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Abstract—We survey recent results on the theory of dynamical chaos from the point of view of
topological dynamics. We present the concept of three types of dynamics: conservative, dissi-
pative, and mixed dynamics, and also show several simple examples of attractors and repellers
of all three types. Their similarities and differences with other known types of attractors and
repellers (maximal and Milnor ones) are discussed. We also present elements of the qualitative
theory of mixed dynamics of reversible systems. As examples of such systems we consider three
nonholonomic models of rigid body motion: the Suslov top, rubber disk, and Celtic stone.
It is shown that they exhibit mixed dynamics of different nature; in particular, the mixed
dynamics observed in the model of rubber disk is extremely difficult to distinguish from the
conservative one.
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1. INTRODUCTION

In the recent papers [21, 29], the concept of three types of dynamics in multidimensional systems
with compact phase space was proposed. Two of them have been well known for a long time; these
are conservative and dissipative dynamics.

The most known type of conservative dynamics is that demonstrated by Hamiltonian systems
or, more generally, systems preserving the phase volume. From the point of view of topological
dynamics, the conservative dynamics is characterized by the fact that the entire phase space of the
corresponding system is chain transitive, i.e., any two of its points can be connected by ε-orbits
for any ε > 0. For more details on ε-orbits and the associated basic concepts of the topological
dynamics, see [3] and Section 2.

The dissipative dynamics has a completely different nature; it is associated with the existence of
“holes”—absorbing and repelling domains—in the phase space M. Recall that an open domain Da
is said to be absorbing if its image under the action of a map T or a flow Tt lies strictly inside it,
i.e., T (cl(Da)) ⊂ Da or Tt(cl(Da)) ⊂ Da for t > 0, where by cl(Da) we denote the closure of Da.
Similarly, an open domain Dr is repelling if T−1(cl(Dr)) ⊂ Dr or Tt(cl(Dr)) ⊂ Dr for t < 0. By
definition, a dissipative attractor resides in some absorbing domain Da and all forward orbits of the
points from this region tend to it. Analogously, a repeller resides in some repelling domain Dr and
all backward orbits of the points from this region tend to it. Accordingly, we have here Da ∩Dr = ∅.

As regards the third (new) type of dynamics, mixed dynamics, it is characterized first of all by the
principal inseparability of attractors, repellers, and conservative elements of dynamics [31, 43, 14].
Here, in contrast to the conservative case, the phase space is not chain transitive. It contains real
dissipative attractors and repellers, possibly an infinite number of them [31], and then they can be
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Fig. 1. Examples of nontransversal heteroclinic cycles of two-dimensional diffeomorphisms: (a) in
the general case; (b) of a priori non-conservative type in the reversible case; and (c) of conservative
type in the reversible case. In each of cases (a) and (b), the Jacobians of the points O1 and O2 are,
respectively, greater and less than one; in case (c) the Jacobians of the points O1 and O2 are both
equal to one. Here Fix(g) is the fixed point set of the involution g (see Section 3 below).

inseparable in aggregate from each other.1 In other words, here, unlike the dissipative case, it is
impossible to construct a system of disjoint absorbing and repelling domains. This phenomenon
was called mixed dynamics in [25, 28, 14], and its explanation from the topological point of view
was given in [29] based on the concept of attractor going back to D. Ruelle [54].

In Section 2 we consider this issue in more detail. We discuss the concept of Conley–Ruelle–
Hurley (CRH) attractors (as stable chain transitive closed invariant sets), give examples of such
attractors and repellers of all three types, and also compare them with well-known types of attractors
such as the maximal and Milnor attractors. The main attention in Section 2 will nevertheless be
paid to the mixed dynamics, as a new and little studied type of chaos; to this end we will also give
rather simple examples of such dynamics here.

Note that one of the main fundamental properties of systems with mixed dynamics (which
can also be considered as a criterion of such dynamics) is the existence of so-called absolute New-
house regions for these systems [31, 59, 60]. Recall that Newhouse regions are open regions in
the space of dynamical systems (or in the parameter space) in which systems with homoclinic
tangencies are dense (or values of parameters corresponding to systems with homoclinic tangencies
are dense) [49, 30, 51, 53]. It was shown by Newhouse himself [48] that, in the dissipative case,
there may exist Newhouse regions in which systems with infinitely many stable and saddle periodic
orbits are dense and, moreover, generic, i.e., they form subsets of the second Baire category. This is
called the Newhouse phenomenon (see also [27]). The absolute Newhouse regions are characterized
by the following property: systems with infinitely many periodic orbits of all possible types (sinks,
sources, and saddles with Jacobians greater and smaller than 1) are generic in such regions, and
these orbits are inseparable in aggregate from each other, i.e., the closures of the sets of orbits of
different types have nonempty intersections.

