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ABSTRACT

We study the phenomenon of a collision of a Hénon-like attractor with a Hénon-like repeller leading to the emergence of mixed dynamics
in the model describing the motion of two point vortices in a shear flow perturbed by an acoustic wave. The mixed dynamics is a recently
discovered type of chaotic behavior for which a chaotic attractor of the system intersects with a chaotic repeller. In all known systems with
mixed dynamics, the difference between the numerically obtained attractor and repeller is small. Unlike these systems, the model under
consideration demonstrates another type of mixed dynamics that we call “strongly dissipative.” In this case, a strange attractor and a strange
repeller have a nonempty intersection but are very different from each other, and this difference does not appear to decrease with increasing
computation time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5144144

Dynamics of dissipative systems with chaotic behavior are, in
many cases, associated with strange (chaotic) attractors. One of
the simplest and most well-known examples of systems with a
strange attractor is given by the two-dimensional Hénon map.1

Its attractor contains a saddle fixed point with a negative unsta-
ble multiplier and is formed after a cascade of period-doubling
bifurcations2–4 followed by a cascade of heteroclinic “band-
fusion” bifurcations.5 Such strange attractors, further Hénon-like
attractors, appear in many two-dimensional (and also higher-
dimensional) maps, as well as in Poincaré maps for various
systems of differential equations. In this paper, we show that
the crisis of a Hénon-like attractor in a reversible system can
lead to the appearance of strongly dissipative mixed dynam-
ics (SDMD), when a strange attractor and the symmetric to it,
a strange repeller, have a nonempty intersection but are very
different from each other. As an example of a system demon-
strating such behavior, we consider the model describing the
motion of two point vortices in a shear flow perturbed by an
acoustic wave.

I. INTRODUCTION

The crisis of a Hénon-like attractor happens due to the colli-
sion with the boundary of its absorbing domain.5,6 In the Hénon

map, after such a crisis, the attractor is destroyed and most of the
orbits from its neighborhood go to infinity. In problems demon-
strating multistable dynamics, orbits after such a crisis can run
to another attractor located in a different region of phase space.
It is also important to note that in some cases, especially in sys-
tems with symmetries,7–9 the crisis of a Hénon-like attractor can
lead to its collision with another chaotic attractor, e.g., with a
Hénon-like one. In more rigorous terms, such phenomena are
related to the emergence of heteroclinic intersections between the
unstable invariant manifolds forming the “skeleton” of the attrac-
tors and those stable manifolds that bound their domains of
attraction.

In this paper, we investigate a phenomenon of collision of a
Hénon-like attractor with a Hénon-like repeller. This is a completely
new effect: instead of a union of two attractors, we observe a merger
of an attractor and a repeller. We study it on the example of the
reversible two-dimensional map arising in the system describing
the motion of two point vortices in a shear flow perturbed by an
acoustic wave.7 After such a merger, dissipative dynamics associated
with the existence of isolated Hénon-like attractor and Hénon-like
repeller [see Fig. 1(a)] are replaced by another type of chaos—the
so-called mixed dynamics.10–14 Here, the strange attractor of the
system increases in size explosively and starts to contain infinitely
many area-expanding and area-preserving saddle periodic orbits, in
addition to area-contracting ones. The picture of the Poincaré map
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FIG. 1. The phase portraits of the attractor (in blue) and the repeller (in red) in
the Poincaré map for the model of two point vortices perturbed by an acoustic
wave and a shear flow [see system (1)]. (a) The Hénon-like attractor is separated
from the Hénon-like repeller; the parameter values are A = 0.1, κ = 4.65, and
ε = 0.1463. (b) Mixed dynamics after the merger of the Hénon-like attrac-
tors with the Hénon-like repellers; parameter values: A = 0.1, κ = 4.65, and
ε = 0.148 15.

where the strange attractor intersects with the strange repeller but
does not coincide with it is given in Fig. 1(b).

