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ON THE APPEARANCE OF MIXED DYNAMICS AS A RESULT OF COLLISION
OF STRANGE ATTRACTORS AND REPELLERS IN REVERSIBLE SYSTEMS

A. O.Kazakov* UDC 517.925+517.93

In this work, we propose a scenario of appearance of mired dynamics in reversible two-dimen-
sional diffeomorphisms. A jump-like increase in the sizes of the strange attractor and strange
repeller, which is due to the heteroclinic intersections of the invariant manifolds of the saddle
points belonging to the attractor and the repeller, is the key point of the scenario. Such het-
eroclinic intersections appear immediately after the collisions of the strange attractor and the
strange repeller with the boundaries of their attraction and repulsion basins, respectively, after
which the attractor and the repeller intersect. Then the dissipative chaotic dynamics related to
the existence of the mutually separable strange attractor and strange repeller immediately becomes
mixed when the attractor and the repeller are essentially inseparable. The possibility of realizing
the proposed scenario is demonstrated using a well-known problem of the rigid-body dynamics,
namely, the nonholonomic model of the Suslov top.

1. INTRODUCTION

Until recently, it has generally been recognized that there are two types of chaos in the finite-
dimensional smooth dynamical systems, namely, conservative (e.g., Hamiltonian) chaos and dissipative
chaos (strange attractors). Conservative chaos appears in nonintegrable systems having the property of
conserving the phase volume, while dissipative chaos is observed in systems whose phase volume is subject
to compression and/or expansion during the system evolution. According to the well-known Conley theo-
rem [1], each dynamical system, which is specified on a compact manifold, has an attractor and a repeller.
Many various definitions of an attractor are known. In this work, the attractor of the system is understood
as a stable (with respect to the constantly acting perturbations) closed invariant manifold, while the repeller
is an attractor for the system in inverse time. This definition of an attractor dates back to the works by
Conley [1], Ruelle [2], and Hurley [3] and was discussed in detail in recent work [4] (see the definition of a
complete attractor in Sec. 2.3.).

It is noteworthy that these definitions of an attractor and a repeller are in perfect agreement with
the results of numerical experiments and allow one to determine the third type of dynamic chaos, i.e., mixed
dynamics. Therefore, if we denote an attractor and a repeller as A and R , respectively, the conditions
A =R and ANR = () are fulfilled for conservative chaos and dissipative chaos, respectively. For the
mixed dynamics, an attractor always intersects but does not coincide with a repeller, i.e., the relationships
ANTR # Pand A # R [4] are fulfilled.

For the first time, the possibility of intersection of the attractor and the repeller was discovered in [5],
in which the following statement was proved. Near a nonrough heteroclinic contour of any two-dimensional

* kazakovdz@yandex.ru

National Research University “Higher School of Economics,” Nizhny Novgorod, Russia. Translated from
Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol.61, No.8-9, pp.729-738, August—September 2018.
Original article submitted May 31, 2018; accepted September 21, 2018.

650 0033-8443/19/6108-0650 (© 2019 Springer Science+Business Media, LLC



diffeomorphism having two saddle points with the Jacobians greater and smaller than unity! there exist open
regions (the so-called Newhouse regions) in which the diffeomorphisms with countable sets of asymptotically
stable, quite unstable, and saddle periodic orbits, whose closures have nonempty intersections, are dense,
which actually means that the attractors and the repellers are inseparable. Later in [6], an analogous
theorem was proved for the case where the diffeomorphism f with a circumscribed heteroclinic contour is
reversible, i.e., where f and f~! are conjugated using a certain involution h for which h o h = id. However,
as distinct from the general case, there also appear symmetric periodic orbits of the conservative type (with
the Jacobian J = 1), such as elliptic and saddle periodic orbits with the multiplicators p and 1/u, apart
from the periodic sources and sinks.

According to [7], the symmetric periodic orbits are the periodic orbits which intersect the set
Fix(h) UFix(f o h) exactly at two points. Here, Fix(h) and Fix(f o h) are sets of fixed points of the
involutions h and f o h, respectively. The symmetric periodic points of the odd period have one point of
intersection with the set Fix(h) and one point of intersection with the set Fix(f oh), whereas the symmetric
periodic points of the even period may not intersect the set Fix(h) at all.