The absolute Newhouse regions were discovered in [31] in the case of two-dimensional diffeo-
morphisms close to a diffeomorphism with a nontransversal heteroclinic cycle of mixed type, which
contains two saddle fixed points with the Jacobians greater and less than one. An example of such
a cycle is shown in Fig. 1a. Here, for two saddle fixed points O1 and O2, one pair of their invariant
manifolds, W s(O1) and W u(O2), intersects transversally at the points of some heteroclinic orbit Γ12,

1When there are infinitely many (dissipative) attractors and repellers, their closures can intersect. In this case,
invariant sets of a neutral type must lie in their intersection, and these sets attract nothing and repel nothing. In
the case of general type systems (for example, systems with sign alternating divergence), the dynamical structure
of such invariant sets seems very unclear. For systems with additional structures (for instance, reversible systems),
the role of invariant sets of a neutral type may well be played by elliptic periodic orbits, KAM curves, etc. [24].
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while the other pair of manifolds, W s(O2) and W u(O1), has a quadratic tangency at the points of
some (nontransversal) heteroclinic orbit Γ21. We also note that symmetric nontransversal hetero-
clinic cycles of mixed type exist for reversible two-dimensional diffeomorphisms as well (Fig. 1b).
However, the dynamics here is much richer. In particular, as shown in [43], diffeomorphisms with
infinitely many coexisting periodic sinks, sources, and elliptic orbits are generic in reversible absolute
Newhouse regions. The same statement holds for symmetric nontransversal cycles of other types,
including those like the cycle in Fig. 1c (see [14]).

These results have aroused interest in the study of mixed dynamics in reversible systems. More-
over, such systems are often met in applications, and the phenomenon of the existence of phase-space
regions with visible conservative and dissipative behavior of orbits was previously mentioned as one
of the most interesting properties of reversible systems [52]. We believe that this property should
now be considered as a manifestation of reversible mixed dynamics, a universal property of reversible
systems with a complicated structure of the set of symmetric orbits. Absolute Newhouse regions
and mixed dynamics in reversible systems are discussed in Section 3. One of the most famous classes
of such systems consists of nonholonomic models of rigid body motion. In Section 4 we consider
some of these models (the Suslov top model, rubber disk model, and Celtic stone model).

2. ATTRACTORS, REPELLERS, AND MIXED DYNAMICS

At present, there are many different definitions of attractor, but it is always implied that an
attractor must be a closed, stable, and invariant set. However, say, the type of stability can be
understood in different ways. For example, in the case of a maximal attractor Amax, the stability
type is not indicated at all, since such an attractor is defined as an invariant set that belongs to
some absorbing region D and is such that

Amax =
∞⋂

n=0

T n(D) or Amax =
⋂

t≥0

Tt(D)

in the case of maps or flows, respectively.
Another well-known notion of attractor is the Milnor attractor AM (see [46]), which is defined as

a closed, invariant, and minimal (with respect to embedding) set in D that contains the ω-limit points
of the forward orbits for almost all points (i.e., all points of a set of full Lebesgue measure) in D.

Of course, both types of attractors defined in this way have their own advantages and drawbacks.
For example, both the maximal attractor and the Milnor attractor may sometimes not be attractors
at all. For maximal attractors, this often happens if one chooses an inappropriate absorbing domain.
For example, if such a domain contains a completely unstable orbit (source) or a saddle, then the
maximal attractor will also contain it (see examples in Figs. 2a and 2b, where U is a large absorbing
domain, while Ua and Ub are absorbing domains with unique attractors, the stable points a and b).
As for Milnor attractors, even for the simplest systems they may not be attractors. So, for the
example of a circle map with a semi-stable fixed point O in Fig. 2c, the point itself is the Milnor
attractor, since it is the ω-limit point for all orbits. However, evidently, this point is not an attractor
in the usual sense.

Note also that, in contrast to maximal attractors, Milnor attractors may not be topological
invariants (in the sense that two topologically equivalent systems may have different Milnor at-
tractors). Examples of such systems were presented by S. Minkov [47]. One of his examples is a
C1-smooth diffeomorphism f̂ of a square Q onto itself which has the following properties (Fig. 2d).
The square Q contains a Cantor set K of vertical segments; all points of the sides of the square
and of the set K are fixed; and the remaining points of the square tend to its lower side [a, b] under
forward iterations of f̂ . In the case when the measure of K is zero, the Milnor attractor of f̂ is the
segment [a, b]. However, when the measure of K is nonzero, the Milnor attractor is the set [a, b] ∪ K.
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Fig. 2. Examples of different types of attractors that are actually not attractors in the usual sense:
(a, b) maximal attractors Amax; (c) a Milnor attractor; and (d) a two-dimensional diffeomorphism
with a Cantor set K of segments of fixed points, for which the Milnor attractor AM is either the
segment [ab], if mesK = 0, or [ab] ∪ K, if mesK �= 0.

2.1. Conley–Ruelle–Hurley attractors. The main attention in the paper will be paid to
another type of attractors, whose definition goes back to the works by C. Conley, D. Ruelle, and
M. Hurley [12, 54, 32] and is based on the concept of ε-orbits. First, recall some definitions from
topological dynamics. Consider a homeomorphism f of a compact metric space M.

Definition 2.1. A sequence of points x1, . . . , xN is called an ε-orbit (of length N) for a map f
if dist(f(xj), xj+1) < ε for all j = 1, . . . , N − 1. We will say that an ε-orbit x1, . . . , xN connects the
points x1 and xN , and that xN is attainable from x1 by ε-orbits of length N .

Definition 2.2. A closed invariant set Λ is said to be chain transitive if, for any ε > 0 and
any two points x, y ∈ Λ, there exists an ε-orbit that lies in Λ and connects x and y.