The mixed dynamics phenomenon has been predicted in
Ref. 10 and, since then, has been often observed in reversible sys-
tems from various applications (see, e.g., Refs. 15–22); recently, an
interesting example of this phenomenon was also found in a non-
reversible system.23 The theoretical foundation for mixed dynamics
was given recently in Refs. 24 and 25. In all reversible models men-
tioned in the above papers,15–22 mixed dynamics was quite similar
to the conservative one with small nonconservative (and reversible)
perturbations. As a result of such perturbations, periodic sinks and
sources appear inside the region with chaotic dynamics due to local26

and global11,14 symmetry-breaking bifurcations. As a rule, these sinks
and sources have very narrow domains of attraction (repulsion).
Therefore, it is difficult to detect them by straightforward numer-
ics; however, there are indirect effective methods for their detection
(see, e.g., in Ref. 20). Naturally, the presence of stable and com-
pletely unstable periodic orbits (even in very narrow domains)
confirms that the system is not conservative, i.e., it does not pre-
serve any measure with a smooth density (a quite delicate example
of this phenomenon in the nonholonomic model of a rubber disk is
given in Ref. 27). The common phenomenon in near-conservative
reversible settings is that the attractor and the repeller intersect and,
while remaining different from each other, occupy roughly the same
regions in the phase space. In Fig. 2, we present an illustrative exam-
ple of such an effect by constructing the attractor and the repeller for
the nonholonomic model of Suslov top.19

This phenomenon is robustly present in reversible systems of
various nature. It is worth noting that, in all known reversible mod-
els with mixed dynamics, the difference between the numerically
obtained attractor and repeller decreases with the increase of the
time of computation (however, the asymmetry in the distribution of
points in the attractor and the repeller persists). This is in an agree-
ment with Theorem 2 from Ref. 25, which states that if an attractor
of any system intersects with a repeller then these two sets must
coincide.

FIG. 2. The phase portraits of (a) the attractor and (b) the repeller in the corre-
sponding two-dimensional Poincaré map for the nonholonomic model of Suslov
top.19 It is seen that the attractor and the repeller almost coincide but differ in some
small details.

In this paper, we present a far from conservative example of
reversible mixed dynamics, when a strange attractor and a strange
repeller have a nonempty intersection but are very much differ-
ent from each other, and this difference does not seem to vanish
with a reasonable increase in the computation time, in an apparent
contradiction with the above mentioned theorem from Ref. 25 [see
Fig. 1(b)].

We call such a phenomenon the strongly dissipative mixed
dynamics (SDMD). In comparison with the previously known cases
of mixed dynamics, the phase volume contraction rate (the sum
of Lyapunov exponents) on the attractor for SDMD is much less
than zero, which makes the system far from conservative and, in
our opinion, makes the large difference between the distribution of
points in the attractor and the repeller possible. We believe that the
computation time needed to see that the intersecting attractor and
repeller occupy the same region in the phase space, as prescribed by
Ref. 25, is extremely large in this case and is unachievable in realistic
simulations.

Beyond demonstrating SDMD in system (1), we also suggest
a bifurcation scenario of the transition from conservative to mixed
dynamics in one-parametric family of two-dimensional reversible
diffeomorphisms. The main part of this scenario is the merger
of a Hénon-like attractor with a Hénon-like repeller. This merger
occurs due to the appearance of heteroclinic connections between
the invariant manifolds of a pair of saddle fixed points, one of which
belongs to the attractor, and the other point belongs to the repeller.
The corresponding bifurcations in system (1) are studied in detail.
Finally, we conclude that the observed phenomenon of the attractor-
repeller merger can also occur in multidimensional reversible and
nonreversible maps. Moreover, other types of homoclinic attractors
and homoclinic repellers can merge in these cases.

The rest of the paper is organized as follows. In Sec. II, we
describe the phenomenological bifurcation scenario, which leads to
the merger of Hénon-like attractors with Hénon-like repellers and,
as a result, to the appearance of mixed dynamics. In Sec. III, we
present a model describing the motions of two point vortices in a
shear flow perturbed by an acoustic wave. In Sec. IV, we study, in this
model, bifurcations leading from conservative to dissipative dynam-
ics (related to the existence of separated Hénon-like attractors and
repellers) and, finally, to strongly dissipative mixed dynamics.
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II. SCENARIO OF THE MERGER OF A HÉNON-LIKE
ATTRACTOR WITH A HÉNON-LIKE REPELLER

Let us consider a one-parameter family of two-dimensional
reversible maps x̄ = f(x, ε) defined on a compact manifold and
depending on a parameter ε. Suppose that for all ε, these maps are
reversible with respect to the same involution h (i.e., f = h ◦ f−1 ◦ h,
where h ◦ h = id) for which the set Fix(h) of its fixed points (when
h(x) = x) is one-dimensional.

Further, let O be a fixed point belonging to the line Fix(h).
Suppose that this point is elliptic for ε < ε0 and it undergoes a
reversible pitchfork bifurcation26 at ε = ε0. After this, the point O
becomes a saddle, and a symmetric pair of asymptotically stable, Sa,
and completely unstable, Sr, fixed points (one point is symmetric to
another with respect to h) appears near O (see Fig. 3 at ε = ε0). We
also suppose that, with further increase in the parameter, at ε = εF,
a Feigenbaum-like attractor28 AF is born via a cascade of period-
doubling bifurcations with Sa. By the reversibility, a Feigenbaum-
like repeller RF is born from Sr at the same moment. We note that
after the first period-doubling bifurcation, points Sa and Sr become
saddles.

