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The paper is devoted to topical issues of modern mathematical theory of dynamical chaos and
its applications. At present, it is customary to assume that dynamical chaos in finite-dimensional
smooth systems can exist in three different forms. This is dissipative chaos, the mathematical
image of which is a strange attractor; conservative chaos, for which the entire phase space is a
large “chaotic sea” with randomly spaced elliptical islands inside it; and mixed dynamics, charac-
terized by the principal inseparability in the phase space of attractors, repellers and conservative
elements of dynamics. In the present paper (which opens a series of three of our papers), elements
of the theory of pseudohyperbolic attractors of multidimensional maps and flows are presented.
Such attractors, as well as hyperbolic ones, are genuine strange attractors, but they allow the
existence of homoclinic tangencies. We describe two principal phenomenological scenarios for
the appearance of pseudohyperbolic attractors in one-parameter families of three-dimensional
diffeomorphisms, and also consider some basic examples of concrete systems in which these
scenarios occur. We propagandize new methods for studying pseudohyperbolic attractors (in
particular, the method of saddle charts, the modified method of Lyapunov diagrams and the so-
called LMP-method for verification of pseudohyperbolicity of attractors) and test them on the
above examples. We show that Lorenz-like attractors in three-dimensional generalized Hénon
maps and in a nonholonomic model of Celtic stone as well as figure-eight attractors in the model
of Chaplygin top are genuine (pseudohyperbolic) ones. Besides, we show an example of four-
dimensional Lorenz model with a wild spiral attractor of Shilnikov–Turaev type that was found
recently in [Gonchenko et al., 2018].
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1. Introduction

At present, one can distinguish three relatively inde-
pendent and different forms of dynamical chaos of
smooth multidimensional systems — “dissipative
chaos”, “conservative chaos” and “mixed dynam-
ics”. The mathematical image of the dissipative
chaos is strange attractor — a nontrivial attracting
closed invariant set which is located in the phase
space of a system inside some absorbing domain,
which includes all those orbits that cross its bound-
ary. Unlike the dissipative chaos, conservative chaos
spreads over the whole phase space and is associated
with the inextricable interrelations between nonuni-
formly hyperbolic and elliptical behavior of orbits.

Mixed dynamics is a new third type of dynam-
ical chaos which is characterized by the fact
that asymptotically stable elements of dynamics
(attractors) coexist with completely unstable ones
(repellers), and, moreover, they are principally
inseparable from each other and form conservative
elements of dynamics (so-called reversible cores),
see more details in [Gonchenko, 2016; Gonchenko &
Turaev, 2017].

Recall that the Conley’s theorem [Conley, 1978]
implies that any smooth system on a compact man-
ifold M has an attractor A and a repeller R (i.e.
attractor at time reversal). Thus, we have here the
following formalized scheme: A ∩ R = ∅ for dissi-
pative chaos; A = R = M for conservative chaos;
A ∩ R �= ∅ and A �= R for mixed dynamics. This
evidently implies that any fourth type of chaos does
not exist.

The phenomenon of mixed dynamics was dis-
covered, in fact, in the paper [Gonchenko et al.,
1997a], where, in particular, it was proved that,
in the space of two-dimensional diffeomorphisms,
there are open regions (the so-called Newhouse
regions) in which diffeomorphisms with infinitely
many stable, completely unstable and saddle peri-
odic orbits are dense and, moreover, in this case the
closures of sets of hyperbolic periodic orbits of all
possible types have nonempty intersections.

Recall, that Newhouse regions are open regions
from the space of Cr-smooth systems, r ≥ 2, where
systems with homoclinic tangencies are dense, i.e.
such systems which have saddle periodic orbits
whose invariant manifolds intersect nontransversely.
In turn, Newhouse regions exist in any neighbor-
hood of any system with homoclinic tangency [New-
house, 1979; Gonchenko et al., 1993b; Palis &
Viana, 1994; Romero, 1995].

Naturally, for any definition of attractor, it
must be a stable closed invariant set which should
contain all stable periodic orbits, if they exist. The
same (for completely unstable periodic orbits) must
also hold for repellers. Thus, in [Gonchenko et al.,
1997a] it was shown that an attractor can intersect
with repeller and this property can be generic for
systems from Newhouse regions. The mathemati-
cal justification of this phenomenon was given quite
recently, see e.g. [Gonchenko, 2016; Gonchenko &
Turaev, 2017].

As for strange attractors to which this paper is
devoted, their generally accepted definition, which
would be suitable for all occasions, does not exist
up to now. The only exceptions are the so-called
genuine strange attractors whose definition includes
two main conditions: (1) the existence of an absorb-
ing region in the phase space, where the attractor
exists, and (2) the instability of orbits of the attrac-
tor, which means that each orbit of the attractor
has a positive maximal Lyapunov exponent. It is
also assumed that properties (1) and (2) are satis-
fied for all nearby systems.

On the other hand, the so-called quasiattrac-
tors are also referred to the strange attractors,
with due reason, see discussions in [Afraimovich &
Shilnikov, 1983a; Shilnikov, 1997; Gonchenko et al.,
1997b]. Recall that a quasiattractor is defined as a
nontrivial attracting invariant set that either con-
tains stable periodic orbits of very large periods
(and with very narrow domains of attraction), or
such orbits appear under arbitrarily small smooth
perturbations [Afraimovich & Shilnikov, 1983a].
This is connected with the fact that quasiattrac-
tors admit the existence of such homoclinic tan-
gencies whose bifurcations lead to the birth of
asymptotically stable periodic orbits. Note that
for these homoclinic tangencies certain conditions-
criterion are fulfilled [Gavrilov & Shilnikov, 1972,
1973; Gonchenko, 1983; Gonchenko et al., 1993c,
1996a, 2008]. Besides attracting invariant tori,
small Hénon-like attractors [Mora & Viana, 1993;
Palis & Viana, 1994; Gonchenko et al., 1996b; Colli,
1998; Homburg, 2002], and even small Lorenz-like
attractors [Gonchenko et al., 2006, 2009, 2014b;
Gonchenko & Ovsyannikov, 2013, 2017] can appear
here.

Remark 1.1. In dissipative systems with special
structures, strange attractors of other types may
exist, which do not formally fit into this scheme. For
example, nonsmooth or discontinuous systems may
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have attractors with a singularly hyperbolic behav-
ior of orbits, in the sense that Lyapunov exponents
are not defined for some orbits, although, for such
systems, both conditions (the existence of absorbing
regions and the instability of orbits on the attrac-
tor) are fulfilled. Examples of such attractors are the
Lozi attractor [Lozi, 1978] and the Belykh attractor
[Belykh, 1995]. A completely different type of com-
plex nonperiodic behavior of orbits is demonstrated
by the so-called strange nonchaotic attractors that
arise in special models that have the structure of
direct product of a nonspecific dynamical system
and a quasiperiodic system. They are character-
ized by the fact that one of Lyapunov exponents
is zero for any orbit, and the remaining ones are
less than zero (also it is allowed the existence of a
set of zero measure of orbits with the positive Lya-
punov exponent). For more details, see e.g. [Feudel
et al., 2006].

One can say that the most known strange
attractors of smooth dynamical systems, in partic-
ular, many such attractors in systems from appli-
cations, are, in fact, quasiattractors. Examples are
numerous “torus-chaos” attractors arising under the
breakdown of two-dimensional tori [Afraimovich &
Shilnikov, 1974, 1983b]; attractors in Chua circuits
[Chua et al., 1986; Shilnikov, 1994]; the Hénon
attractor [Hénon, 1976; Benedicks & Carleson,
1991]; attractors in periodically perturbed two-
dimensional systems with a homoclinic figure-eight
of a saddle [Gonchenko et al., 2013c] and many
others.

A very important class of quasiattractors is
composed by spiral attractors that are related to
the existence of homoclinic orbits to a saddle-focus
equilibrium. Such attractors are often found in
applications, and many of their examples are well
known. In particular, there are spiral attractors
of three-dimensional flows, such as the Rössler
attractor [Rössler, 1976a, 1976b], attractors in the
Arneodo–Coullet–Tresser models [Arneodo et al.,
1980, 1981, 1982] (called also as ACT-attractors), in
the Rosenzweig–MacArthur models [Rosenzweig &
MacArthur, 1963; Kuznetsov et al., 2001; Bakhanova
et al., 2018] etc. It is quite interesting that all the
above attractors appear in flows according to a fairly

simple and universal phenomenological scenario
proposed by Shilnikov [1986]. The main specificity
of such spiral attractors is that they are organized
around a saddle-focus equilibrium of type (1, 2), i.e.
with one-dimensional stable and two-dimensional
unstable invariant manifolds, and, for certain val-
ues of parameters, they have homoclinic orbits to
this equilibrium. With some natural modifications,
the Shilnikov scenario was also transferred to the
case of three-dimensional maps [Gonchenko et al.,
2012]. Therefore, for such spiral attractors, we pro-
posed, in [Gonchenko et al., 2014a], the general-
izing term: “Shilnikov attractor” for flows (these
include, in particular, the above mentioned Rössler
attractor and ACT-attractors); and “Shilnikov dis-
crete attractor” for maps. Various examples of such
discrete attractors were found in three-dimensional
Hénon maps [Gonchenko et al., 2012, 2014a, 2013b;
Gonchenko & Gonchenko, 2016] and in several mod-
els from the rigid body dynamics, e.g. in a nonholo-
nomic model of Chaplygin top [Borisov et al., 2016].
We plan to give a detailed review on a topic of spiral
(and, in particular, Shilnikov) attractors in part II
of our paper.

Until recently, only the hyperbolic attractors
and Lorenz-like attractors could be considered
as the genuine strange attractors. However, the
situation has changed after the paper [Turaev &
Shilnikov, 1998], where a new class of genuine
strange attractors was introduced, the so-called
wild hyperbolic attractors. These attractors, unlike
hyperbolic and Lorenz ones, admit the existence
of homoclinic tangencies, but they do not contain
stable periodic orbits and any other stable invariant
subsets that do not arise also for small smooth per-
turbations. Although systems with wild hyperbolic
attractors belong to Newhouse domains,1 bifurca-
tions of their homoclinic tangencies, in contrast to
systems with quasiattractors, do not lead to the
birth of stable periodic orbits [Gonchenko et al.,
1993c, 1996a, 2008], see also Sec. 2.