Definition 2.3. A closed invariant set Atot is said to be stable with respect to permanently
acting perturbations (or totally stable) if it is Lyapunov stable with respect to ε-orbits for any
sufficiently small ε > 0, that is, if for any δ > 0 there exists a sufficiently small ε > 0 such that any
positive ε-orbit of any point of the set Atot does not leave the δ-neighborhood of Atot.2

The following definition of attractor, which we will use, goes back to the works of C. Conley [12],
D. Ruelle [54], and M. Hurley [32]. Therefore, we will call such sets Conley–Ruelle–Hurley attractors
or briefly CRH attractors.

2One can also define the stability of Atot with respect to permanently acting perturbations in an equivalent way:
for any δ > 0 there exist sufficiently small δ1 > 0 and ε > 0 such that any positive ε-orbit starting in the δ1-neigh-
borhood of Atot does not leave its δ-neighborhood. This definition looks essentially like a direct reformulation of
the notion of Lyapunov stability for ε-orbits (see, e.g., [15]).
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Fig. 3. Examples of one-dimensional maps with (a) a dissipative CRH attractor Adis, (b) a dissipative
CRH repeller Rdis, and (c) a reversible core RC, i.e., a CRH attractor which is also a CRH repeller.

Definition 2.4. A CRH attractor is a stable (with respect to permanently acting perturba-
tions) chain transitive closed invariant set lying entirely in some absorbing region U . We also define
a CRH repeller as a CRH attractor for the reverse-time system.

It was shown in [29] that only the following three types of CRH attractors are possible for
homeomorphisms of a compact metric space M:

• conservative type, when the whole phase space M is a chain transitive set and, hence, the
space M itself will be simultaneously a CRH attractor and a CRH repeller for the correspond-
ing homeomorphism;

• dissipative type, when in any neighborhood of a CRH attractor there are points (different
from the points of the attractor itself) whose forward orbits tend to the CRH attractor;

• mixed type, when an orbit always stays in a neighborhood of a reversible core (i.e., a CRH
attractor which is also a CRH repeller) but tends to it neither in the forward nor in the
backward time direction. In this case, the core holds all positive and negative semi-orbits in
a small neighborhood of it; however, for any point that does not belong to the core, there
is an ε > 0 such that no positive or negative ε-orbit connects this point to points of the
reversible core.

Note that dissipative CRH attractors may be structured in different ways from the point of
view of topological dynamics. There are well-known examples of such attractors to which all orbits
from their neighborhoods tend. These include hyperbolic attractors (in particular, simple attractors
like periodic sinks), Lorenz attractors, and also so-called pseudohyperbolic attractors [61, 62, 23].
All of them are also maximal attractors in their neighborhoods. Another type of dissipative CRH
attractors is given by those to which not all orbits of points from their neighborhoods tend. The
simplest example of such an attractor in the case of one-dimensional map is shown in Fig. 3a. Here
the point O is a dissipative CRH attractor, since all points to the right of O tend to it, and at the
same time O is also the limit of an infinite sequence of sinks and sources. In the case of the example
of Fig. 3b, the point O is a CRH repeller (and it is also the limit of an infinite sequence of sinks
and sources).
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The most famous example of conservative-type CRH attractors is given by volume-preserving
maps of a compact manifold M, which is then a chain transitive set, and so the manifold M itself is
both a CRH attractor and a CRH repeller. There are also similar examples of non-volume-preserving
maps, for example, Anosov maps of a torus. Another example is the circle map ϕ �→ ϕ+ sin2(ϕ/2),
which has a semi-stable fixed point O (see Fig. 2c). Note that in this case the whole circle is a CRH
attractor, because any two of its points can be connected by ε-orbits for any ε > 0.

Note that the two-dimensional diffeomorphism f̂ illustrated in Fig. 2d also has a CRH attractor
of conservative type; this is the whole square Q. It is easy to see that Q is a chain transitive set
for f̂ . Indeed, let A(x1, y1) and B(x2, y2) be two points of Q. Then it is easy to build an ε-orbit
connecting the points A and B: from A we go down to the segment [a, b], along this segment (which
consists of fixed points) we reach (along an ε-orbit) one of the lines of the set K, along this line we
go up to the segment [c, d], along it we arrive at a point with the coordinate x = x2, and then go
down to the point B (the path AB shown by the dashed line in Fig. 2d).

There are few examples of reversible cores (CRH attractors of mixed types), since their theory
began to develop relatively recently. A reversible core differs from a dissipative attractor in that
it does not attract any orbits. On the other hand, the dynamics here is not purely conservative
either, since a reversible core, as shown in [29, Theorem 1], is always the limit of a sequence of
dissipative attractors and repellers. This fact is well illustrated even by the simplest example of a
reversible core for the one-dimensional map shown in Fig. 3c. Here the point O is a reversible core:
it is the limit of a countable set of simple dissipative attractors and repellers; however, O itself does
not attract any orbits: any orbit from its neighborhood tends to the nearest attractor or, in the
backward time, to the nearest repeller. Figures 3a and 3b demonstrate similar examples, for which,
however, the point O is not a reversible core: in case (a) it is not a repeller (but is a dissipative
CRH attractor), and in case (b) it is not an attractor. Nontrivial examples of reversible cores are
given by symmetric elliptic periodic orbits of reversible two-dimensional diffeomorphisms [29, 24]
(see also Section 3 of the present paper).