Note that the coexistence of dissipative and conservative dynamics was discovered in papers [8—10],
in which it was noted that the phase space for reversible two-dimensional diffeomorphisms can be divided
into invariant regions with conservative dynamics where the entire region is a chain transitive set (see the
definition of chain transitivity in, e.g., [11]),2 and invariant regions containing the attractor-repeller pairs.
As far as the attractor—repeller intersection in the physical systems is concerned, numerical experiments
confirmed such a possibility (presumably, for the first time) in paper [12] in which it was noted that the
attractor and the repeller can overlap. Later in [13], such a behavior in the above-mentioned model was
attributed to the appearance of mixed dynamics in the system. Among the studies of mixed dynamics in
the models appearing in various applications, one should emphasize the works dedicated to investigating
the nonholonomic models of the Celtic stone [14], Chaplygin rubber top [15], Suslov top [16], and Chaplygin
sleigh [17, 18], as well as work [19], in which the mixed dynamics was revealed in a model of two vortices
under the action of the wave disturbance.

As is shown in [13] by an example of a model of two coupled rotators, mixed dynamics in reversible
systems can appear softly and hardly from conservative and dissipative dynamics, respectively. In the former
case, the transition from conservative dynamics is accompanied by a sequence of local [7] and global [6, 20]
symmetry-breaking bifurcations. In the latter case, mixed dynamics appears explosively after the disap-
pearance (crisis) of the attractor (stable fixed point) and the repeller (quite unstable fixed point).

In this work, we propose a new scenario of the mixed-dynamics appearance in the one-parameter
families of two-dimensional reversible diffeomorphisms. In this scenario, the disappearance (crisis) of the
chaotic Hénon attractor and the chaotic Hénon repeller, which results from heteroclinic bifurcations, is the
key point. In this case, transition to mixed dynamics within the framework of this scenario is realized
in a chainlike manner, i.e., as conservative chaos—strange attractor+strange repeller—mixed dynamics.
This scenario is the development of the scenario proposed in [19]. The nonholonomic Suslov model [21] is
considered as an example of the problem in which mixed dynamics is realized by this scenario.

This work is organized as follows. In Sec. 2, a brief description of the appearance and the crisis of
the Hénon attractor is given using the well-known two-dimensional Hénon map [22] as an example, and the
Hénon-attractor properties are considered. Section 3 describes the proposed scenario of the mixed-dynamics
appearance in the one-parameter families of two-dimensional reversible maps. Section 4 shows the realization
of the proposed scenario by an example of the nonholonomic Suslov model.

! Recall that a nonrough heteroclinic contour is a separatrix contour with two saddle points, in which one separatrix pair
intersects transversally, while the other one forms the heteroclinic nonrough tangency.

2 The inseparable sets of the stable and quite unstable periodic orbits seem to coexist inside such invariant regions. However,
since the Jacobians of such orbits are very close to unity, the dynamics in such regions looks like conservative during the
numerical simulation.
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Fig.1. Collision of the Hénon attractor in map (1) with the attraction-basin boundary for b = 0.4 and
M =2.25 (a) and M = 2.27 (b).

2. HENON ATTRACTORS AND THEIR CRISIS

To gain a better understanding of bifurcations leading to collisions between an attractor and a repeller,
we consider a scenario of appearance and disappearance (crisis) of an attractor in the Hénon map

T =y, gj:M—bx—yQ, (1)

where = and y are the map variables, and M and b are the parameters. In [22], it was numerically shown
that a strange attractor can appear in the above-mentioned map for some parameters. Then, we take the
fixed parameter b = 0.4 and describe the scenario of appearance and disappearance of this attractor in the
considered map by increasing the parameter M.

For M ~ —0.485, the system undergoes a saddle-node bifurcation after which the saddle point Oy
and the stable point O, appear. As the parameter M increases, starting from M =~ 1.47, the stable
point Oy undergoes a cascade of period-doubling bifurcations, as a result of which a Feigenbaum-like strange
attractor [23] appears for M ~ 2.1825.