Recall that in [Turaev & Shilnikov, 1998], a geo-
metrical model of four-dimensional flow with a wild
spiral attractor containing a saddle-focus equilib-
rium was also constructed. One of the main fea-
tures of the Turaev–Shilnikov spiral attractor is
that it possesses a pseudohyperbolic structure, see

1The term “wild” goes back to the Newhouse paper [Newhouse, 1979], in which the concept of “wild hyperbolic set” was
introduced, i.e. such a uniformly hyperbolic invariant set, in which, among its stable and unstable invariant manifolds, there
are always those that intersect nontransversely, and this property is preserved for all small C2-smooth perturbations.

1830036-3



October 17, 2018 11:44 WSPC/S0218-1274 1830036

A. S. Gonchenko et al.

Definition 2.1. Speaking shortly, this is a “weak”
version of hyperbolicity for which an exponential
contraction along certain directions takes place,
while transversally there is an exponential expan-
sion of the volume.

We note that if the pseudohyperbolicity con-
ditions are fulfilled (for all points of some absorb-
ing domain D of attractor), then, as was shown in
[Turaev & Shilnikov, 1998], the attractor exists and
is unique, and each of its orbit has the positive max-
imal Lyapunov exponent. In this case the attractor
is, in fact, the Ruelle attractor [Ruelle, 1981], i.e.
closed, invariant, (asymptotically) stable and chain-
transitive set, see [Gonchenko & Turaev, 2017] for
more details.

In fact, in the paper [Turaev & Shilnikov, 1998]
can be seen the foundation of a very promising
theory of pseudohyperbolic strange attractors. New
examples of such attractors were also found shortly.
Thus, in the paper [Gonchenko et al., 2005] it was
shown that in three-dimensional Hénon maps of the
form

x = y, y = z, z = M1 + Bx + M2y − z2, (1)

where M1, M2, B are parameters (B is the Jaco-
bian), in a certain domain of parameter values
adjoining the point A∗ = (M1 = 1/4,M2 = 1, B =
1), there exist discrete Lorenz attractors.

The pseudohyperbolicity of such attractors was
claimed in [Gonchenko et al., 2005] due to the
fact that, for values of parameters close to A∗,

the second power of map (1) locally (in a small
neighborhood of the fixed point with the triplet
(−1,−1, 1) of multipliers) can be represented as the
Poincaré map of a periodically perturbed Shimizu–
Morioka system, which, in turn, possesses the
Lorenz attractor [Shilnikov, 1991, 1993]. If the
perturbation is sufficiently small (which is deter-
mined by the closeness of the values of parame-
ters to A∗), then the desired pseudohyperbolicity
should be naturally inherited from the pseudohy-
perbolicity of the Lorenz attractor [Tucker, 1999;
Ovsyannikov & Turaev, 2017]. We recall that, in
[Turaev & Shilnikov, 2008] it was shown that the
property of pseudohyperbolicity of flows is also pre-
served for their Poincaré maps for small periodic
perturbations.

In Fig. 1 (from [Gonchenko et al., 2005]) we
show two examples of discrete Lorenz attractors of
map (1). We note that the phase portraits of these
attractors are very similar to portraits of the Lorenz
attractors for flow. However, the corresponding
values of the parameters [M1 = 0,M2 = 0.85, B =
0.7 in the case of Fig. 1(a) and M1 = 0,M2 = 0.825,
B = 0.7 in the case of Fig. 1(b)] are not nearly
close to A∗. Therefore, the conditions of pseudo-
hyperbolicity of such attractors need to be verified
additionally.

Such a task seems very complicated. Strictly
speaking, here it is necessary to use methods of
mathematical proofs based on numerics — the so-
called “computer assisted proofs”, as it was done

(a) (b)

Fig. 1. Portraits of discrete Lorenz attractors in the case of map (1) with (a) M1 = 0, M2 = 0.85, B = 0.7 and (b) M1 = 0,
M2 = 0.825, B = 0.7. In both cases, about 105 iterations of a single initial point on the attractor are shown. The projections
of attractors onto the plane (x, y) and some slices of the attractor by the plane z = const are also shown (although these slices
look like lines, in fact they have a complex Cantor structure).
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in the famous work [Tucker, 1999] for the Lorenz
model. However, even the most common com-
puter methods can greatly help here. So, at the
very first stage, we can check some necessary
conditions. For example, the Lyapunov exponents
Λ1 > Λ2 > Λ3 of any pseudohyperbolic attractor of
three-dimensional maps should satisfy the following
conditions

Λ1 > 0, Λ1 + Λ2 > 0, Λ1 + Λ2 + Λ3 < 0. (2)

Here the first and third inequalities indicate that
the observed attractor is strange, and the second
one should mean that two-dimensional areas are
expanded on the attractor.

However, the Lyapunov exponents are certain
average characteristics of orbits on attractor and,
therefore, it is possible that an attractor has very
small “windows” (whose sizes may be less than any
reasonable accuracy of calculations), where condi-
tions (2) for the corresponding orbits are violated.
At our request, conditions of pseudohyperbolicity
of the attractors from Fig. 1 were verified (by
means of “computer assisted proof” methods), by
Figueros and Tucker, who have obtained very inter-
esting and fine results. Namely, they have shown
that an asymptotically stable periodic orbit with
extremely small basin of attraction (which diame-
ter has an order 10−40) exists inside the attractor
from Fig. 1(a), while, the attractor from Fig. 1(b)
is the genuine pseudohyperbolic attractor.2 Besides,
independently and by other methods, similar results
were obtained by Kuznetsov and Kuptsov, who
have also verified pseudohyperbolicity of some
other attractors found in our paper [Gonchenko &
Gonchenko, 2016]. We hope that these interesting
results will be published in the nearest future.

The existence of homoclinic tangencies natu-
rally kills the hyperbolicity, however, in general,
the pseudohyperbolicity is not violated. For exam-
ple, both attractors from Fig. 1 contain a saddle
fixed point with multipliers λ1, λ2, λ3 such that

λ1 < −1, 0 < λ2 < 1,−1 < λ3 < 0 and |λ2| > |λ3|,
where λ1λ2λ3 = B = 0.7 < 1 and the saddle value
σ = |λ1λ2| is greater than 1 (for exact values of λi

see Fig. 8). Then the homoclinic tangencies, that
inevitably occur here, will be typically such as in
Fig. 3. In the general case, such (quadratic) homo-
clinic tangencies are called simple [Gonchenko et al.,
1993c], and in the case σ > 1 they do not destroy
the pseudohyperbolicity (if the fixed point itself is
pseudohyperbolic), although they are certain indi-
cators of wild hyperbolicity (for more detail see
[Gonchenko et al., 1993b, 1993c, 2008]).

Remark 1.2. On the other hand, stable periodic
orbits are necessarily born if σ < 1, or if a
fixed (periodic) point of an attractor is a saddle-
focus (whether with one-dimensional or with two-
dimensional unstable manifold). In particular, the
spiral attractors of three-dimensional smooth maps
or flows are always quasiattractors. In this con-
nection, the following problem seems to be very
interesting: let a three-dimensional diffeomorphism
have a strange attractor containing a saddle fixed
point with the two-dimensional unstable invariant
manifold, then this attractor is the quasiattractor.3

Taking into account this remark, we will con-
sider in the present paper only such strange attrac-
tors of three-dimensional maps that contain saddle
fixed points with one-dimensional unstable mani-
folds and with saddle value σ greater than 1. More-
over, we pay the main attention to the so-called
homoclinic attractors that contain exactly one sad-
dle fixed point. As shown in the papers [Gonchenko
et al., 2005, 2012, 2014a; Gonchenko & Gonchenko,
2016], this direction is rather promising.

The content of the paper is organized as follows.
In Sec. 2, we give a definition of pseudohy-

perbolic attractors both for flows (Definition 2.1)
and maps (Definition 2.2) and describe some of
their basic properties. Thus, unlike hyperbolic
attractors, pseudohyperbolic ones admit homoclinic

2We note that these results are in good agreement with our results, see Secs. 3.2 and 4.1, obtained by means of a quite simple
and original numerical method (the LMP-method), which looks like some trick performed within the standard procedure for
calculating Lyapunov exponents.
3This problem seems to be very difficult, and its solution is connected, for example, with the proof of the existence of the
so-called nonsimple homoclinic tangencies [Tatjer, 2001; Gonchenko et al., 2007a, 2014b], examples of which are shown in
Fig. 4 — only here the direction of the arrows should be reversed, so that the unstable manifold of the point O becomes
two-dimensional. We note that bifurcations of such tangencies lead to the birth of stable periodic orbits [Tatjer, 2001]. In turn,
the appearance of nonsimple tangencies in the case under consideration is to be very expected, because the two-dimensional
unstable manifold should fold infinitely many times in different directions (it is as if we tried to “package” the two-dimensional
plane into a three-dimensional cube, while avoiding the appearance of sharp corners).
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tangencies, therefore, we give a brief classification of
homoclinic tangencies and specify those types (the
so-called simple homoclinic tangencies) that do not
destroy pseudohyperbolicity.

In Sec. 3, we give a review of some modern qual-
itative and numerical methods for searching strange
attractors and for the verification of their pseudohy-
perbolicity. First, we describe new phenomenolog-
ical scenarios leading to the emergence of strange
(pseudohyperbolic) attractors under a series of local
and global bifurcations in one-parameter families of
three-dimensional maps. Second, we observe some
searching methods (of saddle charts and modified
Lyapunov diagrams) which are designed to find
attractors in specific models. Third, we represent
the so-called LMP-method for verification of pseu-
dohyperbolicity of attractors.

In Sec. 4, we demonstrate examples of (pseudo-
hyperbolic) attractors in concrete models: in three-
dimensional generalized Hénon maps and in two
models from the rigid body dynamics (nonholo-
nomic models of Celtic stone and Chaplygin top).
We also check by the LMP-method the pseudohy-
perbolicity of these attractors.

In Sec. 5, we observe absolutely a new example
of four-dimensional flow possessing the wild spiral
attractor of Turaev–Shilnikov type. We also verify
its pseudohyperbolicity using the LMP-method.

In the Appendix, we give a detailed definition of
a pseudohyperbolic multidimensional map, in terms
of Lyapunov exponents, and deduce from it some
important consequences.

