete Lorenz-like attractors were also
found in models of diffusion convection.26,27

In Sec. IV, we discuss one more, perhaps the most interesting,
fundamental property of discrete Lorenz attractors related to the
fact that they can be genuine strange attractors, i.e., robustly pre-
serving their chaoticity at perturbations. Recall that, as is commonly
believed, a strange attractor is considered genuine, if all its orbits
have the positive maximal Lyapunov exponent and this property is
open, i.e., holds for all close systems (in the Cr-topology with r ≥ 1).

Until recently, only hyperbolic attractors and flow Lorenz-
like attractors (the latter belong to the class of singular hyperbolic
attractors28,29) could reliably be considered as genuine strange attrac-
tors. However, in the work by Turaev and Shilnikov,30 one more
class of genuine strange attractors, the so-called pseudohyperbolic
attractors, was introduced and, moreover, a geometric model of
such an attractor for flows in dimension four and higher was con-
structed. This attractor was called in Ref. 30 wild spiral attractor,
since it contains a saddle-focus equilibrium together with wild
hyperbolic subsets and, hence, it allows homoclinic tangencies, i.e.,
nontransversal intersections of stable and unstable invariant man-
ifolds of the same saddle periodic orbit. Despite the fact that such
attractors were predicted (as well as geometrically constructed) in
the late 1990s, the first example of such an attractor in a concrete
system of four differential equations was found much recently in
Ref. 31.

Remark 1. The wild hyperbolic sets were discovered by
Newhouse.32,33 He used the term “wild” for the notation of uniformly
hyperbolic sets whose stable and unstable invariant manifolds have
nontransversal intersections and this property holds for all Cr-close
systems with r ≥ 2. Thus, such systems compose open regions (the
so-called Newhouse regions) in the space of dynamical systems and
systems with homoclinic tangencies are dense in these regions. The
existence of Newhouse regions near any multidimensional system
with a homoclinic tangency was proven in Refs. 34–36.

Discrete Lorenz-like attractors, in particular, those discovered
in Ref. 3, consist one more class of wild pseudohyperbolic attractors
in the case of three-dimensional maps. Note also that wild pseudo-
hyperbolic attractors are not uniformly hyperbolic, since they admit
homoclinic tangencies and arbitrary degenerate bifurcations37–39

that, nevertheless, do not lead to periodic sinks and, therefore, do
not destroy chaoticity. Discrete Lorenz-like attractors, in contrast
to the flow Lorenz attractors, are wild (admit homoclinic tan-
gencies)—this fact is simple and almost evident—in any case, its
numerical evidence was demonstrated in Ref. 20.

In Sec. IV, we give a definition of pseudohyperbolic invari-
ant sets of multidimensional diffeomorphisms (Definition 1) and
explain how it can be adapted to the discrete Lorenz-like attrac-
tors of three-dimensional maps. First, we discuss local aspects of
the corresponding theory related to the fact that such attractors
can be born under codimension-3 bifurcations of fixed points. This
allows us to say about the “existence of genuine discrete Lorenz-like
attractors.” Second, we apply a quite simple numerical method [the
so-called Light Method of Pseudohyperbolicity (LMP) method31,40]
to test the pseudohyperbolicity of attractors when the above local
theory is not applicable. The results for the attractors presented in
Figs. 1(a) and 1(b) are illustrated in Figs. 10(a) and 10(b) in the form
of corresponding LMP-graphs. Thus, in Sec. IV, we demonstrate

a numerical evidence for pseudohyperbolicity of attractors under
consideration.

Main results of Sec. V are essentially new. In particular, we pro-
vide one more type of bifurcation scenarios leading to the appear-
ance of the so-called period-2 Lorenz-like attractors and give an
example of the implementation of such a scenario in the case of the
nonorientable maps of the form (1) with B = −0.8 (see Fig. 12).
We study the dynamical and geometrical properties of period-2
Lorenz-like attractors and show that these attractors can undergo
crises leading to the emergence of strange homoclinic and hetero-
clinic attractors of new types. We construct geometric (skeleton)
schemes of these attractors and their phase portraits in map (1) (see
Figs. 13–15). We show also that the period-2 Lorenz-like attractor,
as well as emerging after its crisis the period-2 heteroclinic attractor,
can be genuinely pseudohyperbolic. On the other hand, the found
homoclinic attractors, containing the fixed point O and a period-
2 orbit [see some example in Fig. 14(b)], are not pseudohyperbolic
because the point O is a saddle-focus. Moreover, this point has a
pair of complex conjugate eigenvalues (multipliers) close to the 1:4
resonance (i.e., λ1,2 = ρ e±iϕ , where ϕ is close to π/2 and ρ < 1 is
close to 1). Thus, we also, indirectly, have touched the problem,17 on
the structure of emerging homoclinic attractors when passing near
strong resonances.

In Sec. VI, we discuss a series of open problems associated
with the study of discrete homoclinic attractors, emphasizing espe-
cial attention to those ones that are related to discrete Lorenz-like
attractors.

II. ON GEOMETRICAL PROPERTIES OF DISCRETE

LORENZ-LIKE ATTRACTORS OF THREE-DIMENSIONAL

DIFFEOMORPHISMS

By definition, the discrete homoclinic attractors of maps are
strange attractors containing a single saddle fixed point. Therefore,
one of the main characteristics of such an attractor is the topological
type of its fixed point that is defined as follows.

Let O be a fixed point of a three-dimensional diffeomorphism
T and λ1, λ2, λ3 be the multipliers of O, i.e., eigenvalues of the
linearization matrix for T calculated at O. Let also O be the hyper-
bolic point, i.e., |λi| 6= 1. Then, we say that the point O is of type
(m, n), if it has m stable and n unstable multipliers, which, respec-
tively, are less than 1 and greater than 1 in the absolute value. The
type of a hyperbolic q-periodic orbit is determined similarly by the
multipliers of the map Tq at any of its points.

Thus, in the three-dimensional case, hyperbolic fixed (periodic)
points may be of four types: (3,0)—stable (sinks), (0,3)—completely
unstable (sources), and saddle fixed points of types (2,1) and (1,2).
Besides, saddle fixed points are divided into saddles, when all their
three multipliers are real, and saddle-foci, when a pair of complex
conjugate multipliers exists.

In the last case, the corresponding discrete homoclinic attrac-
tors are usually called spiral. These attractors, according to Refs. 17
and 20, are divided into two groups of attractors: discrete figure-
8 spiral attractors, when they contain a saddle-focus of type (2,1),
and discrete Shilnikov attractors, when they contain a saddle-focus
of type (1,2). Such discrete spiral attractors are often met in vari-
ous applications (see, e.g., Refs. 41–45). As for the discrete Shilnikov
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attractors, they are also interesting from the point of view that they
can give simple criteria for hyperchaos in four-dimensional flows
and three-dimensional maps.44,45

When the point O is a saddle, the classification of the cor-
responding homoclinic attractors is more variable. So, homoclinic
attractors with a saddle fixed point of type (2,1) may be, except for
Lorenz-like one, of such types as figure-8, double figure-8, double
Lorenz-like, etc. (see, e.g., Refs. 20 and 46). Discrete homoclinic
attractors with saddles of type (1,2) also differ in variety, but they
are still poorly understood (for some examples, see Ref. 20).

As we said before, discrete Lorenz-like attractors were first
found in Ref. 3, see the corresponding examples in Figs. 1(a)
and 1(b). Attractors in these figures contain a saddle fixed point
O of type (2,1) with multipliers λ1, λ2, γ satisfying the following
conditions:

(a) 0 < λ1 < 1, −1 < λ2 < 0, γ < −1, |λ1λ2γ | < 1,

(b) |λ1| > |λ2|,

(c) σ = |λ1γ | > 1.

(4)

The quantity σ is called the saddle value and it is defined, for a
hyperbolic saddle periodic orbit, as the absolute value of product of
two nearest to the unit circle stable and unstable multipliers.

It is interesting that, using only conditions (4) and certain
geometrical considerations, one can easily imagine what kind of a
homoclinic attractor with the point O can arise here (see Fig. 3).
Below, we will try to argue for this.