According to the numerical-study results, immediately after the appearance of chaotic dynamics via
the cascade of period-doubling bifurcations, the Feigenbaum-like attractor consists of a set of segments
(components). As the M parameter continues to increase, the attractor components merge pairwise (as
a result of appearance of heteroclinic intersections among the manifolds of saddle periodic points, which
belong to the attractor components, and the manifolds of saddle points located between these components).
Two components separated by the fixed saddle point, which appeared from the stable point Os after the first
period-doubling bifurcation, merge last and the homoclinic Hénon attractor is formed. Such an attractor is
called homoclinic since after the merging of the two last components this attractor belongs to the closure
of the unstable manifold W3' of the saddle point Os, i.e., contains this saddle point. In this case, it can be
assumed that the Hénon attractor is formed by the unstable manifold W3' of the point Os.

Stable and unstable manifolds are divided by the saddle point into two coupled components, which
are called separatrices for convenience in what follows. Then the stable separatrices of the saddle point O
are denoted W7 and W35.

Note that the attraction basin of the attractor in the Hénon map is bounded by the stable separatrix
W7 of the saddle point Oy (see Fig.1la). As the parameter M continues to increase, the Hénon attractor
increases, approaches the separatrix W7, and disappears at M ~ 2.27 because of the appearance of hetero-
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Fig. 2. Scenario of appearance of mixed dynamics as a result of disappearance of the Hénon-like attractor and
the Hénon-like repeller.

clinic intersection between W3' and W7 (see Fig. 1b). In this case, almost all the trajectories from its vicinity
go to infinity.

It should be noted that the described scenario of appearance and disappearance of the strange at-
tractor is one of the main scenarios of transition to chaos in dissipative systems. The attractors appearing
according to this scenario are called the Hénon-like attractors. As is shown below, the realization of the
described scenario in reversible systems can lead to the appearance of another type of chaos, namely, mixed
dynamics.

3. SCENARIO OF APPEARANCE OF MIXED DYNAMICS IN REVERSIBLE SYSTEMS

Let us consider an one-parameter family of two-dimensional reversible diffeomorphisms X = F(X,¢)
which are specified on compact manifold. Let for ¢g < € < €1, one of fixed points O of the reversible
diffeomorphism lie on the line Fix(h) of the fixed points and be elliptic (see Fig.2a). Then it is assumed
that for e = £1, the point O undergoes a symmetry-breaking bifurcation [7] as a result of which for ¢ > ¢;
this point becomes a symmetric saddle point in whose vicinity the asymptotically stable point O, and the
quite unstable point O, appear with the same periods as that of the point O. In this case, one unstable
separatrix of the saddle point O goes to the sink O,, one stable separatrix exits from the source O,, and
another separatrix pair, W*"(O) and W#(0O), forms a transversal intersection (see Fig. 2b). With the further
increase in the parameter ¢, exactly for ¢ = €9, the Hénon-like attractor AH appears as a result of the
scenario described in Sec. 2. In the same manner, the quite unstable point O, gives birth to the Hénon-like
repeller RH.

Note that the basin of attraction of the attractor AH is bounded by the stable manifold W*(O) of the
symmetric saddle point O as in the case of an attractor in the two-dimensional Hénon map. With respect
to involution, the repulsion basin of the repeller RH is bounded by the unstable manifold W*(O). With the
further increase in the parameter ¢, the attractor AH approaches the boundary of its attraction basin. By
analogy, the repeller RH approaches the manifold W"(O) (see Fig. 2¢).