2. Pseudohyperbolicity and
Homoclinic Tangencies

In this section we discuss basic concepts of the
theory of pseudohyperbolic strange attractors. The
notion of pseudohyperbolic system was introduced
by Turaev and Shilnikov: the flow case was con-
sidered in [Turaev & Shilnikov, 1998] and the case
of diffeomorphisms in [Turaev & Shilnikov, 2008],
see also [Sataev, 2010; Gonchenko et al., 2013a] and
the Appendix. Thus, following [Turaev & Shilnikov,
1998, 2008], we will adhere to the following defini-
tions for pseudohyperbolic attractors.

Definition 2.1. The flow case. An attractor of an
n-dimensional flow F is called pseudohyperbolic if it
possesses the following properties.

(1) For each point of some absorbing domain D of
the attractor, there exist two linear subspaces

Ess with dim Ess = k and Ecu with dim Ecu =
n − k, where k ≥ 1, which are invariant with
respect to the differential DF of the flow and
such that DF is exponentially contracting along
all directions in Ess and it expands exponen-
tially all (n − k)-dimensional volumes in Ecu.

(2) The subspaces Ess and Ecu depend continu-
ously on a point from D.

(3) The corresponding coefficients of contraction
and expansion are uniformly bounded from 1.

(4) The angles between any tangent vector to Ess

and any tangent vector to Ecu are uniformly
separated from zero.

(5) Any possible contractions in Ecu are uniformly
weaker than any contraction in Ess.

The definition for discrete pseudohyperbolic
attractors of diffeomorphisms is quite similar and
we give it a shorter form.

Definition 2.2. The discrete (diffeomorphism) case.
An attractor of an n-dimensional diffeomorphism f
is called pseudohyperbolic if, for each point of some
absorbing domain D̃ of the attractor, there exist
two linear subspaces Ess with dim Ess = k and Ecu

with dim Ecu = n−k, where k ≥ 1, which are invari-
ant with respect to the differential Df of f and such
that the properties (1)–(5) of Definition 2.1 are ful-
filled for Df .

For the sake of completeness and for the inter-
ested reader, we also give in the Appendix a more
detailed definition in terms of Lyapunov exponents.

Thus, unlike hyperbolicity, here is not required
the existence of uniform expansions in Ecu along
all directions. Nevertheless, the pseudohyperbolic-
ity is preserved under small smooth perturbations
[Turaev & Shilnikov, 1998, 2008]. Therefore, if a
system has a pseudohyperbolic attractor, then this
attractor is strange, since the expansion of volumes
in Ecu guarantees the existence of positive maximal
Lyapunov exponent for any orbit. In other words,
pseudohyperbolic attractors are genuine attractors.

However, in contrast to the hyperbolic and
Lorenz attractors, pseudohyperbolic attractors can
possess homoclinic tangencies. Moreover, if it is
unknown in advance that the strange attractor is
hyperbolic, then in addition to transverse homo-
clinic orbits (at points of which stable and unsta-
ble invariant manifolds of saddle periodic orbits
intersect transversally), there should also exist non-
transversal ones — homoclinic tangencies. By itself,
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the appearance of a homoclinic tangency is not
something exceptional: this is a codimension-one
bifurcation phenomenon when a quadratic homo-
clinic tangency appears. However, as was shown in
[Newhouse, 1979], this single bifurcation can imply
very complicated structure of the bifurcation set. In
particular, arbitrarily close to any two-dimensional
diffeomorphism with a homoclinic tangency, there
are open regions (Newhouse regions) in which dif-
feomorphisms with homoclinic tangencies are dense.

Dynamics of systems from Newhouse regions
is extremely rich. So, as established in [Gonchenko
et al., 1993a, 2001], in these regions there are dense
systems with infinitely many homoclinic tangen-
cies of any orders and arbitrarily degenerate peri-
odic orbits, etc. All this implies that bifurcations
of homoclinic tangencies cannot be studied com-
pletely, for example, by means of finite-parameter
families — the traditional apparatus of the clas-
sical bifurcation theory, see more discussions in
[Gonchenko et al., 1991, 2007b]. Therefore, here,
naturally, the problems of a completely different
kind come to the fore. For example, such problems
are those connected with the study of the basic
bifurcations and basic characteristic properties of
systems from Newhouse regions. Moreover, what is
very important and interesting, is that the ques-
tion of which bifurcations and which characteristic
properties are the main ones could be decided by
the researcher himself.

In the theory of strange attractors, one of the
most important problems relates to an identifica-
tion whether a given attractor is the quasiattractor

or the genuine attractor (in particular, pseudo-
hyperbolic one). Sometimes, we can easily identify
that the attractor under consideration is quasiat-
tractor. So, in the case of strange attractors of
two-dimensional diffeomorphisms (if they are not
hyperbolic), bifurcations of inevitable homoclinic
tangencies lead to the appearance of stable peri-
odic orbits of quite large periods and, accord-
ingly, any such attractor should be considered as
quasiattractor.4

In the case of strange attractors of three-
dimensional diffeomorphisms, which are one of the
main topics of the present paper, the problem
of identification of their types (quasiattractor or
genuine attractor) is much more complicated. How-
ever, even here, homoclinic tangencies found in
attractors can be considered as peculiar indicators.
Thus, if an attractor allows homoclinic tangencies
to a fixed or periodic point such as in Fig. 2, then
it is definitely the quasiattractor. In the first case,
Fig. 2(a), the fixed point is a saddle with the saddle
value σ less than 1, and in the second case, Fig. 2(b),
it is a saddle-focus. The birth of stable periodic
orbits under bifurcations of such homoclinic tan-
gencies was established e.g. in [Gonchenko et al.,
1993c, 1996a, 2008] — here it is only required that
the Jacobian J of the fixed point is less than one,
and in the case of a saddle its unstable manifold
is one-dimensional (in the case of a saddle-focus,
there is no meaning whether the manifold is one-
dimensional or two-dimensional).

On the other hand, it is very important
that there are homoclinic tangencies that do

(a) (b)

Fig. 2. Examples of homoclinic tangencies whose bifurcations lead to the birth of stable periodic orbits.

4This is true, for example, for the Hénon attractors, for which stable periodic orbits arise under arbitrarily small perturba-
tions, although they may be absent (for parameter values forming a nowhere dense set of positive measure, according to the
Benedicks–Carleson theory [Benedicks & Carleson, 1991]).

1830036-7



October 17, 2018 11:44 WSPC/S0218-1274 1830036

A. S. Gonchenko et al.

not destroy pseudohyperbolicity. In the case of
three-dimensional diffeomorphisms, these are sim-
ple homoclinic tangencies [Gonchenko et al., 1993b,
1993c] provided that σ > 1.

Let, for example, a diffeomorphism f have a
saddle fixed point O with real multipliers λ1, λ2, λ3

such that |λ1| > 1 > |λ2| > |λ3| > 0 provided that
σ = |λ1||λ2| > 1. For such tangencies, the point O
itself is pseudohyperbolic: it has N ss(O) as the line
passing through O in the direction of the eigenvec-
tor of the linearization matrix A corresponding to
its strong stable multiplier λ3, and N cu(O) is the
plane containing the eigenvectors of the matrix A
corresponding to the multipliers λ1 and λ2. Obvi-
ously, for any point p from a small neighborhood
U(O) of the saddle O, there will be the same
invariant decompositions into the spaces N ss(p) and
N cu(p). Similar invariant expansions near the entire
homoclinic orbits can also be obtained if the homo-
clinic tangency is simple [Gonchenko et al., 2008].

The simplicity of a homoclinic tangency in the
case of the diffeomorphism f can be defined as fol-
lows [Gonchenko et al., 1993c, 2008]. Choose any
two homoclinic points p and q in U(O) such that
p ∈ Wu

loc(O), q ∈ W s
loc(O), and f s(p) = q for some

integer s. Define the so-called global map T1 that

is constructed along orbits of f and acts from a
small neighborhood V (p) of the point p to a small
neighborhood of the point q. Let q = f s(p) for some
natural s, then we can write T1 = f s|V (p).5 It is then
required that

• the plane DT1(N cu(p)) intersects transversally
with N ss(q).

Note that the curve T1(W u
loc(O)) touches the two-

dimensional plane W s
loc(O) along the vector �tan,

which, in turn, has a nonzero angle with the line
N ss(q), see Fig. 3.

If an attractor of a three-dimensional smooth
map is pseudohyperbolic, then it can contain
only simple homoclinic tangencies.6 For any small
smooth perturbations, pseudohyperbolicity is pre-
served [Turaev & Shilnikov, 1998, 2008]. However,
if these perturbations are not too small, it can be
broken. In this case, the destruction itself can be
caused by the appearance of such homoclinic tan-
gencies as in Fig. 2 (for example, the fixed point,
initially with σ > 1, in the process of evolution
can become a saddle point with σ < 1, or, oth-
erwise, a saddle-focus). A more delicate mechanism
for the destruction of pseudohyperbolicity is associ-
ated with the emergence of the so-called nonsimple

Fig. 3. The definition of simple homoclinic tangency.

5Note that the local invariant manifolds Wu
loc(O) and W s

loc(O) can always be straightened by introducing in U(O) such
Cr-coordinates (x, y, z) in which Wu

loc(O) = {x = 0, y = 0} and W s
loc(O) = {z = 0} [Shilnikov et al., 1998; Gonchenko et al.,

2008].
6Moreover, except for quadratic tangencies, there can exist homoclinic tangencies of arbitrarily large orders [Gonchenko et al.,
1993a, 2001], but they all should be simple (in the sense that, at any homoclinic point p, the subspaces N2(p) and N1(p)
intersect transversally, see more detail in [Gonchenko et al., 2018]).
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W u

W ue

W s

W ss

W s

W u

W ue

W ss

F ss

(a) (b)

Fig. 4. Two types of nonsimple homoclinic tangencies: (a) when the surface T1(N2(p)) intersects transversally with W s
loc(O)

but the vector �tan belongs to N1(q) and (b) when the surface T1(N2(p)) touches W s
loc(O).

homoclinic tangencies, examples of which are shown
in Fig. 4. In this case, as was established in [Tat-
jer, 2001; Gonchenko et al., 2007a, 2014b], sta-
ble periodic orbits, closed invariant curves and
even nontrivial attracting invariant sets, e.g. small
Lorenz-like attractors, can be born at bifurcations
of such homoclinic tangencies.