By virtue of (4), the unstable invariant manifold Wu(O) of the
point O is one-dimensional and, hence, it is divided by the point O
into two connected components—separatrices Wu+ and Wu−. Since
the unstable multiplier γ of O is negative, γ < −1, the separatrices
Wu+ and Wu− are invariant under T2 and such that T(Wu+) = Wu−

and T(Wu−) = Wu+. That is, under iterations of T, points of Wu

jump alternately from one separatrix to another. The stable invari-
ant manifold Ws(O) of the point O is two-dimensional, and the map
Ts = T

∣

∣

Ws
loc

[i.e., the restriction of T into the local stable manifold

Ws
loc(O)] has a fixed point Õ = O ∩ Ws

loc that is a nonorientable
node. By virtue of (4)(a) and (4)(b), in Ws

loc, there is the so-called
strong stable invariant manifold Wss that is a curve touching at Õ
to the eigendirection corresponding to the strong stable multiplier
λ2 < 0. Note that the curve Wss divides Ws

loc into two parts, 51 and
52, and, since λ1 > 0, points from 51 cannot jump to 52 (and
otherwise) under iterations of Ts [see Fig. 3(a)].

The two-dimensional map Ts can be viewed, for simplicity,
as a linear map of the form x̄ = λ1x, ȳ = λ2y, where −1 < λ2 < 0
< λ1 < 1 and |λ2| < |λ1|. Then, Wss has the equation x = 0, and
51 = {(x, y)|x > 0}, 52 = {(x, y)|x < 0}. Moreover, as it is well
known, a neighborhood of the point Õ is foliated into invariant
(under T2

s ) curves {lc} of form y = c|x|α , where α = ln |λ2|/ ln |λ1|.
All these curves, except for the curve x = 0, enter Õ touching the axis
y = 0. Let a point h1(x1, y1) belong to some curve y = cxα with x > 0
[or y = c(−x)α with x < 0]. Then, its image, the point h2 = Ts(h1)

= (λ1x1, λ2y1), will belong to the curve y = −cxα [respectively,
y = −c(−x)α]. If c 6= 0, these two curves compose the boundary
of an exponentially narrow wedge adjacent to the point Õ on one
side [e.g., on 51 as in Fig. 3(a)—here the wedge is given by the
inequalities |y| ≤ c1x

α , x ≥ 0, where the constant c1 is defined by the
initial data (x1, y1), namely, c1 = y1x

−α
1 ]. Evidently, forward itera-

tions under Ts of the point h1, i.e., the points h1, h2, . . ., where hi+1

= Ts(hi), jump alternately on the sides of this wedge and accumulate
to the point O as i → +∞.

Now, one can imagine that h1 is an intersection point of Wu+

with Ws. Then, h2 is the intersection point of Wu− with Ws, since
T(Wu+) = Wu−, and h3 is again the intersection point of Wu+ with
Ws, etc. Correspondingly, the points h1, h2, . . . , are points of some

FIG. 3. (a) An illustration for orbits behavior near a nonorientable sink Õ having multipliers−1 < λ2 < 0 < λ1 < 1, where |λ2| < |λ1|; (b) a schematic homoclinic butterfly
configuration of semi-global pieces of one-dimensional unstable invariant manifolds of the saddle point O of type (2,1). In Figs. (c) and (d), phase portraits for the case of
map (1) with B = 0.7;M1 = 0; and M2 = 0.815 are shown: (c) a picture of the separatrices W u+ and W u− of the saddle O; and (d) a plot of the homoclinic attractor in an
appropriate two-dimensional projection.
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FIG. 4. (a) Behavior of iterations of points near a stable node with 0 < λ2

< λ1 < 1. (b) A homoclinic-butterfly configuration of semi-global pieces of unsta-
ble separatrices of a nonorientable saddle with multipliers 0 < λ2 < λ1 < 1 and
γ < −1.

homoclinic to O orbit, i.e., an orbit entirely lying in the invariant
set Wu(O) ∩ Ws(O) and distinct of O. We call the points h1, h2, . . . ,
primary homoclinic points. Evidently, their disposition in Ws

loc

defines in much a skeleton of a homoclinic attractor that, in turn,
can be viewed as the closure of the unstable manifold Wu(O).

It is easy to see that the configuration of semi-global pieces
of Wu+ and Wu−, until the first their intersections with Ws

loc [see
Fig. 3(b)], is similar to the configuration of homoclinic butterfly in
the Lorenz model (3) [compare with Fig. 9(b)]. In order to fill this
construction with more geometric content, we additionally show in
Fig. 3(b) two points p1 and p2, which, by analogy with the classi-
cal Lorenz attractor, must be saddle points of type (1,2), whereas
the point O is of type (2,1). Since the unstable multiplier γ is nega-
tive, it evidently follows that p1 and p2 are points of the same saddle
period-2 orbit [i.e., T(p1) = p2 and T(p2) = p1]. Besides, the points
p1 and p2 should reside in two “holes” of the attractor, which only
emphasizes its similarity with the Lorenz attractor.

Note that analogous geometric considerations can be applied
also for three-dimensional nonorientable maps. For example, let
such a map T have a fixed point O with multipliers λ1, λ2 and γ

such that 0 < λ2 < λ1 < 1, γ < −1 (and −1 < λ1λ2γ < 0). As in
the previous case, the point O is a saddle of type (2,1); however,
the corresponding map Ts = T

∣

∣

Ws
loc

has a fixed point Õ = O ∩ Ws
loc

that is an orientable node [Fig. 4(a)]. Therefore, if T has a homo-
clinic to O orbit, then its points h1, h2, . . . , on Ws

loc will belong to
the same invariant curve of the form y = C|x|α [see Fig. 4(b)], in
distinct of the case of orientable attractor [Fig. 3(a)], where such
homoclinic points lie alternately on boundaries of an exponentially
narrow wedge. We see that the difference looks to be very insignif-
icant, and, in principle, it does not prevent a possible attractor
from having a Lorenz-like structure. However, we need to say that
any genuine discrete homoclinic Lorenz-like attractors (with a fixed
point) were not found yet in maps of the form (2) with B < 0 (every-
thing that is more or less similar turned out to be quasiattractors).
On the other hand, much more interesting results on this topic are
presented in Section V, which are related to the existence of genuine

FIG. 5. A homoclinic figure-8 configuration ofW u+ andW u−.

period-2 Lorenz-like attractors in three-dimensional nonorientable
maps.

Remark 2. Conditions of (4) are very important. In partic-
ular, if condition (4)(b) is violated, i.e., |λ2| > |λ1|, then a possible
homoclinic attractor is the so-called discrete figure-8 attractor.17,20,47

For this case, a schematic configuration of semi-global pieces of
the one-dimensional unstable invariant manifold of the point O is
shown in Fig. 5 [compare it with Fig. 3(b)].

III. ON PHENOMENOLOGICAL SCENARIOS OF THE

ONSET OF DISCRETE LORENZ-LIKE ATTRACTORS

One of the most interesting peculiarities of discrete homoclinic
attractors is that they can occur in one-parameter families of (three-
dimensional) maps as a result of quite simple universal bifurcation
scenarios.17,19,20

The idea of constructing such scenarios goes back to the paper
by Shilnikov,48 in which he described a phenomenological scenario
of the spiral chaos appearance in the case of multidimensional flows
when a homoclinic attractor emerges containing a saddle-focus
equilibrium with the two-dimensional unstable manifold. In Ref. 48,
it was also outlined the case when a discrete spiral attractor appears
in the Poincaré map of a flow: such an attractor contains only one
fixed point that is a saddle-focus with two-dimensional unstable
manifold (see Refs. 17 and 19 for more details).

This fully applies to discrete Lorenz-like attractors. Schemati-
cally, main stages of the corresponding scenario are shown in Fig. 6
for the case of a one-parameter family Tµ of three-dimensional
orientable maps.