2.2. Full attractor and full Ruelle attractor. It is well known that not for all systems
attractors are chain transitive sets. For example, quasiattractors [2, 26], which are often met
in applications, can contain stable periodic orbits of very large periods that are not detected in
experiments. Therefore, the concept of CRH attractor alone, although very important, is clearly
not enough to explain many phenomena observed in dynamical systems. For example, it was
shown in [29, Theorem 2] that if a CRH attractor has a nonempty intersection with a CRH repeller,
then they coincide. However, when the phenomenon of mixed dynamics is observed, the intersecting
attractors and repellers never completely coincide in reality, although they can occupy approximately
the same region of the phase space.

Further, we assume that the phase space M of a homeomorphism f is not chain transitive.

Definition 2.5. A set Ax is called an attractor of a point x if Ax is a CRH attractor and is
attainable from x by ε-orbits for any ε > 0.

Note that several CRH attractors may exist for one point x. For example, in Fig. 2b, for the
point x lying on the stable separatrix of the point O, there are two such attractors, the points a
and b. If the number of such attractors is finite, then their union is the full attractor of x. If there
are infinitely many CRH attractors, then the full attractor of x is the closure of the union of all
attractors of x. The full attractor thus defined is a closed invariant set A0(x), but it may not be
a stable set. One can show that the minimal (with respect to embedding) stable set containing
A0(x) is the prolongation of A0(x), i.e., the set of all points attainable from A0(x) for all arbitrarily
small ε > 0. We will call this set the full Ruelle attractor of x.

The full attractor of a map is defined in a similar way.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 308 2020



THREE TYPES OF ATTRACTORS AND MIXED DYNAMICS 131

Definition 2.6. For a map f , the full attractor is the closure of the union of all CRH attractors
of its points, and the full Ruelle attractor is the prolongation of its full attractor.

Repellers are defined in the same way, as attractors for the inverse map f−1.
Consider simple examples shown in Fig. 3. In Fig. 3a, the full attractor consists of a countable

set of sinks and the point O, to which they accumulate. The point O itself is a dissipative CRH
attractor (but not a repeller). Obviously, here the full attractor and the full Ruelle attractor
coincide. Similarly, in the example of Fig. 3b, the full attractor consists of a countable set of sinks
and the point O. However, the point O itself is not an attractor. The full Ruelle attractor here is
obtained by adding the arc S =

�
OS1 to the full attractor. The resulting set is already stable. In the

example of Fig. 3c, the full Ruelle attractor (the union of a countable set of sinks and the point O)
and the full Ruelle repeller (the union of a countable set of sources and the point O) intersect at
the point O, which is the reversible core here. The last example can be considered as the simplest
illustration of mixed dynamics.

3. ABSOLUTE NEWHOUSE REGIONS AND MIXED
DYNAMICS OF REVERSIBLE SYSTEMS

In this section we consider reversible systems, since for them the existence of mixed dynamics
is a rather natural property due to their strong symmetries. In addition, the interest in studying
chaotic dynamics of such systems is also explained by the fact that they often arise in applications.
First, recall some basic facts of the theory of reversible systems. For definiteness, we will consider
only reversible maps.

By definition, a Cr diffeomorphism f of an orientable manifold is said to be reversible if it is
conjugate to its inverse f−1, that is,

f−1 = g ◦ f ◦ g, (3.1)

by means of some Cr-smooth involution g (by definition, g ◦ g = id).
A periodic orbit {x0, . . . , xm} of a reversible diffeomorphism f is called symmetric if it is invariant

with respect to the involution g. This property can be expressed as g(xi) = f j(xi) for i = 0, . . . ,m
and some j ≤ m. Thus, f j takes any point of the orbit to another point of the same orbit such that
the two points are symmetric with respect to the set Fix(g) = {x : g(x) = x} of fixed points of the
involution. We will assume that the involution is nondegenerate. In the two-dimensional case, this
means that dimFix(g) = 1. For a symmetric periodic orbit, the following statement holds:

• If λ is a multiplier of the orbit, then λ−1 is also a multiplier of the orbit.

Then, in the two-dimensional case, a symmetric periodic orbit of an orientable diffeomorphism f
has multipliers λ and λ−1. In the case λ = λ−1, such parabolic orbits (with λ = ±1) are obviously
nonrough (structurally unstable). For λ �= λ−1 symmetric periodic points can be divided into two
types: saddle points, if λ is real, and elliptic points, if λ1,2 = e±iϕ with some ϕ ∈ (0, π). The saddle
points are rough (structurally stable). As for elliptic points, although they are very similar to
conservative elliptic points, they can differ greatly from the latter, as shown by the following result.

Theorem 1 [24, 29]. All symmetric elliptic periodic orbits of a Cr-generic (r = 1, . . . ,∞)
two-dimensional reversible map are limits of periodic sinks and sources.3

Thus, the mixed dynamics manifests itself locally but wherever symmetric elliptic points exist.
This important circumstance, of course, testifies to the fact that mixed dynamics should be viewed
as one of the fundamental properties of reversible systems.