From this fact we can draw an important con-
clusion for the theory of strange attractors of three-
dimensional smooth maps: if such an attractor is
genuine, then it should be either hyperbolic or pseu-
dohyperbolic. As for hyperbolic attractors, their
mathematical theory is rather well developed. We
note, however, that, for a long time, the hyperbolic
attractors had only purely mathematical interest,
as no bifurcation mechanisms of their appearance
in applications were known. The situation changed
after the papers by Shilnikov and Turaev [1995,
1997], where it was shown that hyperbolic attrac-
tors (e.g. Smale–Williams and Anosov attractors)
can be born due to the loss of stability of a sta-
ble periodic orbit under bifurcations of “blue sky
catastrophe” type. From the papers [Kuznetsov,
2005; Kuznetsov & Seleznev, 2006; Kuznetsov &
Pikovsky, 2007; Kuznetsov, 2007] it became known
that such attractors are also found in physical
models. Note that there are powerful analytical
and computer methods for proving hyperbolicity of
attractors. Nowadays, similar methods are devel-
oped for detecting and verifying of pseudohyper-
bolic attractors.

Some such methods have been developed in
our recent papers [Gonchenko et al., 2012, 2014a;
Gonchenko & Gonchenko, 2016; Gonchenko et al.,

2018]. In particular, in [Gonchenko et al., 2012,
2014a] an effective qualitative method of new phe-
nomenological bifurcation scenarios of the appear-
ance of pseudohyperbolic attractor was proposed.
Here also it is worth noting the paper [Gonchenko &
Gonchenko, 2016] where a new search method of
saddle charts and modified Lyapunov diagrams was
developed. The above methods help to find attrac-
tors which can be pseudohyperbolic. Recently, in
the paper [Gonchenko et al., 2018] a quite effective
method for verifying pseudohyperbolicity of found
attractors was proposed. All the above methods give
a powerful toolkit both to search attractors which
are good candidates to be genuine attractors and to
verify their pseudohyperbolicity. We give a review
on these methods in the following section.

3. Methods for Searching Strange
Attractors and Verification of
Their Pseudohyperbolicity

In this section, we give a review of quite new qual-
itative and numeric methods which help to search
for strange attractors and verify their pseudohyper-
bolicity. First, we observe, in one-parameter fam-
ilies of three-dimensional maps, phenomenological
scenarios leading to the appearance of such pseudo-
hypebolic attractors as discrete Lorenz and figure-
eight attractors. Second, we describe rather effec-
tive numerical search methods such as the methods
of saddle chart and modified Lyapunov diagrams.
These methods help to find strange attractors that
can be considered as good candidates of pseudohy-
perbolic ones. Finally, we present a new numerical
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LMP-method for verifications of pseudohyperbolic-
ity of found (using, for example, the above methods)
strange attractors.

3.1. On phenomenological scenarios
leading to the emergence of
pseudohyperbolic attractors in
three-dimensional maps

In this section, we discuss questions of qualitative
study of strange attractors of three-dimensional
maps. Moreover, the main attention is focused on
those attractors that can be pseudohyperbolic. Evi-
dently, the spectrum Λ1,Λ2,Λ3 of Lyapunov expo-
nents for orbits in such attractors must satisfy
the necessary condition (2), see also Remark 1.2.
Besides, we restrict ourselves to the study of the
so-called homoclinic attractors, i.e. those that con-
tain only one fixed point together with its unstable
manifold.

Here under the attractor of a map f , following
Ruelle [1981], we mean closed, invariant, stable, and
chain-transitive set A. By stability, we mean the
standard asymptotic one, which indicates that the
attractor lies inside some absorbing domain D, all
points of which tend to A under positive iterations
of the map f . Recall that the chain-transitivity,
see e.g. [Anosov & Bronshtein, 1985; Turaev &
Shilnikov, 1998], means that any two points on the
attractor can be connected by an ε-orbit for any
ε > 0. The latter means that, for any two points
a, b ∈ A and any ε > 0, in A there exist points
a = x1, x2, . . . , xN−1, xN = b, where N = N(ε)
is such that xi ∈ A and dist(xi+1, f(xi)) < ε,
i = 1, . . . , N − 1. The sequence of points {xi} is
called an ε-orbit of the point x0 of length N , and
the point b is said to be ε-accessible from the point
a. Then we define the homoclinic attractor A with
a fixed (periodic) point O as a closed, invariant set
consisting of all points ε-accessible from the point O
for any ε > 0, i.e. A is the prolongation of O. On the
concept of prolongation in dynamical systems, see
more details e.g. in [Anosov & Bronshtein, 1985].

In this case, geometrically the attractor A, as
a set in R3, can be considered as the closure of
the unstable manifold of its fixed point O.7 From
this quite obvious observation, it is concluded that

geometrical and dynamical properties of the homo-
clinic attractor depend on its homoclinic structure,
i.e. on a set of intersections of the stable and unsta-
ble invariant manifolds of the point O belonging to
this attractor. In this connection, we proposed in
[Gonchenko et al., 2012] rather simple phenomeno-
logical scenarios for the emergence of discrete homo-
clinic attractors of certain types in one-parameter
families of maps. Two such scenarios are repre-
sented schematically in Fig. 5.

We note two main features of these scenarios.
The first one is that, when the parameter changes,
the stable fixed point O loses stability under the
supercritical period-doubling bifurcation. Immedi-
ately after this bifurcation, the point O becomes a
saddle with a one-dimensional unstable manifold,
and in its neighborhood a stable cycle (p1, p2) of
period two is born (i.e. f(p1) = p2 and f(p2) = p1),
which becomes an attractor now. Besides, the sad-
dle point O will have multipliers λ1, λ2, λ3 such that
λ1 < −1, |λ2,3| < 1 and λ2λ3 < 0 (since f is
orientable). We assume that, at further change of
parameter, the point O no longer undergoes bifur-
cations and the cycle (p1, p2) loses its stability. How
this happens — does not yet matter, but what is
important — and this is the second main feature
of these scenarios — there is a global bifurcation
associated with the creation of homoclinic intersec-
tions of the one-dimensional unstable W u and two-
dimensional stable W s invariant manifolds of O. A
configuration of these manifolds will be similar to
what we see in Figs. 5(c) and 5(d).

To explain how two such different configura-
tions are created, suppose, for definiteness, that
λ2 > 0 and λ3 < 0 (here also λ1 < −1). Then
W u is divided by a point O into two connected
components, separatrices W u+ and W u−, which are
invariant for f2 and such that f(W u+) = W u− and
f(W u−) = W u+. Then, if W u+ intersects W s

loc(O)
at a point h1, then W u− should intersect W s

loc(O)
at the point h2 = f(h1). The map f in the restric-
tion to W s

loc(O) is very simple: it has a stable fixed
point O of the type of a nonorientable node, since
λ2λ3 < 0.

In the case |λ2| > |λ3|, as in Fig. 5(c), in
W s

loc(O) there exists a strongly stable invariant

7This is true for the genuine attractor. However, we cannot know this in advance. Nevertheless, such definition agrees well
with the computer study of attractors, when we cannot see very small stable invariant subsets inside the attractor (e.g. stable
periodic orbits of very large periods). Sometimes (e.g. for quasiattractors), these subsets can be visible and this corresponds
to the well-known phenomenon of appearance of “windows of stability”.
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(a) (b)

(c) (d)

Fig. 5. Schematic pictures of two phenomenological scenarios for the appearance of discrete homoclinic attractors: the case
of Lorenz-like attractor — the path (a) → (b) → (c); the case of figure-eight attractor — the path (a) → (b) → (d).

manifold W ss that is an f -invariant curve tangent
at the point O to the eigendirection correspond-
ing to the negative multiplier λ3. The curve W ss

splits the disk W s
loc(O) into two connected compo-

nents W s
1 and W s

2. Since λ2 > 0 (and |λ2| > |λ3|),
each of these components is invariant under f , i.e.
points from W s

1 cannot get into W s
2 under itera-

tions of f , and vice versa. There is also a continu-
ous family of smooth invariant curves on W s

loc that
all enter the point O touching the eigendirection
corresponding to (positive) multiplier λ2. Let the
point h1 belong to one of these curves, say l1. Then
the curve l2 = f(l1) is also an invariant curve from
this family, and h2 ∈ l2. The curves l1 and l2 lie
exactly in one component, either in W s

1 or in W s
2,

and enter O, forming a “zero-angle wedge” configu-
ration. Correspondingly, the configuration of unsta-
ble separatrices of the point O, see Fig. 5(c), will
resemble that typical for the unstable separatrices
of the equilibrium of Lorenz attractor. Therefore,
the attractor arising here was named in [Gonchenko
et al., 2013b] as “discrete Lorenz attractor”.

Similar simple geometric arguments for the case
|λ2| < |λ3|, as in Fig. 5(d), show that here the
configuration of unstable separatrices of the point
O will be completely different. It is more like the

configuration of separatrices in the attractor of
the Poincaré map of a periodically perturbed two-
dimensional system with a homoclinic figure-eight
of a saddle equilibrium [Gonchenko et al., 2013c].
Therefore, an attractor arising in this case was
named “discrete figure-eight attractor” (see Figs. 1
and 8 which give an idea of the typical form of such
an attractor).

We note that, for both such types of attrac-
tors, the condition σ > 1 (here σ = |λ1λ2| in
the “Lorenz” and σ = |λ1λ3| in the “figure-eight”
case, respectively) is very important, as it is nec-
essary for the attractor under consideration to be
pseudohyperbolic. Otherwise, such attractors are
quasiattractors of Lorenz or figure-eight type; or —
another possibility — from a homoclinic configu-
ration with σ < 1, a large attractor enclosing a
stable closed invariant curve (torus) can be created
which, can be further broken giving rise to strange
attractor of completely different nature (for exam-
ple, “torus-chaos”). Both these possibilities are well
observed in computer experiments, see, for example,
[Gonchenko et al., 2012].

These obvious observations tell us that, in the
cases of saddle fixed points of other types, one can
also expect the existence of homoclinic attractors
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whose configuration will depend essentially on mul-
tipliers of these points. In particular, in the case
when there are complex conjugate multipliers, we
can also expect the existence of discrete attractors
of the spiral type, see e.g. [Gonchenko et al., 2012,
2014a].