This scenario begins from those values of µ where the map Tµ

has an asymptotically stable fixed point (sink) Oµ [see Fig. 6(a)]. We
assume that, at a certain value of µ, the point Oµ loses its stabil-
ity under the supercritical period-doubling bifurcation: Oµ becomes
a saddle of type (2,1) and a stable period-2 orbit (p1, p2) is born
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FIG. 6. A phenomenological description of main steps for the scenario of onset of a discrete Lorenz-like attractor: (a) a stable fixed point Oµ; (b) after a period-doubling
bifurcation: the pointOµ becomes a saddle of type (2,1) and the attractor now is a period-2 orbit (p1, p2); (c) a creation of a homoclinic butterfly configuration forW

u(Oµ) and
a formation of a closed invariant curve (C1,C2) of period 2, i.e., Tµ(C1) = C2 and Tµ(C2) = C1 (this curve is saddle if σ > 1); and (d) the orbit (p1, p2) and all attracting
invariant sets generated from it lose stability and a discrete Lorenz-like attractor appears (which can be genuine, and then it will be the only attracting invariant set; see
Sec. IV).

which now becomes the attractor [Fig. 6(b)]. Since Oµ undergoes
the period-doubling bifurcation, one of its multipliers, λ1, becomes
less than −1, and other two multipliers, λ2 and λ3, are real and have
different signs, −1 < λ2 < 0 < λ3 < 1, due to the orientability of
the map. In what follows, we assume that the conditions (4) hold.
Then, when the parameter changes, the orbit (p1, p2) and all attract-
ing invariant sets generated from it should lose stability as a result
of some bifurcations. How this happens depends on specific of the
problem. We indicate two the simplest and natural options:

[sc1] the orbit (p1, p2) loses the stability under the subcritical
Andronov–Hopf bifurcation: a period-2 closed invariant
curve (C1, C2) of saddle type merges with the stable orbit
(p1, p2) and the latter becomes saddle orbit of type (1,2);

[sc2] the stable orbit (p1, p2) undergoes the supercritical Andronov–
Hopf bifurcation, after which the orbit becomes saddle of type
(1,2) and a period-2 stable closed invariant curve (S1, S2) is
born, and then the stable curve (S1, S2) merges with the saddle
curve (C1, C2) and both disappear.

Note that the above period-2 invariant curve (C1, C2) is formed
from the homoclinic butterfly configuration of unstable separatrices
Wu+ and Wu− of Oµ at that moment when the invariant manifolds
of Oµ begin to intersect [see Figs. 6(c), 7(d), and 8(b)]. Besides,
the period-2 curve (C1, C2) is saddle when σ > 1 and stable when
σ < 1. We also note that the period-2 curves (C1, C2) and (S1, S2)

from [sc2] can merge and disappear, e.g., as result of the Chenciner
bifurcation scenarios.49

It is worth noting that both cases, [sc1] and [sc2], are often
met in applications. In particular, examples of their implementa-
tion were found in the three-dimensional generalized Hénon maps
of form (2) (see, e.g., Refs. 17, 18, and 20) when the value 0 < B < 1
of the Jacobian is not too small and in a model of Celtic stone.25,50

Two illustrations of the corresponding scenarios are shown in Figs. 7
and 8.

In Fig. 7, main stages of the scenario of the discrete Lorenz-
like attractor formation are shown for the case of a one-parameter

family of maps of the form (1) where B = 0.7, M2 = 0.85, and M1 is
the control parameter. The scenario starts from M1 ≈ −0.076, when
a stable fixed point O is born under a saddle-node bifurcation. At
M1 ≈ −0.053, the point O undergoes a period-doubling bifurcation
after which it becomes a saddle of type (2,1) and a period-2 stable
orbit (p1, p2) is born. Just after this bifurcation, the orbit (p1, p2)

is the attractor [Fig. 7(a)]. At M1 ≈ −0.035 56, the orbit (p1, p2)

undergoes the supercritical Andronov–Hopf bifurcation after which
it becomes a period-2 saddle-focus of type (1,2) and a stable period-2
invariant curve (S1, S2) is born that is the attractor now [Fig. 7(b)].

However, very quickly, one more attractor appears, the so-
called “thin Lorenz attractor,” due to the creation of a homoclinic
butterfly (that exists for a very thin region of parameters) with the
saddle fixed point O [Figs. 7(c) and 7(d)]. At the same time, a period-
2 saddle invariant curve (C1, C2) emerges from this homoclinic
butterfly.

As we know, bifurcations of the formation of closed invariant
curves from a discrete homoclinic butterfly (homoclinic figure-8)
have not been studied yet in detail. Only certain results are known
when there are considered small periodic perturbations of a flow
with a homoclinic loop (see, e.g., Ref. 51, where the birth of an
invariant circle has been deduced from the annulus principle). Thus,
the period-2 curves (C1, C2) shown in Figs. 7 and 8 can be considered
as only numerically found ones. Moreover, we have here a happy
case when these curves can be prolonged in a parameter sufficiently
far (usually, they are quickly destroyed). So, in the case of Fig. 7,
the curves (S1, S2) and (C1, C2) merge and both disappear [Figs. 7(d)
and 7(e)]. After this, the discrete Lorenz-like attractor becomes the
unique attracting set. A behavior of one unstable separatrix of O is
shown in Fig. 7(e) (other separatrix behaves symmetrically because
the unstable multiplier of O is negative) and the phase portrait of
an attractor is shown in Fig. 7(f) (here, O has coordinates x = y
= z ≈ 0.51). Thus, we see that the option [sc2] is involved within
the scenario.

Remark 3. Note that for the implementation of such a sce-
nario as in Fig. 7, the Jacobian B of map (2) should not be too
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FIG. 7. Evolution of attractors in map (1) with B = 0.7,M2 = 0.85 when varying M1. Here, the option [sc2] of the scenario is realized. In Figs. (a)–(e), behavior of the
unstable separatrices of the point O is also shown. In Fig. (f), a phase portrait of the attractor is presented.

small. Otherwise, even if the conditions of (4) hold, the orbit (p1, p2)

has a tendency to lose its stability via a cascade (finite or infinite)
of period-doubling bifurcations [for map (1), this happened when
|B| < 1

3 ,3]. Then, the resulting attractor may not at all resemble the
Lorenz attractor: it can be imagined either as a “strongly deformed
Lorenz-like attractor” or as a “thickened Hénon-like attractor.”
That is, a certain analogy between phase portraits of discrete and
flow Lorenz attractors cannot be clearly observed and even fully
disappear.

A similar picture is observed for the Celtic stone model50

(see Fig. 8). Only here the option [sc1] is realized: the period-2
orbit (p1, p2) loses its stability under the subcritical Andronov–Hopf
bifurcation when the period-2 saddle invariant curve (C1, C2)

merges with the stable period-2 orbit (p1, p2) and the latter becomes
a saddle-focus of type (1,2) and only one attractor remains in the
model; this is a discrete Lorenz-like attractor [Fig. 8(f)]. In addition,
here one can trace how the unstable separatrices of saddle O are
rearranged when passing near values of the parameter E correspond-
ing to the formation of a homoclinic-butterfly with the point O [see
Figs. 8(a)–8(c)]. In the case of map (1), this rearrangement, even if it
exists, is extremely difficult to catch.

We have proposed scenarios with the options [sc1] and [sc2],
mainly for two reasons. First is because they obviously support

a similarity of the geometry of the resulting discrete homoclinic
attractor and the classical Lorenz attractor. Secondly is because the
discrete scenarios themselves repeat the flow ones in many principal
details. So, in Fig. 9, a schematic picture is shown for the scenario of
onset of the Lorenz attractor in the Lorenz model (3) when varying
the parameter r. Here, two saddle limit cycles symmetrical to each
other are born from a homoclinic butterfly and then these cycles
merge with the non-zero stable equilibria, and, just after this sub-
critical Andronov–Hopf bifurcation, the Lorenz attractor appears to
be the unique attracting invariant set of the model. Thus, the flow
analog of the option [sc1] is realized here.

The same scenario can be also observed in the Shimizu–Morioka
model

Ẋ = Y, Ẏ = X(1 − Z) − λY, Ż = −αZ − X2. (5)

However, the flow analog of the option [sc2] can also be observed
here:52,53 the non-zero equilibria lose their stability under the
supercritical Andronov–Hopf bifurcation and, as result, two stable
symmetric each other limit cycles are born and, further, these cycles
merge with saddle ones and both disappear.