Recall that immediately after the onset of chaotic dynam-
ics through the cascade of period-doubling bifurcations, the
Feigenbaum-like attractor consists of disjoint components.2,3 With
the further increase in ε these components merge pairwise (due
to the occurrence of heteroclinic intersections between stable and
unstable manifolds of the saddle orbits belonging to different
components5). Finally, two last components separated by the stable
manifold of Sa are merged and the homoclinic Hénon-like attractor

AH appears [see Fig. 3(a) at ε = εH and Fig. 3(b)]. By the reversibil-
ity, the homoclinic Hénon-like repeller RH containing the fixed
point Sr occurs at the same moment. We call these attractors
(repellers) homoclinic since they contain a single fixed point (with a
pair of negative multipliers) and its unstable manifold.29

With a further increase in ε, the Hénon-like attractor AH
becomes larger and approaches the boundary of its basin of attrac-
tion, which is formed by the stable manifold Ws of the saddle fixed
point O (accordingly, the basin for RH is bounded by the unstable
manifold Wu of the same point O). Also we note that both stable
and unstable manifolds are separated by the point O into pairs of
stable and unstable separatrices, and one pair of separatrices already
intersects, while another does not [see Fig. 3(b)].

When ε = εMD, the crisis of attractor AH and repeller RH
occurs (AH collides with the boundary of its absorbing domain Ws,
while RH symmetrically collides with the boundary of its repulsing
domain Wu), after which both these sets get involved into the same
homoclinic structure, the attractor merges with the repeller, mixed
dynamics appear [see Fig. 3(c)].

III. THE MODEL

In this section, we briefly describe the model of two point vor-
tices interacting with a shear flow perturbed by an acoustic wave.7

It is known that the system of two point vortices in the absence of
an acoustic forcing is integrable and, moreover, Hamiltonian (see,
e.g., Ref. 30). However, the addition of the acoustic forcing breaks

FIG. 3. The scenario of merger of a Hénon-like attractor with a Hénon-like repeller leading to the appearance of mixed dynamics in reversible two-dimensional maps.
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integrability and makes the system nonconservative.31 Simple attrac-
tors and repellers (asymptotically stable and completely unstable
periodic orbits) can appear in this case via reversible supercritical
pitchfork bifurcations.31,32 If the vortices are also perturbed by an
external shear flow with constant vorticity, their dynamics become
more complicated. As was shown in Ref. 7, Hénon-like strange
attractors can appear in this case. After certain simplifications of the
model (see details in Ref. 7), the system takes the following form:



















Ṙ =
1

2
AR sin 2ϕ − ε sin ϕ sin S sin(R sin ϕ),

Ṡ = −1 + ε cos S cos(R sin ϕ),

ϕ̇ =
κ

R2
+ A cos2 ϕ −

ε

R
cos ϕ sin S sin(R sin ϕ).

(1)

Here, R ∈ (0, ∞), S ∈ [0, 2π), ϕ ∈ [0, 2π) are the phase variables,
and A, ε, and κ are the parameters. Note that this model is a
generalization of the system describing the motions of two point
vortices that interact only with an acoustic wave.31,32 In system (1),
the parameter ε characterizes the amplitude of the acoustic wave, A
is the vorticity of the external shear flow, and κ is the sum of the
intensities of the vortices.

Note that Eq. (1) are invariant with respect to the substitution

H : {R → R, S → −S, ϕ → −ϕ, t → −t}. (2)

Thus, the system under consideration is reversible. Also, we note
that any half-cylinder ϕ = const can be chosen as a secant. In the
case ϕ = 0 (or ϕ = π), relation (2) defines, for the corresponding
Poincaré map on (S × R), the involution

h : {R → R, S → −S} (3)

or equivalently

{R → R, S → 2π − S}.

The set Fix(h) of fixed points of this involution consists of two lines,

Fix(h) = {S = 0} ∪ {S = π}.

Hereafter, we choose ϕ = 0 as the secant for the system and
perform one-parameter analysis when varying ε, assuming that
other parameters are fixed as follows:

A = 0.1, κ = 4.65.