Remark 3.1. Note that our discrete Lorenz and
figure-eight attractors differ substantially from their
analogues obtained in Poincaré maps from period-
ically perturbed three-dimensional flows. Thus, for
a small periodic perturbation of the system with
the Lorenz attractor, we obtain a pseudohyperbolic
attractor [Turaev & Shilnikov, 2008] which has a
saddle fixed point with all positive multipliers, and
fixed points lie in the “holes” of the attractor. In the
case of the Lorenz discrete attractor, the fixed point
has two negative multipliers, and a period-2 orbit
lies in “holes”. As the discrete figure-eight attrac-
tors, it seems that they have no flow analogues at
all. This is due to the fact that if the corresponding
system would have a homoclinic figure-eight of sad-
dle, then either this figure-eight is stable (attrac-
tor) and then the attractor obtained will be with
σ < 1, or, if σ > 1, the homoclinic figure-eight is
not an attractor. This allows us to say that both the
Lorenz discrete attractor and the discrete figure-
eight attractor are new.

The problem of study and classification of
homoclinic attractors for three-dimensional diffeo-
morphisms was first explicitly formulated in the
paper [Gonchenko et al., 2012], although the first
results on this subject were obtained in the paper
[Gonchenko et al., 2005], in which discrete Lorenz
attractors were found in three-dimensional Hénon
maps. We note that a possibility of the birth of such
attractors at local bifurcations of triply degenerate
fixed points (e.g. having multipliers (−1,−1,+1))
was studied in the paper [Shilnikov et al., 1993].
Since the three-dimensional Hénon map (1) con-
tains three parameters, such a point exists in it,
and moreover, as shown in [Gonchenko et al., 2005],
conditions from [Shilnikov et al., 1993] are ful-
filled in this case. Thus, the main idea of our work
[Gonchenko et al., 2005] was to apply knowledge
about the properties of degenerate local bifurcations
to a specific situation. Obviously, this approach can
also be used in the study of various models contain-
ing at least three parameters.

In [Gonchenko et al., 2012] another idea was
proposed based on feasibility of phenomenological

scenarios of the appearance of strange homo-
clinic attractors in one-parameter families of three-
dimensional maps. Such scenarios, as those pre-
sented in Fig. 5, look quite realizable for concrete
models and, moreover, they allow quite simple
numeric analysis — here, for example, one does not
need to know all subtleties of global bifurcations
leading to the creation of homoclinic structures, but
it is sufficient only to calculate/construct some basic
simple characteristics (phase portrait, multipliers of
the fixed point, Lyapunov exponents, etc.).

Remark 3.2. The idea of studying strange attractors
by means of phenomenological scenarios involving
two main bifurcation stages — the loss of stability
of a simple attractor and the appearance of a homo-
clinic attractor — was first proposed by Shilnikov
in the paper [Shilnikov, 1986], where such a sce-
nario was represented to explain the phenomenon
of emergence of spiral chaos in the case of multidi-
mensional flows. We will discuss this scenario and
its generalizations in Part II of the paper.

3.2. On numerical methods for
searching pseudohyperbolic
attractors

The fact that the configuration of discrete homo-
clinic attractors depends essentially on multipli-
ers of their fixed points was used in the paper
[Gonchenko & Gonchenko, 2016] for classification
of such attractors in the case of orientable three-
dimensional maps. If we restrict ourselves only to
pseudohyperbolic homoclinic attractors, then such
a classification problem turns out to be quite solv-
able for distinguishing attractors by types of their
homoclinic structures. In this case, as shown in
[Gonchenko & Gonchenko, 2016], five different types
of such attractors are possible. All of them relate to
the case when the fixed point is a saddle (all mul-
tipliers are real) with the one-dimensional unsta-
ble invariant manifold. Two of these types, the
discrete Lorenz attractors and discrete figure-eight
attractors, can be observed in the case when the
unstable multiplier λ1 is negative, i.e. λ1 < −1;
and three other types of discrete attractors (the
so-called “double figure-eight”, “super figure-eight”
and “super Lorenz” attractors) relate to the case
when λ1 > 1, see [Gonchenko & Gonchenko, 2016].

In order to find such attractors in specific mod-
els, some fairly effective methods were proposed in
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[Gonchenko & Gonchenko, 2016]. One of them is
the so-called “method of saddle charts”. We illus-
trate the essence of this method in the example of
a three-dimensional generalized Hénon map of the
form

x = y, y = z, z = Bx + Az + Cy + f(y, z),
(3)

where the nonlinearity f depends only on coordi-
nates y and z and, besides, f(0, 0) = 0, f ′

y(0, 0) =
f ′

z(0, 0) = 0. The map (3) depends on three param-
eters A,B, and C and has constant Jacobian equal
to B. We will assume that 0 < B < 1, i.e. the map
is orientable and volume contracting. Obviously,
any map of form x = y, y = z, z = Bx + g(y, z)
having a fixed point (for example, map (1) for
(1 + B − M2)2 + 4M1 > 0) can be written in the
form (3), if to move this point into the origin.

The point O(0, 0, 0) is fixed for map (3) and the
characteristic equation of (3) at this point has the

form

χ(λ) ≡ λ3 − Aλ2 − Cλ − B = 0. (4)

Thus, the multipliers of point O are functions of
only the parameters A,B and C and do not depend
on the nonlinearities f(y, z). Then we can split the
space of parameters A, B and C into domains cor-
responding to various types of location of multipli-
ers of the point O with respect to the unit circle.
We also distinguish the domains corresponding to
σ > 1 and σ < 1 in the cases when the unstable
manifold of O is one-dimensional. Such a partition
of the (A,C)-parameter plane for fixed B is called
the saddle chart [Gonchenko & Gonchenko, 2016].8

An example of such a saddle chart, with B = 0.5,
is shown in Fig. 6.

The domain IV, the so-called “stability trian-
gle” (the domain {C > B2 − 1 − BA} ∩ {C < A +
B + 1} ∩ {C < 1 − BA}), corresponds to the case
when the fixed point O is asymptotically stable.

Fig. 6. Examples of the saddle chart for map (3) with B = 0.5.

8In the case of three-dimensional flows, a similar “saddle chart” for equilibrium states was proposed in [Shilnikov et al., 2001]
in the form of a table, see there Appendix C.2.
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For all other values of A and C (except for the
bifurcation curves), the point O is of saddle type —
it has multipliers both inside and outside the unit
circle. Depending on the location of multipliers
we select in the chart several domains shown in
Fig. 6. The boundaries of the domains consist of
seven main curves. First, there are three bifurca-
tion curves, where the point O has multipliers on
the unit circle:

(a) the curve L+ : C = 1 − B − A (when λ = +1);
(b) the curve L− : C = 1 + B + A (when λ = −1);
(c) the curve Lϕ : C = B2 − 1 − BA at −2 <

A − B < 2 (when λ1,2 = e±iϕ).

We note that the curve C = B2 − 1 − BA belongs
entirely to the boundaries of the domains, but for
|A − B| > 2 it is not a bifurcation curve: here
the point O has multipliers (B,−|λ|,−|λ|−1) at
A − B < −2 and (B, |λ|, |λ|−1) at A − B > 2.
Besides, the saddle chart contains four additional
curves:

(a) “the resonant curve”, AC+B = 0, A < 0 (when
λ1 = −λ2);

(b) the curve “σ = 1”, C = 1 + B2 + AB (when
λ1λ2 = −1);

and two curves of “double roots”

(a) S− (when λ1 = λ2 < 0),
(b) S+ (when λ1 = λ2 > 0).

The latter two curves separate domains where O
has a type of “node” and “focus” as well as “saddle”
and “saddle-focus”. These curves have the following
equations

S± : (λ±)3 − A(λ±)2 − Cλ± − B = 0,

where

λ± =
A ±√

A2 + 3C
3

at A2 + 3C > 0 (i.e. λ± are the roots of equation
3λ2 − 2Aλ − C = 0).

We remark especially four regions D1, D2, D3
and D4 of the saddle chart, see Fig. 6, where the
point O has real multipliers λ1, λ2, λ3 such that

|λ1| > 1, |λ2,3| < 1, and the saddle value σ =
|λ1| · max{|λ2|, |λ3|} is greater than 1. As we pro-
pose, only for values A and C from these domains,
homoclinic attractors under consideration (contain-
ing the point O) can be pseudohyperbolic. In other
domains, except for the domain IV (the stability
triangle), the point O is either a saddle-focus, or a
saddle with two-dimensional unstable manifold, or
has σ < 1. As we suppose, if the map has a homo-
clinic attractor for the values of parameters from
one of these last regions, then it is, in our opinion,
a quasiattractor, see Remark 1.2.

Using saddle charts in numerical experiments
is very convenient in combining with the Lyapunov
diagram method. However, here we also modify the
latter method. As a standard, the Lyapunov dia-
gram is a chart (in the (A,C)-parameter plane,
when B is fixed) consisting of colored areas cor-
responding to domains of parameters with different
spectra of the Lyapunov exponents Λ1 > Λ2 > Λ3.
We use, in particular, the green color (also denoted
by the number “1” in black and white drawings) —
for stable periodic regimes (Λ1 < 0); light blue color
(number “2”) — for quasiperiodic regimes (Λ1 = 0);
yellow color (number “3”) when Λ1 > 0,Λ2 < 0,
red color (number “4”) when Λ1 > 0,Λ2 ∼ 0, and
blue color (number “5”) when Λ1 > Λ2 > 0 —
for strange attractors.9 To these five colors, we
added one more — dark gray (number “6”) to
indicate regions with homoclinic attractors, when
the numerically obtained points on the attractor
approach the point O to a very small distance
(less than 10−4 during at least 106 iterations of
the map).