In general, the stage of the discrete scenarios when a global
bifurcation occurs associated with the formation of homoclinic
structures at the point Oµ, is a key one. It indicates the appearance
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FIG. 8. Evolution of attractors in a nonholonomic model of Celtic stone, based on Ref. 50, when varying a parameter E (the full energy of the stone): (a)–(e) the period-2
orbit P = (p1, p2) is attractor; (b) a “thin Lorenz attractor” can also exist for an extremely small interval of values of E; (d)–(e) the discrete Lorenz-like attractor LA coexists
with the stable orbit P; (e) a behavior of the unstable separatrix of the point O is shown [compare with (c)]; and (f) LA is the only attractor of the model. Here, the option [sc1]
of the scenario is realized.

of complicated dynamics of the map, and, if the unstable invari-
ant manifold Wu(Oµ) entirely lies in the absorbing region, then
a discrete homoclinic attractor can emerge. Initially, this attractor
can coexist with other stable regimes, e.g., with the stable period-
2 orbit (p1, p2) [see Figs. 7(d) and 8(d)]. However, when the latter
has lost the stability, the homoclinic attractor can remain the unique
attracting set of the map (see Sec. IV).

As we have explained above, when conditions (4) hold, the cor-
responding discrete homoclinic attractor can take a shape of the
Lorenz attractor. However, we are dealing here with its discrete ver-
sion, when the fixed point Oµ plays a role of the zero equilibrium of
the Lorenz system (3) and the saddle orbit (p1, p2) of period 2 resides
inside the “holes,” instead of two non-zero equilibria O1 and O2.
In addition, the one-dimensional unstable manifold Wu(Oµ) con-
sists of two connected components, separatrices Wu+ and Wu−, and,
since the unstable multiplier γ of Oµ is negative, γ < −1, the points
on Wu(Oµ) will “jump” from one separatrix to another, whereas in
the classical Lorenz attractor, each of the separatrices of zero equi-
librium is invariant itself. Note also that conditions (4)(a) and (4)(b)
mean that the unstable and strong stable multipliers of the fixed
point O are negative. This provides, in turn, a semi-local symme-
try (on invariant manifolds of O) within the discrete attractor, and,
in fact, this symmetry plays the same role as the global symmetry
x → −x, y → −y, z → z for the Lorenz model (3).

IV. PSEUDOHYPERBOLICITY OF DISCRETE

LORENZ-LIKE ATTRACTORS

It is worth noting that the discrete Lorenz attractor, like its flow
analog, can be the genuine and only attractor in the corresponding
absorbing domain. We say at once that the condition σ > 1 is simply
necessary for this fact. First, when σ < 1, a homoclinic attractor may
not appear at all. In this case, under a homoclinic-butterfly bifurca-
tion, stable invariant curves can be formed, which themselves are
attractors and their further evolution can lead to various strange
attractors (for example, of torus-chaos type54) that are not homo-
clinic at all. Second, even if a discrete Lorenz shape attractor arises,
it will always be the quasiattractor in the case σ < 1. That is, it is
an attractor that looks strange, but only from the “physical point of
view,”55 since it either itself contains stable periodic orbits with very
narrow domains of attraction, or such orbits appear under arbitrary
small perturbations. Usually, such stable orbits are not detected in
experiments and the attractor seems chaotic, but, sometimes, these
orbits come to light for certain values of parameters called windows
of stability.

One of the main reasons for such nonrobust chaoticity of
homoclinic quasiattractors is the inevitable appearance of homo-
clinic tangencies, i.e., nontransversal intersections of stable and
unstable invariant manifolds of the saddle fixed point. When σ < 1,
bifurcations of such tangencies lead to the birth of stable periodic
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FIG. 9. A sketch of the scenario of onset of the Lorenz attractor in the Lorenz model (3) with b = 8/3, σ = 10 and varying r , based on Ref. 24. Here, r1 ≈ 13.92, r2 ≈ 24.06,
and r3 ≈ 25.06. (a) The attractors are non-zero equilibria O1 and O2; (b) the homoclinic-butterfly is created; (c) saddle limit cycles L1 and L2 are born; (d) the separatrices
01 and 02 belong to the stable manifolds of the limit cycles L2 and L1, respectively; (e) multistability: the Lorenz attractor coexists with the attractors O1 and O2; and (f) O1

and O2 simultaneously lose stability under the subcritical Andronov–Hopf bifurcation and the Lorenz attractor becomes the unique attractor of the model.

orbits.56–58 The latter have, as a rule, very narrow domains of attrac-
tion and big periods. However, everything can change in the case
σ > 1. Here, in general, homoclinic tangencies do not destroy the
chaoticity (their bifurcations lead to the birth of saddle periodic
orbits,39,59 instead stable ones). Therefore, the discrete Lorenz-like
attractors can keep their chaoticity when changing parameters. Such
robustness of chaos is a direct consequence of the fact that the
discrete Lorenz-like attractors can be pseudohyperbolic.

Speaking shortly, an attractor is pseudohyperbolic if a cer-
tain weakened version of hyperbolicity is fulfilled for all its orbits.
The concept of pseudohyperbolicity was introduced by Turaev and
Shilnikov.30 For an n-dimensional diffeomorphism T that possesses
a closed invariant set A (e.g., attractor), this can be formulated as
follows (for more details, see Refs. 31 and 40).

Definition 1. The setA is pseudohyperbolic, if at every
point x ∈ A, two transversal linear subspaces N1(x) and N2(x) exist
such that

(i) dim N1 = k, dim N2 = n − k, where 1 ≤ k ≤ n − 1;
(ii) N1(x) and N2(x) depend continuously on x;
(iii) N1(x) and N2(x) are invariant with respect to the differen-

tial DT of the map T, i.e., DT(N1(x)) = N1(f(x)), DT(N2(x))
= N2(f(x));

(iv) DT is exponentially contracting in N1, and DT expands expo-
nentially all (n − k)-dimensional volumes in N2—this means
that there exist such constants C > 0, 0 < δ < 1, ν > 1 that

‖DTn(N1(x))‖ < Cδn and
∣

∣det (DTn(N2(x)))
∣

∣ > Cνn for all
n > 0; and

(v) any possible contraction in N2 is uniformly weaker than any
contraction in N1.

Note that if condition (iv) from this definition is changed to the
much stronger condition

• (ivhyp) DT is exponentially contracting in N1 and DT stretches
exponentially all vectors in N2,

i.e., ‖DTn(N1(x))‖ < Cδn and ‖DT−n(N2(x))‖ < Cν−n for all
n > 0, then we obtain a definition for hyperbolic attractor. However,
this hyperbolic condition (ivhyp) looks to be very restrictive and, in
any case, it does not hold for homoclinic attractors. Nevertheless,
discrete hyperbolic attractors are found in applications. It is worth
noting that the applied theory of hyperbolicity was essentially devel-
oped by Kuznetsov, and, in particular, many relevant examples of
physical systems with such attractors were given in his book.60

On the other hand, nontrivial examples of pseudohyperbolic
homoclinic attractors exist (see, e.g., Refs. 8, 16, 30, 31,and 40).
However, in a general setting, the problem of searching for gen-
uine (pseudohyperbolic) attractors seems to be wide open, because
it is mainly related to the fundamental problem of distinguishing
between genuine attractors and quasiattractors. Only for some types
of strange attractors, their pseudohyperbolicity has been proved. In
particular, this relates to the discrete Lorenz-like attractors (see, e.g.,
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Refs. 3and 16). The results obtained in this direction seem to be very
important since the existence of discrete Lorenz-like attractors in
three-dimensional maps should be quite common. This, in partic-
ular, is due to the fact that such attractors can arise as a result of
rather simple global scenarios described in Sec. III, as well as a result
of local bifurcations, which we discuss below.

A. Discrete Lorenz-like attractors under local

bifurcations

In Ref. 7, it was shown that the flow Lorenz attractors can be
born as a result of local bifurcations of an equilibrium with three
zero eigenvalues. In the same paper, it was also noted that, in the case
of three-dimensional maps, local bifurcations of a fixed point with
a triplet (−1, −1, +1) of multipliers can lead to the birth of discrete
Lorenz-like attractors. In this case, as was shown in Ref. 3, the second
power of the map may be locally (near the fixed point) represented as
a map o(τ )-close to the time-τ map of the Shimizu–Morioka system
(5), where τ can be taken as small as we want. Since system (5) has
the Lorenz attractor for some open domain of positive parameters
(α, λ) (see Refs. 9, 52, and 53), it follows that the original map has
an attractor that, if to take every second iteration, is a τ -periodic
perturbation of the Lorenz attractor.