3The genericity is understood here in the sense that reversible maps with the indicated properties form a subset
of the second Baire category in the space of Cr-smooth reversible maps having symmetric elliptic periodic orbits.
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Fig. 4. Typical behavior of orbits in a resonance zone around an elliptic symmetric point of a
reversible two-dimensional map. Here the absorbing and repelling domains intersect, and all of them
contain the elliptic point O. A point x is shown that belongs to the intersection of the boundaries
Ba and Br of the absorbing and repelling regions: the point f(x) lies inside the absorbing region and
leaves the repelling region; the point f−1(x), on the contrary, enters the repelling region and leaves
the absorbing region.

We also note that, as is well known [55], symmetric elliptic periodic orbits of two-dimensional
reversible diffeomorphisms are structured in much the same way as in the conservative case: there
also exists a continuum of KAM curves that form a subset of positive measure (and their relative
measure tends to 1 as a neighborhood shrinks to a zero), and these KAM curves are separated by
resonance zones. However, for reversible diffeomorphisms, the orbit behavior in these zones can be
completely different. Here, by virtue of Theorem 1, it is generic when, on resonant levels, periodic
saddles alternate with symmetric pairs of periodic points consisting of sinks and sources (Fig. 4),
and this means that

• all symmetric elliptic periodic orbits of a Cr-generic (r = 1, . . . ,∞) two-dimensional reversible
map are reversible cores;

• the generic elliptic periodic point of a reversible diffeomorphism is stable with respect to per-
manently acting perturbations, while in the case of area-preserving maps any such orbit is
unstable (although it is Lyapunov orbitally stable).

Remark 3.1. Theorem 1 was proved in [24, 29] (see [29, Sect. 3]) only for C∞-generic pertur-
bations preserving reversibility. By means of these perturbations, one can create resonance levels
(for all sufficiently large q) containing a degenerate elliptic periodic point near which its Poincaré
map can be embedded in an autonomous flow of the form

ż = −iμz + iΩ(|z|2)z + iδ(z∗)q−1 + iBzq+1 + iCz(z∗)q,

where z and z∗ are complex conjugate coordinates, μ and δ are small real parameters, and B and C
are some real coefficients (note that all coefficients on the right-hand side are purely imaginary;
therefore, this equation is time reversible with respect to the involution z → z∗). For C = B(q + 1)
the equation is Hamiltonian; however, if this equality is violated, then, as shown in [29], stable and

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 308 2020



THREE TYPES OF ATTRACTORS AND MIXED DYNAMICS 133

completely unstable equilibrium states can arise here. In the analytical case, it is totally unclear
whether such resonance levels exist near any symmetric elliptic point, although this phenomenon is
obviously not too degenerate: it has codimension 1.

The second important circumstance testifying to the universality of mixed dynamics in reversible
systems is what can be called the conjecture on reversible mixed dynamics :

• Near any reversible diffeomorphism with a symmetric homoclinic tangency or a symmetric
nontransversal heteroclinic cycle, there are absolute reversible Newhouse regions.

This conjecture was formulated in [14] and was almost immediately proved in [24] for Newhouse
regions in the Cr topology with 2 ≤ r ≤ ∞. In the analytical case, as well as in the case of parametric
families, it was proved only for the so-called a priori non-conservative diffeomorphisms [43, 13, 22],
when the (heteroclinic) cycle contains non-conservative elements (for example, saddles with the
Jacobians greater and less than one, or pairs of nonsymmetric homoclinic tangencies of a symmetric
saddle point, as in [13]), as well as for diffeomorphisms with heteroclinic cycles of conservative
type [14], such as in Fig. 1c. Essentially, it remains to consider only two most difficult cases:
reversible diffeomorphisms with symmetric quadratic and cubic homoclinic tangencies.

The third, global, circumstance confirming the widespread adoption of mixed dynamics in re-
versible systems is associated with the phenomenon of collision of attractors and repellers, which
is often observed in experiments. If a reversible system has a dissipative attractor, then it also has
a symmetric repeller. If these attractor and repeller do not intersect, then the dynamics on them
will be quite usual and typical for dissipative systems. However, when they collide on the line of
symmetry (this is always a crisis of both the attractor and the repeller4), one can often observe
that the attractor and repeller almost coincide: they begin to occupy approximately the same
domain of the phase space and become difficult to distinguish in numerical experiments as phase
portraits obtained when calculating in the forward and backward time (see, e.g., the corresponding
illustrations in Section 4).

There are other mechanisms for the emergence of mixed dynamics. For example, there is a
mechanism that can be called reversible intermittency, when simple symmetric attractor and repeller
(for instance, periodic sink and source) collide and both disappear, but after that a large chaotic
set arises that has all features of mixed dynamics. Such a phenomenon was first discovered in [19]
in the Pikovsky–Topaj model of four rotators [58]; it was also observed in a nonholonomic Celtic
stone model [18].