IV. BIFURCATION ANALYSIS

For ε = 0, system (1) describing the motion of unperturbed
vortices is integrable33 and its phase space is foliated into invariant
tori. When ε > 0, some tori become resonant and, in the corre-
sponding Poincaré map, pairs of symmetric [with respect to the
involution (3)] saddle and elliptic fixed point appear [points s0

i

belong to the line S = 0 and points sπi belong to S = π ; see Fig. 4(a)].
With a further increase in ε, some elliptic fixed points undergo
reversible pitchfork bifurcations due to which they become sym-
metric saddles while pairs of an asymptotically stable fixed point
sa
i and a completely unstable fixed point sr

i are born in their neigh-
borhood [see Fig. 4(b)]. Note that, for sufficiently large values of ε,
eight asymptotically stable (and also eight completely unstable) fixed
points coexist [see Fig. 4(c)], i.e., the dynamics in the system become
significantly multistable.

FIG. 4. Phase portraits in the Poincaré map for system (1) for different ε. (a)
Resonant tori for small ε; (b) elliptic points s02 and s

π
3 undergo reversible pitchfork

bifurcation after which they become symmetrical saddles, and the pairs (sa2, s
r

2)
and (sa3, s

r

3) of asymptotically stable and completely unstable points are born;
(c) simple multistability: eight stable (sa

i
) and eight completely unstable (sr

i
) fixed

points coexist in the system; (d) Hénon-like attractors AH1 and AH2 (and also
Hénon-like repellers RH1 and RH2) develop out of stable points s

a

1 and s
a

2 (from
completely unstable points sr1 and s

r

2).

With the increase of ε, the Hénon-like attractors AHi and the
Hénon-like repellers RHi develop out of the points sa

i and sr
i via

cascades of period-doubling bifurcations followed by a cascade of
heteroclinic “band-fusion” bifurcations. Figure 4(d) shows the coex-
istence of two Hénon-like attractors AH1 and AH2 with a pair of sta-
ble fixed and 2-periodic points for ε = 0.146. In this figure, sa

i and sr
i

are fixed points that become saddle after the period-doubling bifur-
cation of the corresponding stable and completely unstable fixed
points. We note that the saddles sa

i are area-contracting (have the
Jacobian less than 1, J < 1), while the saddles sr

i are area-expanding
(have the Jacobian greater than 1, J > 1).

When ε = εcris1 ≈ 0.146 35, the attractor AH1 and the repeller
RH1 undergo crisis due to which these two sets begin to intersect. It
is important to note that the intersections of attractors and repellers
in the system appear due to the heteroclinic bifurcations. Further,
we will describe such bifurcations in detail, but first, let us recall two
well-known facts related to homoclinic attractors:29

• in many cases, the boundary of absorbing domains for homoclinic
attractors is formed by stable manifolds of some saddle points;

• a homoclinic attractor contains the closure of the unstable mani-
fold of one of its saddle points.
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FIG. 5. Invariant manifolds forming the attractor, the repeller, and their basins. Here, W u

a1 (in blue) is the unstable manifold of the saddle fixed point s
a

1, and W
s

r1 (in red) is
the stable manifold of the saddle fixed point sr1; also,W

s

i
andW u

i
, i = 1, 2 are the stable and unstable separatrises of the symmetric saddles sπ

i
. (a) The Hénon-like attractor

AH1 and Hénon-like repeller RH1 are separated. (b) The merger of AH1 and RH1 due to the heteroclinic intersectionsW
u

a1 ∩ W
s

1 andW
s

r1 ∩ W
u

1 .

In the case under consideration, the Hénon-like attractor AH1 is
formed by the closure of the unstable manifold Wu

a1 of the sad-
dle fixed point sa

1. The absorbing domain of AH1 is bounded from
above by the stable separatrix Ws

1 of the saddle fixed point sπ1 ,

and from below—by the stable separatrix Ws
2 of the saddle fixed

point sπ2 [see Fig. 5(a)]. We also note that the separatrices Ws
1

and Wu
1 intersect transversally, like in the scheme presented in

Fig. 3(b).

FIG. 6. Here, W u

a1 and W
u

a2 (in blue) are the unstable manifolds of the saddle points s
a

1 and s
a

2, and W
s

r2 (in red) is the stable manifold of the saddle point s
a

2; also, W
s

i
and

W
u

i
, i = 1, 2 are the stable and unstable separatrices of the symmetrical saddles sπ

i
. (a) Since W u

a1 ∩ W
s

2 6= ∅, the orbits from the neighborhood of AH1 run to another
Hénon-like attractor AH2. (b) Merger of the Hénon-like attractor AH2 and the Hénon-like repeller RH2 due to the appearance of heteroclinic intersections W

u

a2 ∩ W
s

2 and
W

s

r2 ∩ W
u

2 , respectively.