Map (1) turned out to be the first concrete model in which such
codimension-3 bifurcation was studied.3 Note that map (1) has the
fixed point with the triplet (−1, −1, +1) of multipliers for the values
A∗ = (M1 = −1/4, M2 = 1, B = 1) of the parameters. It was shown
in Ref. 3 that a small discrete Lorenz-like attractor exists in (1) for
some domain of the parameters adjoining A∗ from the half-space
B < 1.

In Ref. 18, this result was extended to the case of three-
dimensional generalized Hénon maps (2). When map (2) has a fixed
point, this point can be moved to the origin, and then the map takes
the form

x̄ = y, ȳ = z, z̄ = Bx + Cy + Az + ay2 + byz + cy2 + · · · , (6)

where the dots stand for cubic and higher order terms. The
characteristic equation at the fixed point O(0, 0, 0) has the form
λ3 − Aλ2 − Cλ − B = 0. Thus, the point O has multipliers
(+1, −1, −1) at (A = −1, C = 1, B = 1) and, hence, for nearby
values of the parameters, B = 1 − ε1, C = 1 − ε2, A = 1 − ε3, map
(6) can be written as

x̄ = y, ȳ = z, z̄ = (1 − ε1)x + (1 − ε2)y − (1 + ε3)z

+ ay2 + byz + cy2 + · · · . (7)

The following result was established in Ref. 18 (see Lemma 3.1
there).

• Let the following condition hold:

(c − a)(a − b + c) > 0, (8)

then map (7) has a discrete Lorenz-like attractor that is
pseudohyperbolic for all ε from an open, adjoining to
ε = 0, subregion D of {ε1 > 0, ε1 + ε3 > 0, |ε2 − ε1 − ε3|
≤ L(ε2

1 + ε2
3)}, for some L > 0.

Condition (8) can be considered as a simple criterion for
the existence of pseudohyperbolic discrete Lorenz-like attractors

in three-dimensional orientable diffeomorphisms that allow a
codimension-3 bifurcation related to the appearance of a fixed (or
periodic) point with the triplet (−1, −1, +1) of multipliers. In par-
ticular, the inequality (8) satisfies automatically for map (1), for
which c = −1, a = 0, and b = 0. However, for example, for the map

x̄ = y, ȳ = z, z̄ = M1 + Bx + M2z − y2, (9)

which is well known as a “homoclinic map,”59,61 where a = −1,
c = 0, b = 0, inequality (8) is not fulfilled. In principle, this is not
surprising, since map (9) is inverse to map (1), and, hence, it should
have a Lorenz-like repeller (for |B| > 1) instead of the attractor.

Note that when B = 0 map (9) becomes effectively two-
dimensional map of form ȳ = z, z̄ = M1 + M2z − y2. It is the well-
known two-dimensional endomorphism introduced by Mirá62 yet
in 1960s. Therefore, we will call map (9) the three-dimensional Mirá
map. As it was shown in Refs. 17 and 19, map (9) demonstrates chaos
of completely different type than map (1)—it is more associated
with spiral attractors than with Lorenz-like ones.17,19,63,64 Neverthe-
less, the question of the existence of discrete Lorenz-like attractors
(on periodic orbits) in map (9) is very interesting, in particular, it is
important for the development of the multidimensional Newhouse
theory.39

B. On numerical verification of pseudohyperbolicity

Let us return to the attractors presented in Figs. 1(a) and 1(b),
for which we now consider the question of their pseudohyper-
bolicity. Note that the corresponding values of the parameters
(M1 = 0, M2 = 0.85, B = 0.7 and M1 = 0, M2 = 0.815, B = 0.7) are
not close to A∗ = (M1 = −1/4, M2 = 1, B = 1). Thus, we cannot
deduce the desired pseudohyperbolicity of these attractors from the
local analysis. It is not at all clear how to establish the pseudo-
hyperbolicity of such attractors analytically but this can be done
numerically.

We will use standard tools, which, in fact, give only “numeric
evidence,” in contrast to the so-called “computer-assisted proofs”
(see, e.g., Refs. 8, 65, 66, and 67), which give mathematical results.
However, the latter are too time-consuming and require special
skills. However, our approach can be viewed as an exploratory one
and the results obtained can be considered as starting points for
rigorous numerics. However, before doing our computations, some
simple necessary conditions should be checked.

First, the fixed point itself must be pseudohyperbolic. This fol-
lows from the fact that its multipliers satisfy condition (4) in both
cases of Figs. 1(a) and 1(b). Thus, if the attractors are pseudohyper-
bolic, then dim N1 = 1 and dim N2 = 2. This follows also that the
spectrum of Lyapunov exponents 31 > 32 > 33 on the attractors
must be such that the inequalities

31 > 0, 31 + 32 > 0, 31 + 32 + 33 < 0 (10)

are fulfilled.
This follows that 33 < 0, while the sign of 32 can be either

positive or negative. Moreover, in Ref. 3, a mysterious behavior of
the exponent 32 was discovered in the case of discrete Lorenz-like
attractors [the same as in Fig. 1(a) and 1(b)], for which the sign of
32 was not determining reliably enough. It is quite possible that this
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is well for pseudohyperbolicity, but most likely this fact does not
matter much (see discussion in Ref. 3).

It is shown standardly that inequalities (10) are valid for
numerically found exponents 3i [for both the attractors of Figs. 1(a)
and 1(b)]. However, such Lyapunov exponents are certain average
characteristics for the orbits of attractor; therefore, in principle, it
is possible that the attractor has very small “gaps” (whose sizes may
be less than any reasonable accuracy of calculations), where condi-
tions (10) on exponents for the corresponding orbits from “gaps” are
violated.

In order to exclude (as confident as possible) this situation, one
can additionally check numerically conditions from Definition 1. As
it seems, condition (ii) from this definition looks to be the most
delicate and indicative. It says, in particular, that the field N1(x) of
strongly contracting directions depends continuously on points x of
the attractor. This field can be calculated in various ways. In partic-
ular, one of such methods, the so-called LMP method (abbreviation
for “Light Method of Pseudohyperbolicity” checking), was proposed
in Ref. 31 (see also Ref. 40). This method allows to construct a field
of vectors corresponding to the strongest contractions and to dis-
play, in the form of LMP-graph, the dependence of the angles dϕ

between vectors N1(x1) and N1(x2) on the distance dx between the
corresponding points x1 and x2 on the attractor.

In Figs. 10(a) and 10(b), we represent the LMP-graphs for the
discrete Lorenz-like attractors in Figs. 1(a) and 1(b), respectively.
The graph in Fig. 10(b) shows that the corresponding attractor is
pseudohyperbolic with a lot of confidence. Indeed, here dϕ → 0
as dx → 0, as it should be when the field N1 is continuous. On
the other hand, the graph in Fig. 10(a) looks quite “chaotic” near
the axis dx = 0: it seems that if dx → 0, then various sequences
dϕ = dϕ(dx) can take any partial limits in [0, π]. This shows that
here the condition (ii) of continuity of the field N1 from Definition
1 is not fulfilled. The latter is characteristic for quasiattractors.

In Fig. 10(c), the LMP-graph for the attractor presented in
Fig. 7(f) is shown, which can be considered as numerical evidence
of the fact that this discrete Lorenz attractor of map (1) is pseudohy-
perbolic.

In Fig. 10(d), the LMP-graph is shown for the periodi-
cally perturbed Lorenz-like attractor presented in Fig. 2(b). This
graph gives again a numerical evidence for pseudohyperbolicity
of the attractor and can be considered as a certain justification
of the Turaev–Shilnikov theory16 that the pseudohyperbolicity of

FIG. 10. LMP-graphs for the attractors pre-
sented in (a) Fig. 1(a), (b) Fig. 1(b), (c)
Fig. 7(f), and (d) Fig. 2(b).
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autonomous flows preserves at small periodic perturbations (see also
Sec. IV D).