4. MIXED DYNAMICS OF NONHOLONOMIC MODELS OF RIGID BODY MOTION

One of the best known classes of applied problems that exhibit mixed dynamics is formed by
the problems of nonholonomic mechanics associated with the study of motion of rigid bodies on
surfaces in the presence of nonintegrable (nonholonomic) constraints. Examples of such constraints
are the absence of slipping at the point of contact of the body with the surface, the absence of
spinning, the vanishing of one of the components of the angular velocity of the body, etc. Usually,
nonholonomic models are described by systems of five ordinary differential equations in the variables
�ω = (ω1, ω2, ω3) and (ϕ, θ), where �ω is the angular velocity vector in the moving coordinate system
rigidly connected with the body and (ϕ, θ) are two Euler angles describing the orientation of the
body [45]. Very often, instead of the Euler angles, one uses the projections �γ = (γ1, γ2, γ3) of the
stationary vertical unit vector onto the axes of the moving coordinate system to describe the body
position [10]. Here, for the components of vector �γ, one has the relation γ21 + γ22 + γ23 = 1, the

4Bifurcations of attractors (repellers) are usually divided into two types: internal bifurcations and crises [4]. The
latter include bifurcations that result either in the disappearance of the attractor or in a sharp (discontinuous)
decrease or increase in the region of its existence in the phase space.
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so-called geometric integral, and, accordingly, the system becomes five-dimensional at the level of
this integral.

The presence of nonholonomic constraints leads to the appearance of integrals of motion, which
allow one to reduce the dimension of system. So, for example, the assumption that there is no
slipping between the body and the surface (the speed of the body at the point of contact is zero)
means that the friction force does no work and, hence, the full energy E of the system is preserved.
Similarly, the assumption that there is no rotation of the body around the vertical axis leads to the
appearance of the integral of motion (�ω,�γ) = 0.

According to Euler and Jacobi, an N -dimensional system of ordinary differential equations is
integrable in quadratures if it has N − 2 independent first integrals and also a smooth invariant
measure (see, e.g., [40]). Except for some specific cases, nonholonomic models of mechanics do not
have three first integrals, and a smooth invariant measure does not exist for them either. Thus,
at level sets of the first integrals, such systems become non-conservative, and attractors, including
chaotic ones [11], may appear in them.

Another remarkable property of nonholonomic mechanical systems is their reversibility, i.e., the
invariance with respect to a certain coordinate transformation (which is an involution) and to the
time reversal. All such systems are reversible with respect to the transformation �ω → −�ω, t → −t.
Depending on the shape of the body and the type of constraints, additional involutions may also
arise here.

The reversibility of non-conservative systems leads to the fact that, in the phase space of the
system, for each periodic orbit with Jacobian J �= 1 there exists a periodic orbit symmetric to it with
the Jacobian J−1, for each attractor there exists a repeller, and so on. Such a symmetry of phase
orbits and nonintegrability can naturally lead to the appearance of mixed dynamics. For the first
time, mixed dynamics in such models was found in the nonholonomic model of Celtic stone [16, 17]
as well as in the nonholonomic model of rubber Chaplygin top [34, 35].

In this section, we consider three nonholonomic models in which mixed dynamics has been found
and investigated: the model of Suslov top, the model of a rubber disk moving on a plane, and the
Celtic stone model. For the sake of brevity, we will not present the equations of these models; they
can be found in the corresponding papers cited here. Basic information about the dynamics of
nonholonomic models can be found, for example, in the books [45, 10].

4.1. Nonholonomic model of Suslov top. As the first example of a nonholonomic model
that demonstrates mixed dynamics, we consider a system describing the motion of a Suslov top,
a heavy rigid body with a fixed point subject to the nonholonomic constraint (�ω,�e ) = 0, which
forbids its rotation around some axis �e. Such a constraint was introduced by G. K. Suslov in [57]
(see also [56, 50]). As an illustrative example of the model in which the indicated constraint
arises naturally, we point out the construction proposed in [63], in which a rigid body with a
fixed point rolls on sharp wheels inside a fixed sphere (Fig. 5a). The sharp edges of the wheels
forbid motions of the body in the direction perpendicular to their plane. At a level of the energy
integral, since one of the components of the angular vector is zero, the dynamics of the Suslov top
is described in the general case by a three-dimensional flow or a two-dimensional Poincaré map
(see [50]).

In the general case, the system describing the motion of the Suslov top does not have a smooth
invariant measure [38]. In the phase space of this system, both regular and chaotic attractors can
appear [6]. For some parameter values, as was recently shown in [36], a Hénon-like attractor of the
system merges with a Hénon-like repeller symmetric to it (under the involution). As a result of such
a merger, both the attractor and repeller instantly increase in size (Figs. 5b and 5c) and intersect.
Thus, mixed dynamics in the system under consideration occurs explosively. A similar phenomenon
was also found in a model of vortex dynamics [37].
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Fig. 5. Dynamics of a Suslov top: (a) the construction proposed in [63]; (b) the three-component
Hénon-like attractor A and repeller R are symmetric and separated (an enlarged fragment of the
attractor is also shown); (c) mixed dynamics after their merger: the full attractor and full repeller of
the model almost coincide, but it is clearly seen that they differ in some small details.

4.2. Nonholonomic model of rubber disc. The model of Suslov top considered above
exhibits mixed dynamics in which the full attractor of the system is clearly different from its full
repeller. However, in some nonholonomic systems, such a difference is hardly noticeable. It can be
only detected under careful investigation of the phase portrait of the system, after a preliminary
study of bifurcations of emergence of stable periodic orbits.