As was noted in the Introduction, the condi-
tions (2) for the spectrum Λ1,Λ2,Λ3 of numerically
obtained Lyapunov exponents should be considered
as one of necessary conditions for pseudohyperbolic-
ity of strange attractors in three-dimensional maps.
Moreover, this condition is evidently fulfilled for
three-dimensional flows: here Λ2 = 0 and, hence,
Λ1 > 0 automatically implies Λ1 + Λ2 > 0; the
inequality Λ1 + Λ2 + Λ3 < 0 follows from vol-
ume contracting properties of a flow near attrac-
tor. However, it is well known that not all chaotic
attractors for three-dimensional flows, and more so

9The red domains (where Λ1 > 0, Λ2 ∼ 0) were especially highlighted in [Gonchenko et al., 2005] — these are such domains
where the value of Λ2 either always fluctuate very close to zero, or differ from zero by an amount (of the order of 10−5 or
10−6), comparable to the accuracy of calculating the exponents. Surprisingly, such domains turned out to be quite large,
and this phenomenon (apparently related to the fact that the mapping on the attractor turned out to be very close to the
time-discretization of some flow, for example, with the Lorenz attractor) was discussed in [Gonchenko et al., 2005].
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for three-dimensional maps, are pseudohyperbolic.
Thus, we strongly need some additional numeri-
cal methods that give more confidence that the
attractor is genuine. Such methods exist, for exam-
ple, as the Tucker methods of rigorous numerics
[Tucker, 1999] based on interval arithmetic. How-
ever, the Tucker method is very difficult and too
time-consuming for using it in our simple and stan-
dard numerics directed more for searching attrac-
tors than for their delicate studying. Instead, we
use a sufficiently simple but quite effective “light
method” proposed in [Gonchenko et al., 2018]
for verifying pseudohyperbolicity (LMP-method) of
strange attractors of three-dimensional maps and
flows. It can be easily modified for n-dimensional
maps and flows at which the sum of the first (n−1)
Lyapunov exponents is positive, whereas, the sum
of all n exponents is negative. Further, for simplic-
ity, we describe this method for the case of three-
dimensional flows and maps and test this method
on the well-known Lorenz attractor.

3.3. LMP-method for verification
of pseudohyperbolicity of
attractors

The essence of the LMP-method consists of the
fact that we pay more attention for checking suf-
ficient conditions for pseudohyperbolicity, see Defi-
nitions 2.1 and 2.2 and the Appendix. In the case of
three-dimensional maps (as well as flows), we con-
sider conditions (2) to be necessary and assume that
they hold. Then, the sufficient condition is related
to the existence of, at every point x near the attrac-
tor, two transversal linear subspaces Ess(x) and
Ecu(x) such that (see Definition 2.2)

(i) dim Ess = 1,dim Ecu = 2;
(ii) Ess(x) and Ecu(x) depend continuously on x;
(iii) Ess(x) and Ecu(x) are invariant with respect

to the differential DT of the map T , i.e.

Df (Ess(x)) = Ess(f(x)),

Df (Ecu(x)) = Ecu(f(x));

(iv) the map T in the restriction to Ess is uni-
formly contracting, and in the restriction to
Ecu extends exponentially by two-dimensional
volumes, and if in Ecu there is a contraction,
then it is uniformly weaker than the contrac-
tion in Ess.

We note that the strongly contracting space
Ess(x) is one-dimensional (for attractors under
consideration) and it depends continuously on the
point x. This means that angles dϕ between any
vectors Ess(x) and Ecu(y) should be close for
nearby x and y (theoretically, dϕ → 0 as x → y). In
fact, the LMP-method allows us to calculate these
angles and, thus, to verify the continuity of the field
Ess of strong contacting directions at points of the
attractor. The process of calculations consists of two
stages. The first stage is standard: we calculate the
spectrum of Lyapunov exponents Λ1,Λ2,Λ3 (if con-
ditions (2) are not valid, we can stop calculations)
and, in parallel, we store an array of data N = {xn},
where xn+1 = f(xn) and n = 1, . . . , k, containing
information about points xn on the attractor. The
second step is not quite standard: we calculate the
maximal Lyapunov exponent for backward itera-
tions of the map using essentially the information
obtained in the first stage. In particular, our back-
ward iterations are forcibly attached to those points
of the attractor that were obtained in the first stage.
Evidently, if we take any point on the attractor,
then its backward iterations, sooner or later, depart
far from the attractor and we can lose any informa-
tion on the attractor.

Note that the maximal Lyapunov exponent for
backward iterations is equal with a minus sign to
the minimal Lyapunov exponent Λ3, and during
these calculations we find vectors Ess(xn). As the
final result of calculations, we construct the LMP-
graph on the (dx, dϕ)-coordinate plane, where dx
is the distance between two points x and y of
the attractor and dϕ is the angle between vectors
Ess(x) and Ess(y) (in fact, we construct the graph
knowing points xi and xj and vectors Ess(xi) and
Ess(xj) for all possible i and j).

We note that if the attractor is pseudohyper-
bolic, which implies that the field Ess(x) is contin-
uous, the LMP-graph has to intersect the dϕ-axis
only at the origin (dx = 0, dϕ = 0) or, if Ess is
nonorientable, at the points dϕ = 0 and dϕ = π.
Thus, if the constructed LMP-graph satisfies this
property, we can conclude that our attractor should
be surely pseudohyperbolic. On the other hand,
if the LMP-graph intersects the dϕ-axis at other
points or there is no visible gap between the points
of graph and the dϕ-axis, we say that the attractor
is a quasiattractor.

In order to demonstrate that the LMP-
method indeed works we consider, as a simple and
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(a) (b) (c)

Fig. 7. An illustration of results obtained by the LMP-method: (a) LMP-graph for the classical Lorenz values σ = 10, r =
28, b = 8/3, (b) the domain A of the (σ, r)-parameter plane (for b = 8/3) corresponding to the existence of the genuine Lorenz
attractor — this figure is taken from [Bykov & Shilnikov, 1992] and (c) LMP-graph for values σ = 10, r = 35, b = 8/3 from
the right of the domain A.

illustrative example, the well-known Lorenz model


ẋ = σ(y − x),

ẏ = x(r − z) − y,

ż = xy − bz

(5)

and verify the pseudohyperbolicity of some attrac-
tors in this model.

It is well-known from the paper [Tucker, 1999]
that, for the classical values of parameters (σ = 10,
r = 28, b = 8/3), “the Lorenz attractor exists”,
i.e. it satisfies conditions of the Afraimovich–
Bykov–Shilnikov geometrical model [Afraimovich
et al., 1977; Afraimovich et al., 1982]. In other
words, it is pseudohyperbolic in terms of [Turaev &
Shilnikov, 1998]. Numerics from [Bykov & Shilnikov,
1992] show that this property holds for some region
A, see Fig. 7(b), of the (σ, r)-parameter plane (for
b = 8/3). The right boundary l+k of A corresponds
to vanishing of the so-called separatrix value for
homoclinic loops (automatically this means viola-
tion of conditions from [Afraimovich et al., 1977;
Afraimovich et al., 1982]) and, as result, the attrac-
tor becomes a quasiattractor in the domain to the
right of l+k . In Fig. 7(a) are also presented the LMP-
graphs for the classical values of the parameters
σ = 10, r = 28, b = 8/3 and in Fig. 7(c) — for
values σ = 10, r = 35, b = 8/3 from the right of l+k .
Thus, our LMP-test confirms that the first attrac-
tor is genuine, indeed. In the second case we see

that the LMP-graph intersects the axis dϕ at the
points dϕ = 0 and dϕ = π. However, the field
Ess(x) is orientable here as it should always be in
the case of a flow. Thus, the second attractor is cer-
tainly a quasiattractor.

In Sec. 4, we consider some examples of three-
dimensional maps such as generalized Hénon maps
and nonholonomic models of Celtic stone and Chap-
lygin top and verify some attractors of these mod-
els for pseudohyperbolicity using LMP-method. In
Sec. 5, we apply LMP-method to the attractors
of four-dimensional flow system, which is a four-
dimensional extension of the Lorenz model, and
show that the attractors in this model can be pseu-
dohyperbolic spiral attractors of Turaev–Shilnikov
type.

4. On Examples of Strange
Attractors in Various
Three-Dimensional
Diffeomorphisms

In this section, we discuss several examples
of strange attractors in three-dimensional maps
including three-dimensional Hénon maps and non-
holonomic models of rigid body dynamics (we
observe attractors in these models in three-
dimensional Poincaré maps). We consider only such
attractors for which necessary conditions for pseu-
dohyperbolicity (expressed by numerically obtained
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Lyapunov exponents) are satisfied. However, we
show using the LMP-method that not all such
attractors are genuine, some of them are, in fact,
quasiattractors.

4.1. Strange attractors in
three-dimensional generalized
Hénon maps

We note that there are various methods to study
chaotic dynamics in concrete models. One of the
regular and reasonable approaches to this problem
is related to the construction of diagrams of

Lyapunov exponents. Namely in this way discrete
Lorenz attractors were found in [Gonchenko et al.,
2005] for the three-dimensional Hénon map of
form (1). Examples of such attractors are shown
in Fig. 1. Now we can find such attractors, as they
say, “purposefully”, using our approach. To do this,
we consider map (1) in the following “reduced to
zero” form

x = y, y = z, z = Bx + Az + Cy − z2, (6)

and take the saddle chart such as in Fig. 6(a)
but constructed for the required fixed B, in our
case for B = 0.7. Next, against the background

(a)

(c) (d) (e)

(b)

Fig. 8. Discrete Lorenz attractor for map (6) with B = 0.7.
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of this chart, we numerically construct the modi-
fied diagram of Lyapunov exponents. As a result,
we get such a picture as in Fig. 8(d), where, in
particular, the region of “dark gray” chaos inter-
sects the region D1. This suggests that, for the cor-
responding values of A and C, a discrete Lorenz
attractor can be observed. The numeric results are
shown in Fig. 8(a) for A = −1.1;C = 0.85 and in
Fig. 8(b) for A = −1.11;C = 0.77, where we point
out also values of the multipliers of O, the saddle
value σ of O, and the values of Lyapunov exponents
Λ1,Λ2,Λ3. In both cases we have that σ > 1 and
Λ1 > 0,Λ1 +Λ2 > 0. In Figs. 8(c) and 8(e), we show
also a behavior of one of the unstable separatrices
of the point O (the behavior of another separatrix is
symmetric due to the unstable multiplier of O being
negative). We see that W u(O) has in both cases a
homoclinic intersection with W s(O), although, in

the first case, typical zigzags in W u are seen more
clearly than for the second case.