C. On some peculiarities of the LMP method

First, it should be noted that there is a big difference between
the standard method for calculating the Lyapunov exponents and
the LMP method if we only mean checking the pseudohyperbol-
icity. The first method is directed to the calculation of Lyapunov
exponents, suppose, with huge accuracy and reliability. However,
the entire phase space (a neighborhood of the attractor) cannot be
scanned, in principle. Even if we try to do this, there will still be
“holes” whose sizes are less than any reasonable accuracy (where,
for example, periodic sinks reside), which the standard method does
not feel (moreover, possible deviations in the process of calcula-
tions are leveled out due to the averaging that is the essence of
the method). The LMP method works in such a way that, using all
the data obtained during the calculation of Lyapunov exponents,
it automatically identifies those possible temporary failures in the
calculation of exponents.

For example, it is well known that Lyapunov exponents 31 > 0
and 32 < 0 in the case of the Hénon map can be calculated with high
accuracy, but this does not mean at all that the attractor is hyper-
bolic; on the contrary, it is always a quasiattractor. In particular, in
this case, there is no continuous decomposition into the spaces Es

and Eu, as this is illustrated in Fig. 11(a): here, at close points of the
phase space, the vectors es can have completely different directions.
In another case [Fig. 11(b)], a similar situation is shown, but already
for the three-dimensional pseudohyperbolic case, and here the con-
tinuity of the spaces Ess and Ecu means, in particular, that the vectors
ess are close at close points (in this case, the behavior of vectors es and
eu on Ecu is not necessarily continuous, but the subspace Ecu spanned
by these vectors is continuous).

There is one more point related to the fact that for the inverse
map T−1 the exponent 33 becomes maximal and, hence, it will be

FIG. 11. Toward a (pseudo)hyperbolicity of maps: (a) in 2D Hénon-like maps, the
vectors es ∈ Es can have completely different directions at close points due to
strong folds in unstable invariant manifolds (the same takes place for the vectors
eu ∈ Eu); (b) in 3Dmaps with a pseudohyperbolic structure, strong folds in one-di-
mensional unstable invariant manifolds also occur, but only parallel to the planes
of Ecu or transverse to the field of vectors from Ess; therefore, vectors ess for close
points will be also close.

calculated quite reliably for backward iterations, if, of course, we
do not leave the attractor points. But since we have already found
the array of such points during the process of calculating Lyapunov
exponents, it is natural to “tie” the result of each new iteration to the
corresponding point of the array.

As for questions of computational accuracy and a number of
iterations, they are all standard and quite reasonable. Neverthe-
less, the LMP method makes it possible, for example, to distinguish
between attractors in Figs. 1(a) and 1(b) with regard to their pseudo-
hyperbolicity. So, the attractor in Fig. 1(a) turned out to be definitely
a quasiattractor, while the attractor in Fig. 1(b) is pseudohyperbolic
with a lot of confidence, which is demonstrated by their LMP-graphs
in Figs. 10(a) and 10(b). At our request, Figueras68 has verified our
results using the computer-assisted proof method. The results are as
follows: the attractor in Fig. 1(b) is indeed pseudohyperbolic; and
inside the attractor of Fig. 1(a), as it turned out, there is a stable
period-80 orbit whose diameter of the absorbing domain is of the
order of 10−40. Certainly, this is not really to obtain by means of
standard numerics.

It should also be said that all the numerical results of the present
paper were obtained by conventional numerical methods and do not
pretend to be mathematical proofs.

D. Turaev–Shilnikov pseudohyperbolic discrete

Lorenz-like attractors

One of the most natural ways to get pseudohyperbolic discrete
Lorenz-like attractors for three-dimensional maps was proposed in
Ref. 16 by Turaev and Shilnikov, in which it was shown that such
attractors can exist in the Poincaré maps for periodically perturbed
systems having the Lorenz attractor satisfying conditions of the
Afraimovich–Bykov–Shilnikov model.2 When these perturbations
are sufficiently small, the resulting discrete attractor is pseudohy-
perbolic and has a Lorenz-like geometric structure: it contains the
unique fixed point, a saddle of type (2,1), with positive multipli-
ers, 0 < λ2 < λ1 < 1 < γ , where λ1γ > 1 and, besides, two fixed
points of the Poincaré map [both saddle-foci of type (1,2)] reside
in two holes of the attractor [see Fig. 2(b)]. These characteristics
of such attractors make them significantly different from the dis-
crete Lorenz-like attractors considered in Secs. II and III. Recall that
the latter have fixed points with a negative unstable multiplier and
period-2 points reside in two its holes.

However, for the second power of the map, these attractors may
not be distinguishable at all. Nevertheless, in general, these attractors
are different even in this case. In particular, the discrete Lorenz-like
attractor with γ < −1 always possesses a symmetry that is inherited
by the local symmetry between Wu+ and Wu− due to the unstable
multiplier of the fixed point O is negative. When the unstable multi-
plier is positive, γ > 1, the behavior of separatrices Wu+ and Wu− is
independent and, thus, the corresponding discrete attractor cannot
be symmetric, in general. This implies also that scenarios of creation
of such attractors must differ from those considered in Sec. III. Here,
instead of a codimension-1 period-doubling bifurcation, one should
have either a codimension-2 pitch-fork bifurcation (in the symmet-
ric case), when the point O becomes a saddle of type (2,1) and stable
fixed points p1 and p2 are born [see Fig. 6(b)] for the imaginary case
where the points Oµ, p1 and p2 are fixed, or such a configuration

Chaos 31, 023117 (2021); doi: 10.1063/5.0037621 31, 023117-13

Published under license by AIP Publishing.

Alexey
Карандаш

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

(two stable and one saddle fixed points) is created sharply due to a
saddle-node bifurcation, when the point O remains stable and two
new fixed points, saddle and stable, appear (in general, asymmetric,
case).

V. ON PERIOD-2 LORENZ-LIKE ATTRACTORS

As we discussed in Sec. III for the case of three-dimensional
orientable maps, good scenarios leading to the emergence of the
discrete Lorenz-like attractors must contain bifurcation step [s1]
or [s2]. It would seem that the same should be true for the non-
orientable case as well. However, good examples of the implemen-
tation of such scenarios in the case of non-orientable maps have
not yet been found (we think that their finding is only a matter
of time). Instead, we found scenarios including several successive
period-doubling bifurcations with the orbit (p1, p2). The simplest
option here is as follows:

[sc3] the period-2 orbit (p1, p2) loses the stability under the second
period-doubling bifurcation: the orbit (p1, p2) becomes saddle
and a period-4 stable orbit S̃ = (s1, s2, s3, s4) is born; further, the
orbit S̃ loses stability (under an Andronov–Hopf bifurcation)
according to one of the options [sc1] or [sc2] for T2.

Note that, for the map T2, the points p1 and p2 become fixed
and, thus, the option [sc3] gives a possibility for the simultaneous
appearance of two discrete Lorenz-like attractors associated with
these saddle fixed points. This means that, for the map T itself,
a period-2 Lorenz-like attractor with four holes around the points
s1, s2, s3, s4 can arise.