Then it is assumed that for € > €3, the unstable manifold W"(0,), which forms the attractor AH,
intersects with the stable manifold W*(0O), i.e., the Hénon-like attractor collides with the boundary of its
basin of attraction and disappears. At the same time, the Hénon-like repeller RH disappears as a result of
intersection of the manifolds W*(O,) and W*"(O). It is important to note that in this case, the separatrices
W1 (O) and W5(O) intersect transversally, as before. Therefore, for € > 3, one can observe a transversal
intersection between the manifolds W"(O,) and W*(0O,) (see Fig.2d). Thus, as a result of the crisis, the
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attractor AH and the repeller RH of the system considerably increase in size and intersect with each other,
i.e., mixed dynamics appears.>

4. COLLISION OF THE ATTRACTOR AND THE REPELLER IN THE NONHOLONOMIC
SUSLOV MODEL

As an example of the model in which the above-
considered scenario is realized, we consider the system de-
scribing the motion of the Suslov top, i.e., a heavy rigid
body with a motionless point, which is subject to the
nonholonomic constraint specified by the equality of the
scalar product (w-e) to zero [21]. Here, w = (w1, ws,ws)
is the angular-velocity vector of the top and e is the unit
vector which is motionless in the body. Therefore, during
the motion of the Suslov top, its angular-velocity projec-
tion onto a certain motionless axis in the body is equal to
zero. Such a constraint was introduced in [24].

As an instructive example of the model in which
the described constraint is naturally realized, let us men-
tion the structure proposed in [25], in which a rigid body
with a motionless point rolls on sharp wheels inside a mo-
tionless sphere (see Fig. 3). The sharp edges of the wheels
prevent the body from moving in the direction that is nor-
mal to their plane.

Let us choose a coordinate system Oxyz, which is
rigidly connected with the body in the following manner.
Let the origin O be located at the motionless point of the body, the axis Oz be collinear with the vector e
that is motionless in the body, and the axes Ox and Oz be directed so as to bring to zero the inertia-tensor
elements 112 and, correspondingly, I5; (see Fig.3). Then, the nonholonomic constraint (w,e) = 0 takes the
simple form w3 = 0. In this case, the system of equations determining the angular velocity w = (w1, ws,0)
and the orientation v = (1,72, 73) of the top, where 71,72, and 73 are the projections of the vertical vector
~ onto the axes Oz, Oy, and Oz, respectively, is determined as follows [21]:

Fig.3. Suslov constraint realization [25].

I1w1 = —wa (I13w1 + Izwz) — mgcesye + mgeays,

I9ow2 = w1 (N13w1 + Iaswz) — mgce1ys + mgesi,
Y1 = —Y3wa, Yo = 3w, Y3 = 1w — Yowr. (2)
Here, 111, Is2, 113, and Is3 are the nonzero elements of the inertia tensor of the body, m is the top mass, g
is the gravitational acceleration, the vector ¢ = (¢q, o, ¢3) specifies the displacement of the center of mass

of the top with respect to the sphere center O (see Fig. 3), and the dot denotes the time derivative.
The above-written system of equations possesses the energy and geometric integrals

1
E = §(Illw% + Iopw3) — myg (¢ - ) = const, G = (v - =) = const. (3)

The values of the geometric integral are always fixed, such that G = 1 and the value of the energy integral
E = h is considered as another parameter in the system. With allowance for integrals (3), equations (2)

3By analogy, one can observe the crisis (disappearance) of the attractor in the Hénon map [22]. However, in this case,
after the attractor intersection with the stable separatrix, which bounds the attraction basin of the attractor, almost all the
trajectories go to infinity.
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Fig. 4. Conservative chaos for Is3 = 0 (a) and mixed dynamics for Is3 = 0.908 (b). The blue and red dots
correspond to the attractor and the repeller, respectively.

specify the three-dimensional flow on a certain compact three-dimensional manifold. To parametrize this
flow, by analogy with [21], we use the variables v2, w1, and -1, expressing wy and 3 in terms of integrals (3).
Then, choosing y; = const as the secant, we obtain the two-dimensional Poincaré map

(2, @1) = P(72,w1). (4)
Everywhere below, when performing numerical experiments, we fix the parameters
hIlOl, mzl, g:10, 111:3, [22:4, [1320, 0120, CQIO, 03:10 (5)

and vary the parameter Is3.
Note that for these parameters, system (2) is reversible with respect to involution:

H {wl - —wi, Y1 — —71, t— —t}.
Therefore, if we choose v1 = 0 as a secant plane, then this involution yields the involution
h: {wl — —wl}

on the two-dimensional Poincaré map (4), and the set of fixed points Fix(h) of the obtained involution is

given by the straight line
Fix(h) = {w1 = 0}.