Chaos 30, 011105 (2020); doi: 10.1063/1.5144144 30, 011105-5

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

When ε > εcris1, intersections between Wu
a1 and Ws

1, as well as
Ws

r1 and Wu
1 , appear [see Fig. 5(b)], and, as a result, the attractor AH1

collides with the upper boundary of the absorbing domain, while
the repeller RH1 collides with the upper boundary of its repulsing
domain. After this collision, the attractor merges with the repeller
and increases explosively; the invariant manifold Wu

a1(S
a
1), which

used to form AH1, can pass arbitrarily near the points Sπ
1 and Sr

1.
But in this case such a merger is not visible due to the multistabil-
ity: another homoclinic Hénon-like attractor AH2 attracts almost all
orbits from a neighborhood of AH1 and, symmetrically, RH2 attracts
orbits from a neighborhood of RH1 in backward time (here, after
the collision of AH1 and RH1, the unstable manifold Wu

a1 also inter-
sects with the stable manifold Ws

2 of the symmetric saddle point
sπ2 [see Fig. 6(a)], and this intersection allows for a transition from
AH1 to AH2).

When ε = εcris2 ≈ 0.148 13, the unstable manifold Wu
a2 of sa

2

belonging to the attractor AH2 touches the stable separatrix Ws
2,

which forms the boundary of the absorbing domain for AH2. The
same nontransversal heteroclinic tangency appears between Ws

r2

and Wu
2 , one of which belongs to the repeller RH2, while another

forms the boundary of its basin. Thus, for ε > εcris2, the attractor
AH2 merges with the set AH1 ∩ RH1 and also with a repeller RH2

[see Fig. 6(b)]. Immediately after this transition, we observe mixed
dynamics due to the intersection of two attractors (AH1 and AH2)
with two repellers (RH1 and RH2). The corresponding phase portrait
of the attractor and the repeller is presented in Fig. 1(b).

However, the observed mixed dynamics exist for a quite nar-
row region of the parameters. At ε = εcris3 ≈ 0.148 25, orbits in
forward time tend to the Hénon-like attractor AH3, which develops
out of the fixed point sa

3 and in backward time—to the Hénon-like
repeller RH3, which develops out of sr

3. In their turn, AH3 and RH3

merge in the same way as AH1 with RH1 and AH2 with RH2, giving

FIG. 7. An illustration for strongly dissipative mixed dynamics after the merger
of all eight Hénon-like attractors AHi and repellers RHi , i = 1, . . . 8 at ε = 0.23.
The attractor is presented in blue color and the repeller in red.

more complicated global connection between different homoclinic
attractors and repellers.

Such a merger of attractors and repellers is terminated at
ε > εcris8 ≈ 0.206, when all 8 Hénon-like attractors AHi and 8
Hénon-like repellers RHi merge. Since there are no other attrac-
tors in the neighborhood of this intersection, the mixed dynamics
become visible [see Fig. 7] and it exists for a quite large interval of
parameter values. Moreover, due to the heteroclinic connections, the
attractor of the system contains area-expanding and area-preserving
saddle fixed points in addition to the area-contracting ones.

One can see in Fig. 7 that the strange attractor and the strange
repeller have a nonempty intersection but are very different from
each other. It is interesting that this difference does not visually
diminish with a reasonable increase in the computation time. To
the best of our knowledge, such a type of reversible mixed dynam-
ics is observed for the first time. We call this phenomenon strongly
dissipative mixed dynamics.

V. CONCLUSION

In this paper, we discuss the phenomenon of merger of Hénon-
like attractors with Hénon-like repellers leading to the occurrence
of mixed dynamics in the model describing the motion of two point
vortices in a shear flow perturbed by an acoustic wave. We show
that in this model, such a mechanism leads to the mixed dynam-
ics of a new type, when, after the merger, a chaotic attractor and a
chaotic repeller have a nonempty intersection but are very different
from each other. Also, we propose a phenomenological bifurcation
scenario for this phenomenon for two-dimensional reversible maps.
The key part of this scenario is the appearance of heteroclinic inter-
sections between the invariant manifolds of a pair of saddle fixed
points, one of which belongs to the attractor, while another point
belongs to the repeller. It is worth noting that the proposed scenario
can be extended to the case of nonreversible two-dimensional maps
and also to multidimensional diffeomorphisms where other types of
chaotic homoclinic attractors are possible (see, e.g., Refs. 18 and 34).
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