In Fig. 9, we represented the LMP-graphs for
the discrete Lorenz attractors of Figs. 8(a)(left)
and 8(b)(right). The two upper figures show the
LMP-graphs obtained by plotting every second iter-
ation of the map, whereas, in the lower figures the
graphs are plotted for each iteration. In principle,
there is no difference between Figs. 9(a) and 9(c),
both of them look quite “chaotic” and show that
the field Ess in the case of attractors of Fig. 8(a) is
not continuous. Thus, this attractor is certainly a
quasiattractor. It is not the case for Figs. 9(b) and
9(d). The evident difference between them can be
explained by the fact that the field Ess of strong
contracting directions is nonorientable here (this is
inherited by the fact that a strongly stable mul-
tiplier of the fixed point O is negative), and Ess

(a) (b)

(c) (d)

Fig. 9. LMP-graphs for attractors of Figs. 8(a)(left) and 8(b)(right).
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becomes orientable if we consider every second iter-
ation of the map. Thus, we can conclude from the
LMP-graph in Fig. 9(b) that the attractor from
Fig. 8(b) is pseudohyperbolic. We can also remark
that the LMP-graph in Fig. 9(d), when every itera-
tion is plotted, carries some information about how
close is our pseudohyperbolic attractor to its break-
ing down, when it becomes a quasiattractor. This
can be estimated from the distance between the
two “whale” components of the graph. When these
components intersect, the field Ess is immediately
destroyed and, as a consequence, nonsimple homo-
clinic tangencies like in Fig. 4 appear.

Obviously, in the case of map (3), the sad-
dle chart does not depend on the nonlinear terms
f(y, z). At the same time, the form of Lyapunov dia-
gram on the (A,C)-parameter plane is determined
only by these terms. With modern computers,
the calculation of Lyapunov exponents does not
take much time, especially in the case of three-
dimensional maps, and the saddle chart for map (3)
is constructed “instantly” on the “search stage”.
In addition, as our experience shows, when vary-
ing nonlinearities one can see a certain tendency in
changing the location of the “dark-gray spot” (when
the attractor is homoclinic). If desired, this spot

(a) (b)

(c) (d)

Fig. 10. An example of discrete figure-eight attractor in the corresponding generalized Hénon map: (a) a fragment of the
saddle chart on a background of the Lyapunov diagram, (b) the projection of attractor on the (x, y)-plane, (c) the LMP-graph
and (d) a behavior of one of the unstable separatrices of the fixed point O is shown.
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can be “driven” into any of the domains of the sad-
dle chart (except for the “stability triangle”), and,
accordingly, we can find the attractor of interest to
us. By the same way, various homoclinic attractors
of map (3) were found in [Gonchenko & Gonchenko,
2016]. Some of them (for the values of parameters
A and C from the domains D1, D2, D3 and D4)
were presented as candidates for pseudohyperbolic
attractors (because the necessary conditions (2) are
fulfilled for them).

In Fig. 10 illustrations are shown that relate to
the discrete figure-eight attractor of map (3) with

the nonlinearity f(y, z) = −1.45z2 + 0.515yz − y2

for values of parameters B = 0.72;A = −1.86;C =
0.03 belonging to the domain D2. Although the
necessary conditions (2) are fulfilled for the attrac-
tor, it looks like a typical quasiattractor that its
LMP-graph of Fig. 10(c) confirms. Unfortunately,
we could not find good examples of discrete figure-
eight attractors in the case of three-dimensional
Hénon maps (however, we are sure that pseudohy-
perbolic attractors of such type exist there).

In Fig. 11 illustrations are shown that relate to
the discrete double figure-eight attractor of map (3)

(a) (b)

(c)
(d)

Fig. 11. An example of discrete double figure-eight attractor in the corresponding generalized Hénon map: (a) a fragment of
the saddle chart on a background of the Lyapunov diagram, (b) the phase portrait of attractor, (c) the LMP-graph and (d) a
behavior of the unstable separatrices of the fixed point O is shown (left) and a magnification of some fragment (right).
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with the cubic nonlinearity f(y, z) = −2.25z3 − 2y3

for values of parameters B = 0.5;A = 0.82;C =
2.06 belonging to the domain D3. The necessary
conditions (2) are satisfied again, but LMP-graph
of Fig. 11(c) shows that the attractor is certainly a
quasiattractor.

In Fig. 12 illustrations related to one more
homoclinic attractor are for the so-called discrete
super figure-eight attractor. This attractor is
observed in map (3) with the cubic nonlinearity
f(y, z) = y3−z3 for values of parameters B = 0.05;
A = 3.702; C = −2.749 belonging to the domain
D4. The necessary conditions (2) are satisfied again.
Concerning the LMP-graph, see Fig. 12(c), we
have here a very suspicious case, since near to the
axis dx = 0 we see a thin strip-like area where
there are practically no points of the graph. This

favors the fact that the attractor is pseudohyper-
bolic, although it exists in very small domain of
parameters.

4.2. Pseudohyperbolic attractors in
nonholonomic models of rigid
body dynamics

In this section, we review some results on strange
attractors in two nonholonomic models of rigid
body dynamics: the models of Celtic stone and
Chaplygin top. Both these models describe motions
of a rigid body along the plane without slipping
(this is a nonholonomic constraint) and with con-
serving the full energy. These nonholonomic approx-
imations of the real motion of a rigid body along the
plane allow us to write the equations of its dynamics

(a)

(b) (c)

(d) (e)

Fig. 12. An example of discrete super Lorenz attractor in the corresponding generalized Hénon map: (a) a fragment of the
saddle chart on a background of the Lyapunov diagram, (b) a magnification of some parts of the Lyapunov diagram (a very
thin dark-gray strip is seen in domain D4), (c) the phase portrait of attractor, (d) the LMP-graph and (e) a part of the
LMP-graph near the axis dϕ.
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in the form of a five-dimensional system [Markeev,
1992] (three coordinates determine the projections
of angular momenta and two others are two Euler
angles) with the first integral that is the full energy
E. Thus, due to the restriction on a level of the inte-
gral, the system becomes four-dimensional and we
can study its chaotic dynamics on the correspond-
ing three-dimensional Poincaré section. Further, we
discuss some results from [Gonchenko et al., 2013a;
Borisov et al., 2014] concerning strange homoclinic
attractors using the above models.

Our first model is the Celtic stone model from
[Gonchenko et al., 2013a]. This model depends on
a lot of parameters characterizing physical and
geometrical properties of the stone. As a natu-
ral control parameter we consider the value of the
full energy E. When varying E in an appropriate
interval of its values we can observe a sequence
of bifurcations, in the corresponding one-parameter

family FE of three-dimensional Poincaré maps,
which lead to the evolution from the asymptotically
stable fixed point to the discrete Lorenz attractor.

The main stages of appearance of such attrac-
tor are shown in Fig. 13 (at the top panel) when the
parameter E increases from E = 747 to E = E∗ =
752. At first, for E < E1 
 747.61, the attractor
is a stable fixed point O, see Fig. 13 for E = 747.
Then this point undergoes a period-doubling bifur-
cation at E = E1 and the stable cycle P = (p1, p2)
of period two becomes an attractor, see Fig. 13 for
E = 748.4. Note that the point O is now a saddle
fixed point (with multipliers λ1 < −1, 0 < λ2 <
1,−1 < λ3 < 0, where |λ3| < |λ2| and |λ1||λ2| > 1).
At E = E2 
 748.4395 a “homoclinic figure-eight-
butterfly” of the unstable manifolds (separatrices)
of the saddle O is created, which gives rise then
to a saddle closed invariant curve L = (L1, L2) of
period two (where FE(L1) = L2,FE(L2) = L1), the

Fig. 13. The upper line: first stages (from E = 747 to E = 749) in developing the dynamics to the discrete Lorenz attrac-
tors. The middle line: E = 750 and E = 752, projections of attractors (left) and unstable separatrices of O (right) on some
two-dimensional plane. The bottom line: the corresponding LMP-graphs (left) and their magnifications (right).
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curves L1 and L2 surround the points p1 and p2,
respectively, see Fig. 13 for E = 749. At the same
time, the unstable separatrices of O are rebuilt and
now, for E2 < E < E3, the left (the right) point
wounds to the right (the left) point of the cycle
P . Moreover, together with the closed period-two
invariant curve L, the birth of an invariant limit set
Ω occurs here, which is not attracting yet. As the
numerical calculations show, for E = E3 ∼ 748.97
the separatrices “lie” onto the stable manifold of
the curve L and then leave it. Almost after that,
at E = E4 ∼ 748.98, the period-two cycle P loses
sharply the stability under a subcritical discrete
Andronov–Hopf bifurcation: the period-two closed
invariant curve L merges with the cycle P after the
cycle becomes of saddle-focus type. The value of
E = E4 is the exact bifurcation moment of the dis-
crete Lorenz attractor creation. We show in Fig. 13
two examples of such attractors, for E = 750 (at
the left panel) and E = 752 (at the right panel).

Thus, this bifurcation scenario in the Celtic
stone model fits into the overall scheme of the
appearance of discrete Lorenz attractors in Sec. 3.1.
However, it has a certain specific feature. So, at
the beginning, for E close to E4, this attractor is
quite unusual. Despite that it is a discrete attractor,
unstable invariant manifolds of the point O behave
very similar to the flow case: here homoclinic inter-
sections are invisible, since a splitting of the corre-
sponding manifolds is comparable with the accuracy
of calculations, see Fig. 13 for E = 750. However,
with increasing E homoclinic intersection becomes
more visible and typical zigzags appear in the unsta-
ble manifolds of O, see Fig. 13 for E = 752. Another
specific is that the sequence of bifurcations when
creating an attractor is strikingly similar (one can
say “one-to-one” for F2

E) to what happens in the
Lorenz model [Shilnikov, 1980]. Besides, this attrac-
tor is pseudohyperbolic as seen from the analysis of
its LMP-graph, see Fig. 13 where the LMP-graphs

Fig. 14. The upper line: first stages (from E = 454 to E = 457.9) in developing chaotic dynamics. The middle line: a two-
component torus-chaos for E = 457.9125 and a discrete figure-eight attractor for E = 457.9135; in both pictures is shown a
two-dimensional projection for attractor (left) and for unstable separatrices of S1 (right). The bottom line: the corresponding
LMP-graphs and their magnifications.
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are shown for E = 750 and E = 752, both full-
scale ones (left) and their enlarged fragments near
the axis dϕ (right). In the later figures we see
that some neighborhoods of the axis dϕ do not
contain any points on the graph. It follows surely
that the attractors for E = 750 and E = 752 are
pseudohyperbolic.