Among the models of this type, there is a nonholonomic model of rubber disk, a balanced round
solid body of zero thickness that has different principal moments of inertia [1, 39] (Fig. 6a). The
motion of such a disk along the plane is subject to a pair of nonholonomic constraints: one forbids
slipping (the velocity at the point of contact K is zero), while the other prevents spinning around
the vertical axis �γ. Thus, as in the case of the Suslov top, the dynamics of the rubber disk on a
plane is described by a three-dimensional flow or a two-dimensional Poincaré map.

In numerical simulations, the behavior of the orbits in this map is very similar, even in small de-
tails, to the conservative one (see, e.g., Fig. 6b). Therefore, the question of the existence of a smooth
invariant measure naturally arises for this model. However, instead of searching for an invariant
measure, it is reasonable first to answer another, even more natural, question about the existence
of mixed dynamics. This question has been answered in the affirmative. Inside the seemingly
conservative chaos, on small scales (on the order of 10−3 × 10−3), it is possible to detect coexisting
elliptic, asymptotically stable, and completely unstable periodic points located inside zones with
chaotic behavior of orbits (Figs. 6c and 6d). Thus, the approach to studying the model from the
point of view of the concept of mixed dynamics turned out to be very successful in this case as well.

4.3. Nonholonomic model of Celtic stone. Finally, we consider a model of Celtic stone
on a plane (Fig. 7a), which is an example of a nonholonomic system whose Poincaré map is three-
dimensional. A Celtic stone is a rigid body with a rounded symmetric surface that possesses a
dynamical asymmetry. If one puts such a stone on a flat surface and twists it around a vertical
axis in a certain direction, say, counterclockwise, then it will stably continue its rotation, like any
ordinary rounded body. However, if one starts to twist such a stone in the clockwise direction,
then, for no apparent reason, it will soon slow down its rotation, begin to oscillate, then change the
direction of rotation to the opposite one, and, finally, continue to rotate stably counterclockwise.

The nonholonomic model of Celtic stone gives a simple mathematical explanation for this phe-
nomenon (see, e.g., [5, 33, 44]). The counterclockwise rotation corresponds to the asymptotically
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Fig. 6. Dynamics of a rubber disc on the phase plane (θ, pθ), where θ is the deflection angle of the
disc from the vertical axis and pθ is its generalized momentum: (a) scheme of the disc; (b) phase
portrait in the Poincaré map; (c, d) enlarged fragments (with 1000× magnification from (b) to (d)).
In the phase portrait of part (d), attractors (a), repellers (r), and their absorbing/repulsing domains
are marked (the thick circles around the attractors/repellers are actually pieces of extremely weakly
twisting spirals).

stable equilibrium Os. Since the nonholonomic model of the stone is reversible with respect to the
involution �ω → −�ω and time reversal, the system also has a completely unstable equilibrium Ou
corresponding to the rotation of the stone around the same axis but in the opposite direction. If
there are no other attractors in the system (in addition to the stable equilibrium), then the orbits
from a neighborhood of Ou will tend to the stable equilibrium Os.

It is important to note that, along with the stable equilibrium, the nonholonomic model of Celtic
stone may possess other regular and chaotic attractors. For the first time, strange attractors in the
dynamics of Celtic stones were discovered in [11]. The papers [42, 17, 8, 18, 20] are also devoted to
the study of strange attractors in this model.

Concerning mixed dynamics, this phenomenon in the nonholonomic model of Celtic stone was
first found in [17], where it was shown that the attractor of the system may intersect but not
coincide with the repeller. Figures 7b–7d show phase portraits of the attractor A and repeller R
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Fig. 7. Dynamics of a Celtic stone on a plane: (a) representation of a Celtic stone as a homogeneous
body with a convex surface symmetric with respect to the axes Ox and Oy, with a flat platform z = z0
to which a heavy bar is attached at the center (turning it, one can achieve the corresponding dynamical
asymmetry of the stone); here K is the point of contact with the plane, C is the center of mass, and �v
and �ω are the velocity and angular velocity of the stone; (b) strange attractor A and strange repeller R
for E = 560; (c) mixed dynamics for E = 320; (d) coexistence of mixed dynamics with the behavior of
orbits which is almost indistinguishable from the conservative one (a pair of gray ovals in the middle of
the cube) for E = 150. All phase portraits are constructed in the Andoyer–Deprit variables (see [10]).

in the nonholonomic model of Celtic stone for various values of the parameter E, the full energy
of the stone. When the stone is twisted quite strong (when the energy is high enough), the full
attractor of the system is separated from the full repeller (see Fig. 7b). However, when the rotation
energy decreases, the attractor and repeller increase in size and, at some moment, begin to intersect;
then mixed dynamics arises (see Fig. 7c), which can also coexist with orbit behavior that is almost
indistinguishable in numerical simulations from the conservative one (see Fig. 7d). Note that in [18]
bifurcations leading to the appearance of mixed dynamics were also studied. In particular, it
was shown that this phenomenon can occur explosively, as a result of the collision of stable and
completely unstable fixed points on the line of fixed points of the involution.