In Fig. 12, we illustrate the [sc3]-scenario for the nonorientable
three-dimensional Hénon map (1) with fixed B = −0.8 and M2

= −1.05, and varying M1. When −2.03 < M1 < 2.172, the fixed
point O is stable. At M1 ≈ 2.172, it undergoes a supercritical period-
doubling bifurcation and a stable period-2 orbit (p1, p2) becomes
the attractor [Fig. 12(a)]. At M1 ≈ 2.223, the orbit (p1, p2) under-
goes the second period-doubling bifurcation: it becomes saddle and
a stable period-4 orbit S̃ = (s1, s2, s3, s4) emerges in its neighbor-
hood [Fig. 12(b)]. A transition between Fig. 12(b) for M1 = 2.27
and Fig. 12(c) for M1 = 2.28 seems insignificant, but in fact, it is very
important. Indeed, one can see that several events happened here:

(1) a period-4 stable invariant curve Ŝ = (S1, S2, S3, S4) is born from
the stable period-4 orbit S̃;

(2) the most important thing is that, at some M1 ∈ (2.27; 2.28), a
double homoclinic butterfly with the orbit (p1, p2) has appeared
(for T2, this means that two homoclinic butterflies with the fixed
points p1 and p2 appear simultaneously);

FIG. 12. Toward a scenario of the onset of a discrete period-2 Lorenz-like attractor. The upper row corresponds to simple bifurcations with fixed and period-2 points due to
option [sc3]: (a) the fist period-doubling; (b) the secondary period-doubling; and (c) the supercritical Andronov–Hopf bifurcations. The bottom row corresponds to strange
attractors that contain the points p1(a, b, a) and p2(b, a, b), where (d) a ≈ 0.29, b ≈ 0.96; (e) a ≈ 0.28, b ≈ 0.97; and (f) a ≈ 0.27, b ≈ 0.98.
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(3) a saddle period-4 invariant curve Ĉ = (C1, C2, C3, C4) is formed
from this double butterfly; the curve is saddle because the saddle
value of the orbit (p1, p2) is greater than 1; and

(4) the unstable separatrices of points p1 and p2 are reconstructed
(e.g., the right separatrix of p1 goes to the point s3 at M1 = 2.27,
while, at M1 = 2.28, it goes to the curve S1).

Almost immediately, the period-2 Lorenz-like attractor appears
[see Fig. 12(d)] where one can see that this attractor coexists with the
stable period-4 invariant curve Ŝ. When the curves Ŝ and Ĉ merge
and disappear, the period-2 Lorenz attractor becomes the unique
attracting invariant set. Two examples of this attractor are shown
in Fig. 12(e) for M1 = 2.29 and Fig. 12(f) for M1 = 2.295.

Note that the presented scenario for the period-2 Lorenz-like
attractor is very similar to the scenario for the discrete Lorenz-like
attractor in the orientable case (compare with Fig. 7). However, they
are rather different attractors. Moreover, as the period-2 Lorenz-like
attractor is new, in our opinion, we describe in more detail some
important features of its structure and bifurcations.

So, in Fig. 13(a), a skeleton scheme for the period-2 Lorenz-like
attractor is shown that is similar to the scheme from Fig. 3(b) for the
discrete orientable Lorenz-like attractor. The scheme in Fig. 13(a)
reflects main geometric properties of the attractor. So, the unstable
manifold of the orbit (p1, p2) is divided by the points p1 and p2 into
four connected components, separatrices w1, w2, w3, w4, such that

w2 = T(w1), w3 = T(w2), w4 = T(w3), and w1 = T(w4). The local
two-dimensional stable manifold of the orbit (p1, p2) consists also
of two connected components, Ws

loc(p1) and Ws
loc(p2) that contain

the points p1 and p2, respectively. In the case under consideration,
all separatrices w1, . . . , w4 do not intersect with Ws(O) and, besides,
the separatrices w1 and w3 intersect with Ws(p1) and do not intersect
with Ws(p2), and the separatrices w2 and w4 intersect with Ws(p2)

and do not intersect with Ws(p1).
Importantly, that the point O and its unstable manifold do

not belong to the attractor, and its stable manifold forms a natu-
ral boundary between two components of the period-2 Lorenz-like
attractor (or, equivalently, a boundary between two discrete Lorenz
attractor for the map T2).

The phase portrait of the period-2 Lorenz-like attractor in
map (1) with B = −0.8, M1 = −1.05, and M2 = 2.29 is shown in
Fig. 13(b) and behavior of its separatrix w4 is shown in Fig. 13(d).
The behavior of other separatrices, w1, w2, and w3, is symmetric due
to the points p1 and p2 compose a period-2 orbit that has the nega-
tive unstable multiplier. The latter means that T2(w1) = w3, T2(w3)

= w1 and T2(w2) = w4, T2(w4) = w2.
We emphasize also that period-2 Lorenz-like attractors can

be genuine (pseudohyperbolic). This applies, in particular, to the
attractors in Figs. 12(d)–12(f). For example, the LMP-graph in
Fig. 13(c) shows that the attractor in Fig. 13(b) [it is also in Fig. 12(e)]
is certainly pseudohyperbolic.

FIG. 13. Toward a structure of the period-2 Lorenz-
like attractor: (a) a skeleton scheme for the unsta-
ble separatrices of points p1, p2, and O; (b) phase
portrait for the attractor in map (1) with B = −0.8
M1 = −1.05, andM2 = 2.29; (c) its LMP-graph, and
(d) numerics for its separatrix w4. Note also that,
because the period-2 Lorenz-like attractor is orga-
nized near a period-2 orbit, the LMP-graph in (c) was
constructed by taking each fourth iteration of the map
in order to check its pseudohyperbolicity in a proper
way.
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A. On crises of period-2 Lorenz-like attractors

When changing parameters, one can observe various types of
crises with the period-2 Lorenz-like attractors. Usually, the same
as the discrete Lorenz-like attractors,17–19 they can break down and
transform into closed invariant curves or strange attractors of torus-
chaos type, etc. However, such attractors can also demonstrate
their interesting features associated with the formation of strange
attractors of new types.

When the unstable manifold of the orbit (p1, p2) begins to inter-
sect with Ws(O), it follows that new intersections of w1 and w3 with
Ws(p2) as well as w2 and w4 with Ws(p1) also appear. This means that
a discrete attractor can arise containing the fixed point O and the
saddle period-2 orbit (p1, p2). A skeleton scheme for such an attrac-
tor is shown in Fig. 14(a). An example of such a discrete attractor was
found in map (1) with B = −0.8 at M1 = 1.732 and M2 = −0.814
[see Fig. 14(b)]. This attractor contains the points O, p1, and p2 and
entirely their unstable invariant manifolds that have structures like
“wings.” Note that the attractor contains the fixed point O with mul-
tipliers γ < −1 and λ1,2 = ρ e±iϕ , where ρ ≈ 0.81 and ϕ is very close
to π/2 (cos ϕ ≈ 0.03), i.e., we have a situation near the strong reso-
nance 1:4. Thus, we also touch upon the problem of the structure of
arising homoclinic attractors when passing near strong resonances,
which was formulated in Ref. 17. The attractor in Fig. 14(b) is cer-
tainly the quasiattractor, since it contains the fixed point O that
is a saddle-focus of type (2,1). Indirectly, this is confirmed by its
LMP-graph [see Fig. 14(c)].

Remark 4.

(1) It should be noted that some interesting types of discrete spiral
attractors were found in three-dimensional generalized Hénon
maps near strong resonances: the so-called discrete super-spiral
attractor [containing period-4 saddle-foci of both types (2,1)
and (1,2)] was found in Ref. 17 nearly the strong resonance
1:4 [see Fig. 16(a)], and a discrete “triangle” spiral homoclinic
attractor was found in Ref. 19 near the strong resonance 1:3 [see
Fig. 16(b)].

(2) A good case of such an attractor with “wings” as in Fig. 14(c)
could appear in the orientable case when the multipliers of the

saddle O satisfy condition (4). In this case, the “wings” 〈w1, w3〉
and 〈w2, w4〉 should be parallel, as in the skeleton scheme in
Fig. 16(c), and the attractor can be a genuine, pseudohyper-
bolic one. It remains only to find an example of the system (e.g.,
three-dimensional map) possessing such an attractor, which is
an open problem.

One can imagine such a situation, when, with varying param-
eters, the unstable separatrices of the orbit (p1, p2) do no longer
intersect with the stable manifold Ws(O) of the fixed point O and,
thus, a heteroclinic period-2 attractor is created. It contains the
period-2 orbit (p1, p2) but does not capture the fixed point O. A
skeleton scheme of such an attractor is shown in Fig. 15(a), it illus-
trates the main feature of the attractor related to the fact that all
stable and unstable invariant manifolds of the points p1 and p2

mutually intersect. An example of such attractor for map (1) with
B = −0.8 is shown in Fig. 15(b). However, we note that the first
example of such attractor was found yet in Ref. 3 [see Fig. 1(d)].
However, now we understand better both its structure and how it
can appear at reconstructions with the period-2 Lorenz attractors.