The second example is the nonholonomic model
of Chaplygin top from the paper [Borisov et al.,
2014]. Figure 14 (top panel) shows some steps in
the development of the attractor in Poincaré map
of the model as the energy E grows from E = 454.
At first, for E1 
 417.5 < E < E2 
 455.95, the
attractor is a period-two orbit (p1, p2) that emerges
at E = E1 along with a saddle period-two orbit
S = (s1, s2) as a result of a saddle-node bifurca-
tion (we do not show this moment). Simultaneously,
the map has a saddle fixed point S1: this point, a
saddle-focus then a saddle, has a two-dimensional
unstable manifold; then at E > E3 
 456.15 the
fixed point becomes a saddle with one-dimensional
unstable manifold as a result of a subcritical period-
doubling bifurcation when the saddle orbit (s1, s2)
merges with S1. At E = E2 
 455.95 the orbit

(p1, p2) loses the stability under the supercritical
Andronov–Hopf bifurcation and a stable period-two
closed invariant curve appears. Thus, at E > E3 the
one-dimensional unstable separatrices of the saddle
fixed point S1 (with multipliers λ1 < −1, |λ2,3| < 1
and λ2λ3 < 0) wind up onto a stable closed invari-
ant curve of period-two, see Fig. 14 for E = 457.
Further, several doublings of the invariant curve
occur after the first doubling, see Fig. 14 for E =
457.9. Further growth of E leads to a strange attrac-
tor appearance: at first a two-component “torus-
chaos”, see Fig. 14 for E = 457.9125, and then
a discrete figure-eight attractor, see Fig. 14 for
E = 457.9135.

Note that at E = 457.9135, the fixed point
S1 has the multipliers λ1 
 −1.00907, λ2 

−0.99732, λ3 
 0.98885. Thus, the area-expansion
condition |λ1λ2| > 1 is fulfilled. Moreover, the
Lyapunov exponents for a random trajectory in
the attractor are as follows: Λ1 
 0.00063,Λ2 

−0.00003,Λ3 
 −0.00492, which gives Λ1 + Λ2 > 0
and hints at the pseudohyperbolicity. Besides, the
corresponding LMP-graph in Fig. 14 (bottom line)
confirms this. However, speaking strongly, we can

(a) (b)

(c) (d)

Fig. 15. (a)–(c) Projections of the attractor onto different two-dimensional planes and (d) LMP-graph for the attractor.
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assume here the pseudohyperbolicity only “visu-
ally”, since the problem under consideration is too
delicate to blindly trust the numerical results. Also,
note that the “torus-chaos” of Fig. 14 for E =
457.9125 looks pseudohyperbolic, which is quite
doubtful.

5. On Wild Hyperbolic Attractor
of Turaev–Shilnikov

Here we consider the example of the attractor found
in [Gonchenko et al., 2018], which is, in fact, wild
spiral attractor of Turaev–Shilnikov type, i.e. a
pseudohyperbolic attractor containing an equilib-
rium of saddle-focus type. Recall that the base of
theory of pseudohyperbolic attractors was laid out
in the paper [Turaev & Shilnikov, 1998], in which a
geometric model of wild spiral attractor for a four-
dimensional flow was constructed. This attractor
contains a saddle-focus equilibrium O with eigenval-
ues γ, λ ± iω, λ̃, where γ > 0 > λ > λ̃ and, besides,
γ + 2λ > 0 and the divergence in O is negative, i.e.
γ + 2λ + λ̃ < 0. Thus, the point O is pseudohyper-
bolic and dim Ess(O) = 1,dim Ecu(O) = 3; here the
vector Ess(O) is collinear to the eigenvector corre-
sponding to the strong stable eigenvalue λ̃ and the
three-dimensional plane Ecu(O) contains eigenvec-
tors corresponding to three other eigenvectors of O
(thus, the plane Ecu(O) touches at O the central
unstable invariant manifold of the flow).

The geometric model constructed in [Turaev &
Shilnikov, 1998] is in a sense similar to
the Afraimovich–Bykov–Shilnikov model from
[Afraimovich et al., 1977; Afraimovich et al., 1982],
only the saddle is replaced by the saddle-focus and
the flow under consideration is four-dimensional
and, accordingly, the conditions of pseudohyperbol-
icity appear to be more complicated. Until recently,
the question on the existence of a concrete four-
dimensional flow with wild hyperbolic attractor
was open. In the paper [Gonchenko et al., 2018]
examples of wild spiral attractors were found in the
extended Lorenz system of the form



ẋ = σ(y − x),

ẏ = x(r − z) − y,

ż = xy − bz + µw,

ẇ = −bw − µz,

(7)

where σ, r, b and µ are parameters. Note that
at µ = 0 the system has an invariant three-
dimensional plane w = 0, in the restriction on

which system (7) coincides with the Lorenz system.
When µ is nonzero this structure is broken and the
Lorenz attractor existing e.g. at µ = 0 can evo-
lute when µ varies. It would be quite interesting to
track this evolution (e.g. when varying µ for fixed
σ, r, b). However, we illustrate only one result from
[Gonchenko et al., 2018].

For the values of parameters

r = 25, σ = 10, b =
8
3
, µ = 7,

system (7) has an attractor, whose projections onto
two-dimensional planes (a) {w = 0, x + y = 0}; (b)
{x = z = 0} and (c) {x = y = 0} are shown in
Fig. 15. This attractor is spiral, since it contains
the saddle-focus equilibrium O(0, 0, 0, 0) with the
eigenvalues

λ1 =
1
2
(
√

(σ − 1)2 + 4σr − σ − 1),

λ2,3 = −b ± iµ,

λ4 = −1
2
(
√

(σ − 1)2 + 4σr + σ + 1),

i.e. λ1 = 10.93, λ2,3 = −8/3 ± 7i, λ4 = −21.93 for
given values of parameters. Thus, O is a saddle-
focus of type (3,1), i.e. with three-dimensional sta-
ble and one-dimensional unstable invariant mani-
folds, and, hence, dimEss(O) = 1,dim Ecu(O) = 3.
The necessary conditions Λ1 > 0, Λ1 + Λ2 + Λ3 > 0
and Λ1 + Λ2 + Λ3 + Λ4 < 0 are also fulfilled
here for numerically obtained Lyapunov exponents
Λ1 = 2.19,Λ2 = 0,Λ3 = −1.96,Λ4 = −16.56. More-
over, it is verified in [Gonchenko et al., 2018] that
the field Ess of strong stable directions at the points
of attractor is continuous: the corresponding LMP-
graph is shown in Fig. 15(d). It is quite similar to
that for the Lorenz attractor [compare Figs. 15(d)
and 7].
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Appendix A

To the Definition of
Pseudohyperbolic Map

We consider an m-dimensional diffeomorphism f .
Let Df be its differential. Recall that the differen-
tial of the map f : R

m → R
m in a point x0 is a linear

operator A = ∂f
∂x |x=x0 that maps a vector �x0 at x0

to the vector �x1 = A�x0 at the point x1 = f(x0). An
open domain D ⊂ R

m is called absorbing domain of
the diffeomorphism f if f(D) ⊂ D.

Definition A.1. A diffeomorphism f is called pseu-
dohyperbolic on D if the following conditions are
satisfied.

(1) Each point of D has two transversal linear sub-
spaces N1 and N2, which have complementary
dimensions (dim N1 = k ≥ 1,dim N2 = m −
k ≥ 2), and are continuously dependent on the
point and invariant under Df , i.e.

Df (N1(x)) = N1(f(x)),

Df (N2(x)) = N2(f(x)),
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such that, for every orbit L : {xi |xi+1 = f(xi),
i = 0, 1, . . . ;x0 ∈ D}, its maximal Lyapunov
exponent for Df |N1 is strictly less than the
minimal Lyapunov exponent for Df |N2 , i.e. the
following inequality holds:

lim sup
n→∞

1
n

ln


 sup

u∈N1(x0)
‖u‖=1

‖Df n(x0)u‖



< lim inf
n→∞

1
n

ln

(
inf

v∈N2(x0)
‖v‖=1

‖Df n(x0)v‖
)

,

(A.1)

where Df n is an (m × m)-matrix defined as

Df n = Df xn−1
· . . . · Df x1

· Df x0
,

and lim supn→∞ and lim infn→∞ are the supe-
rior and inferior limits, respectively.

(2) Diffeomorphism f in the restriction to N1 is uni-
formly contractive, that is, there exist constants
λ > 0 and C1 > 0 such that

‖Dfn(N1)‖ ≤ C1e
−λn. (A.2)

(3) Diffeomorphism f in the restriction to N2

extends exponentially (m− k)-dimensional vol-
umes, that is, there exist constants σ > 0 and
C2 > 0 such that10

|detDfn(N2)| ≥ C2e
σn. (A.3)

From Definition A.1 it immediately follows
that:

(1∗) All orbits in D are unstable: each orbit has the
positive maximal Lyapunov exponent

Λmax(x) = lim sup
n→∞

1
n

ln ‖Df n(x)‖ > 0.

Note that the conditions of pseudohyperbolic-
ity mean that whole ((m−k)-dimensional) volumes
in N2 are expanded under forward iterations of f .
This does not prohibit the existence of contrac-
tion directions in N2, but any contractions along
them should be uniformly weaker than any con-
traction in N1. Thus, the uniform hyperbolicity can
be considered as a specific case of pseudohyper-
bolicity, when all directions in N2 are uniformly
expanding, i.e. when the inequality ‖Df −n(N2)‖ <
Ce−σn holds. Nevertheless, the same as in the case
of hyperbolic systems [Anosov, 1967; Turaev &
Shilnikov, 1998], the following result is standardly
proved here.

(2∗) The pseudohyperbolicity conditions are
preserved for all sufficiently small Cr-
perturbations of the system. Moreover, the
spaces N1 and N2 vary continuously.

It follows from statement (1∗) that if a pseudo-
hyperbolic diffeomorphism f has an attractor in D,
then this attractor is strange and does not contain
stable periodic orbits, which, as follows from the
condition (2∗), do not appear also for small smooth
perturbations. In other words, pseudohyperbolic
attractors are genuine attractors.

10If dim N2 = 1, then the usual definition of uniform hyperbolicity is obtained, therefore we require in the definition that
dim N2 ≥ 2.
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