4.1. Numerical results

In what follows, we vary the parameter I3, assuming that all other parameters are specified in
accordance with conditions (5). For Ip3 = I13 = 0, as it was shown in [26], a smooth invariant measure
exists in the system, i.e., chaos observed in the numerical experiments (see Fig.4a) is conservative (in the
sense that the entire phase space is a chain transitive set).

The case Is3 > 0 was considered in detail in [21], in which one can observe asymmetry between
the attractor and the repeller (see Fig.4b). In [16], such asymmetry was related to the mixed-dynamics
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Fig.5. Scenario of appearance of mixed dynamics in the nonholonomic Suslov model for I3 = 0.7800 (a),
0.7840 (b), 0.9078 (c), and 0.9080 (d).

appearance in the system. In what follows, we describe in detail the scenario resulting in a transition from
conservative chaos to the mixed dynamics with increasing parameter Io3.

For 53 = 0.692, a symmetric elliptic point of period 3 (see Fig. 5a) appears in the system. Then, for
Is3 = 0.7835, this elliptic point is subject to the symmetry-breaking bifurcation and eventually becomes the
saddle point (Sp), in whose vicinity the asymptotically stable and quite unstable points of period 3 appear
(see Fig.5b). With the further increase in the parameter Is3, the Hénon-like attractor and repeller appear
from the stable periodic point and the quite unstable point, respectively (see Fig. 5¢).

It is noteworthy that the studied system is monostable in the considered parameter range, i.e., the
Hénon-like attractor and the Hénon-like repeller are global in the system. Then, for Is3 = 0.9079, the
attractor and the repeller disappear according to the scenario described in Sec. 3. The attractor, which
appears after that, intersects with the repeller, and the mixed dynamics, which is shown in Fig. 5d, appears.

Let us describe in more detail the homoclinic bifurcations leading to the appearance of mixed dynam-
ics in the considered system. Figure 6 shows the location of the stable (W7) and unstable (W) separatrices
of the symmetric saddle point Sy, which appears after the symmetry-breaking bifurcation, as well as the
unstable separatrix W', which forms the Hénon attractor, and the stable separatrix W forming the Hénon
repeller. For Is3 < 0.9079, the stable separatrix W and the separatrix W bound the attraction and re-
pulsion basins of the Hénon attractor and repeller, respectively (see Fig6a). For I3 > 0.9079, the unstable
manifold W}, which forms the attractor, intersects with the separatrix W3, whereas the manifold W, which
forms the repeller, intersects with W'. In this case, since the second pair of the separatrices of the saddle
point Sy already intersects transversally (which is not shown in the figure), intersection between the sepa-
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Fig.6. Homoclinic bifurcations leading to the appearance of the mixed dynamics for Io3 = 0.9078 (a) and
I3 = 0.9080 (b).

ratrices W2 and W appears immediately (see Fig. 6b). Therefore, the system attractor appearing after the
Hénon-attractor disappearance intersects with the repeller, and mixed dynamics, which is shown in Fig. 5d,
is formed.

5. CONCLUSIONS

In this work, we have proposed a new bifurcation scenario of the explosive appearance of mixed
dynamics. Within the framework of the considered scenario, the separated Hénon-like attractor and repeller
undergo a crisis after which the strange attractor of the system immediately intersects with the strange
repeller.

It has been shown that mixed dynamics in the nonholonomic model of the Suslov top appears in full
correspondence with the proposed scenario. Moreover, we assume that such a scenario can also be observed
in many other reversible systems demonstrating mixed dynamics.

Sections 3 and 4 of this work were supported by the Russian Science Foundation (project No. 17-11—
01041). Section 2 was performed within the framework of the Program for Fundamental Studies of National
Research University “Higher School of Economics” in 2018 and with support of the Russian Foundation for
Basic Research (project No. 18-31-20052).
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