It is also important that such period-2 heteroclinic attractor
can be pseudohyperbolic. In the case of the attractor in Fig. 15(b),
its LMP-graph, shown in Fig. 15(c), confirms this fact. This graph,
the same as the LMP-graph of Fig. 14, has been constructed for T4;
however, unlike the latter, it contains the point (0, π). This does
not contradict the pseudohyperbolicity of the attractor, since the
points p1 and p2 (fixed for T4) together with their invariant mani-
folds form heteroclinic cycles of non-orientable type when passing
along which the initial vector can change its direction to the oppo-
site. In particular, this concerns vectors from the invariant spaces
N1(x) from Definition 1. In Fig. 15(a), we illustrate this fact by
showing seven successive positions of the vectors from N1 near the
contour [p2, w3, p1, w2], while the corresponding areas from N2 are
lined up in the form of Möbius band.

In order to trace better interrelations between the discrete
attractors of these three types, the period-2 Lorenz attractor, the
homoclinic attractor (containing the fixed point O and the period-2
orbit), and the period-2 heteroclinic attractor, we have constructed
the so-called chart of Lyapunov exponents (see Fig. 17), for map (1)

FIG. 14. Toward an attractor containing the fixed point O (that is a saddle-focus near the 1:4 resonance) and the saddle period-2 orbit (p1, p2): (a) a skeleton scheme for
such attractors; (b) an example of such attractor in map (1) with B = −0.8, where O(x = y = z ≈ 0.55); and (c) its LMP-graph.
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FIG. 15. (a) An example of a discrete super-spiral attractor [in map (9) with B = 0.7,M1 = 0.35, and M2 = 0.8; some point of attractor (x, y, z) = (0.58, 1.05, 0.54)]; (b)
an example of a discrete “triangle” spiral homoclinic attractor [in map (9) with B = 0.7,M1 = 0.2185,M2 = −0.1324]; some homoclinic points, h1, . . . , h6 are shown, where
the stable (red line) and unstable manifolds of the fixed point O = (0.3, 0.3, 0.3) intersect; and (c) a skeleton scheme for a genuine two-wings attractor.

with B = −0.8. This chart is a specific diagram, on the (M1, M2)-
parameter plane, showing various types of stable regimes.

The blue and green domains in the chart relate to stable peri-
odic and quasiperiodic orbits, respectively. Strange attractors exist
for the values of parameters corresponding to the gray and yellow
domains, which are distinguished by the magnitude of the second
Lyapunov exponent 32 (in the yellow-colored domain 32 < 0 while
in the gray-colored – 32 oscillates near zero). In these domains, we
mark three points A, B, and C related to the attractors presented in
Figs. 13–15, respectively.

Even a quick glance at the diagram in Fig. 17 is enough
to understand that the transitions between different attractors
corresponding to the points A, B, and C cannot be too simple. In
any case, they are associated not only with the described above
reconstructions of unstable manifolds but also with the destruc-
tion of attractors themselves, their transformations into invariant
curves, inverse rearrangements of these curves into new attractors,
etc. Understanding the corresponding bifurcation mechanisms even
in the particular case of map (1) looks potentially as a new rather

interesting problem. In the present paper, we have considered, in
fact, only one such mechanism—the scenario of the appearance of
the period-2 Lorenz attractor due to the option [sc3] that is observed
along the pathway marked by the turquoise arrow in Fig. 17.

VI. CONCLUSION

Discrete homoclinic attractors of multidimensional maps com-
pose a very interesting class of new strange attractors that can be
genuine, pseudohyperbolic, attractors. The theory of such attractors
has not been created yet, although some important results in this
direction were obtained (see, e.g., Refs. 3 and 17–19). The greatest
advances in this theory have been achieved at the study of discrete
Lorenz-like attractors. In the present paper, we tried to give some
overview of the main results obtained in this direction. However, as
one can see, even here, there are still many unsolved problems. For
example, one can emphasize the following problems related to the
study of the generalized Hénon maps of form (2).

FIG. 16. Toward a period-2 heteroclinic attractor containing the saddle orbit (p1, p2): (a) a skeleton scheme for such attractors; (b) an example of such attractor in map (1)
with B = −0.8, where p1 = (a, b, a), p2 = (b, a, b), and a = 0.12, b = 0.85; and (c) its LMP-graph.
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FIG. 17. Chart of Lyapunov exponents for map (1) with B = −0.8 on the
(M1,M2)-parameter plane. At each of the 500 × 500 points, we compute 10 000
preliminary iterations and then estimate the first two exponents 31 > 32 over
the next 100 000 iterations. The color scheme is described in a palette (see the
top-right corner of this chart); the red domains (with hyperchaos) are absent in the
chart. The threshold of zero LE is 0.005. Some bifurcation curves are also shown
here: the curves PD1 and PD2 of the first and second period-doubling with the
fixed point O; the curve AH4 of the supercritical Andronov–Hopf bifurcation with
the stable period-4 orbit (s1, s2, s3, s4); and the curve (a thinking zone indeed)
8h2 corresponding to the appearance of a double homoclinic butterfly with the
orbit (p1, p2).

(1) To find an example of a discrete Lorenz-like attractor containing
a saddle fixed point with positive multipliers (the same one as in
Ref. 16).

(2) In the nonorientable case (B < 0), to find an example of discrete
Lorenz-like attractor with fixed point, which would be pseudo-
hyperbolic or would appear in the scenarios with options [sc1]
or [sc2] (see Sec. II).

(3) To study local codimension-3 bifurcations of fixed points with
multipliers (+1, +1, −1) and/or (−i, +i, −1) with the accent to
the birth of discrete Lorenz-like attractors or strange attractors
of other types (which ones?).

(4) To find an example of discrete Lorenz-like attractor with a sad-
dle periodic orbit in the three-dimensional Mirá map of the
form (9).

On the other hand, as we know, the zoo of discrete homoclinic
attractors even in three-dimensional maps now contains several
specimens, interesting from different points of view. These are, for
example, a series of figure-8 attractors, including double and super
figure-8 ones, as well as figure-8 spiral attractors (see Ref. 20).
As for discrete Lorenz-type attractors, some of their types, pre-
dicted by their primary homoclinic structures, have not yet been
found. These are, e.g., mentioned in Sec. IV D, “classical” attractors
[containing a saddle fixed point of type (2,1) with all positive mul-
tipliers] or nonorientable “double Lorenz” attractors [containing a
saddle fixed point of type (2,1) with multipliers γ > 1, −1 < λ2 < 0
< λ1 < 1].46 A very interesting class consists of the so-called dis-
crete Shilnikov attractors, i.e., homoclinic attractors containing a

saddle-focus fixed point of type (1,2). Since such attractors contain
the closure of two-dimensional unstable manifold of a fixed point,
they can provide quite realistic and simple examples of hyperchaotic
attractors.44,45 Although a number of rather interesting results have
already been obtained in the theory of discrete Shilnikov attractors
(see, e.g., Refs. 17, 19, and 20), there is still much to be done here.

Another interesting problem can be formulated as a continu-
ation of the topics outlined in Sec. V of this paper. In particular,
for generalizing options [sc1], [sc2], and [sc3], we consider the
following:

[scn] the fixed point O undergoes n supercritical period-doubling
bifurcations and this sequence is terminated by the Andronov–
Hopf bifurcation, i.e., the stable orbit of period 2n loses stability
according to the options [s1] or [s2] for T2n.

As a result of this option, a period-2n Lorenz-like attractor can
theoretically appear. Next, components of this attractor can merge
pairwise forming a 2n−1-component attractor containing period-
2n points and organizing them (after period-doubling) period-2n−1

points, etc.
This option implies that, in principle, the following sequence

of attractor crises can be observed: a period-2n Lorenz-like attractor
appears ⇒ 2n components of this attractor merge in pairs forming
2n−1-component attractor ⇒ · · · ⇒ a homoclinic (of Lorenz shape
or not) attractor containing the fixed point O appears. This sequence
of attractor crises can be viewed as a “chain of doublings of dis-
crete Lorenz shape attractors.” In this paper, we have only slightly
touched on this topic using the example of such a chain with n = 1.
Of course, the question on such chains with larger values of n seems
rather interesting, and we plan to consider this problem in more
detail in the nearest future.
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