In conclusion, we note that the list of nonholonomic mechanical systems exhibiting mixed dy-
namics is not limited by the three examples presented above. Moreover, since most such models are
nonintegrable and do not possess a smooth invariant measure, the appearance of mixed dynamics
is a typical phenomenon here. As a rule, in such systems, it is more difficult to find cases with
the existence of conservative chaos (when there exists a smooth invariant measure) than cases with
mixed dynamics. To detect mixed dynamics in most nonholonomic models, it is enough to just
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construct the full attractor and repeller of the system and then compare these two sets. In this
way, the existence of mixed dynamics can also be established in the nonholonomic models of the
Chaplygin sleigh [41], the Suslov top under periodic control [7], the Chaplygin top [9], etc. However,
in some cases, in order to detect mixed dynamics, more detailed studies are required, for example,
those related to the study of local and global symmetry-breaking bifurcations.
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15. V. A. Dobrynskĭı and A. N. Sharkovskĭı, “Typicalness of dynamical systems almost all paths of which are stable
under permanently acting perturbations,” Sov. Math., Dokl. 14, 997–1000 (1973) [transl. from Dokl. Akad. Nauk
SSSR 211 (2), 273–276 (1973)].

16. A. S. Gonchenko, S. V. Gonchenko, and A. O. Kazakov, “On some new aspects of Celtic stone chaotic dynamics,”
Nelinein. Din. 8 (3), 507–518 (2012).

17. A. S. Gonchenko, S. V. Gonchenko, and A. O. Kazakov, “Richness of chaotic dynamics in nonholonomic models
of a Celtic stone,” Regul. Chaotic Dyn. 18 (5), 521–538 (2013).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 308 2020



THREE TYPES OF ATTRACTORS AND MIXED DYNAMICS 139

18. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and E. A. Samylina, “Chaotic dynamics and multistability
in the nonholonomic model of a Celtic stone,” Radiophys. Quantum Electron. 61 (10), 773–786 (2019) [transl.
from Izv. Vyssh. Uchebn. Zaved., Radiofiz. 61 (10), 867–882 (2018)].

19. A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov, and D. V. Turaev, “On the phenomenon of mixed dynamics
in Pikovsky–Topaj system of coupled rotators,” Physica D 350, 45–57 (2017).

20. A. S. Gonchenko and E. A. Samylina, “On the region of existence of a discrete Lorenz attractor in the nonholo-
nomic model of a Celtic stone,” Radiophys. Quantum Electron. 62 (5), 369–384 (2019) [transl. from Izv. Vyssh.
Uchebn. Zaved., Radiofiz. 62 (5), 412–428 (2019)].

21. S. V. Gonchenko, “Reversible mixed dynamics: A concept and examples,” Discontin. Nonlinearity Complex.
5 (4), 365–374 (2016).

22. S. V. Gonchenko, M. S. Gonchenko, and I. O. Sinitsky, “On mixed dynamics of two-dimensional reversible
diffeomorphisms with symmetric non-transversal heteroclinic cycles,” Izv. Math. 84 (1), 23–51 (2020) [transl.
from Izv. Ross. Akad. Nauk, Ser. Mat. 84 (1), 27–59 (2020)].

23. S. V. Gonchenko, A. O. Kazakov, and D. Turaev, “Wild pseudohyperbolic attractors in a four-dimensional Lorenz
system,” arXiv: 1809.07250 [math.DS].

24. S. V. Gonchenko, J. S. W. Lamb, I. Rios, and D. Turaev, “Attractors and repellers near generic elliptic points
of reversible maps,” Dokl. Math. 89 (1), 65–67 (2014) [transl. from Dokl. Akad. Nauk 454 (4), 375–378 (2014)].

25. S. V. Gonchenko, L. P. Shilnikov, and O. V. Stenkin, “On Newhouse regions with infinitely many stable and
unstable invariant tori,” in Progress in Nonlinear Science: Proc. Int. Conf., Nizhni Novgorod, 2001, Vol. 1:
Mathematical Problems of Nonlinear Dynamics (Nizhni Novgorod, 2002), pp. 80–102.

26. S. V. Gonchenko, L. P. Shil’nikov, and D. V. Turaev, “Quasiattractors and homoclinic tangencies,” Comput.
Math. Appl. 34 (2–4), 195–227 (1997).

27. S. V. Gonchenko, L. P. Shilnikov, and D. V. Turaev, “On dynamical properties of multidimensional diffeomor-
phisms from Newhouse regions. I,” Nonlinearity 21 (5), 923–972 (2008).

28. S. V. Gonchenko and O. V. Stenkin, “On the mixed dynamics of systems from Newhouse regions with heteroclinic
tangencies,” in Proc. Final Sci. Conf. of Educ. Sci. Innov. Complex “Models, Methods and Software,” Nizhni
Novgorod, 2007 (Izd. Nizhegor. Gos. Univ., Nizhni Novgorod, 2007), pp. 101–102 [in Russian].

29. S. V. Gonchenko and D. V. Turaev, “On three types of dynamics and the notion of attractor,” Proc. Steklov
Inst. Math. 297, 116–137 (2017) [transl. from Tr. Mat. Inst. Steklova 297, 133–157 (2017)].

30. S. V. Gonchenko, D. V. Turaev, and L. P. Shil’nikov, “On the existence of Newhouse domains in a neighborhood
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