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Problem Formulation.

Let X be a real-valued Markov process and N be an independent Poisson process
with rate λ > 0, defined on a probability space (Ω,H,P).
Denote by (T (n))

n∈IN the sequence of jump times of N with inter-arrival times given
by independent exponential random variables with parameter λ.

We consider the following two players:

Player C , who gets to observe X continuously (without delay) thanks to their full
information access to the evolution of X . The filtration F = (Ft)t≥0 of player C is
therefore the natural filtration of X given by Ft := σ(Xs | 0 ≤ s ≤ t).

Player P, who gets to observe X periodically, only at the Poisson observation times
(T (n))

n∈IN. The filtration G = (Gn)n∈IN of player P is therefore given by

Gn := σ(T (k),XT (k) | 1 ≤ k ≤ n).
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Problem Formulation.

Player C knows of the existence of competition with the partially informed player P,
knows the opponent’s rate of observations is λ > 0, but cannot know the actual
(random) times (T (n))

n∈IN of the opponent’s observations (they are not part of F).
On the other hand, player P also knows of the competition arising from the
existence of player C .

The aforementioned players compete against each other as follows:

player C (resp., P) aims at maximising a discounted reward function fc : R → R
(resp., fp : R → R) by stopping the game before player P (resp., C), otherwise
receives nothing.

Both players discount their future gains with a constant discount rate q > 0.

Even though they are both after the same asset, the additional information provided
to player C (as opposed to player P) yields an additional fee for player C , if and
when successfully stopping before player P.
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Problem Formulation.

A pair of stopping times (τ, σ) in this game consists of τ ∈ Tc and σ ∈ Tp, where Tc

is the set of F-stopping times and Tp := {T (M) : M is a G–stopping time}.
This means that while player C can stop in the “usual” way, player P can stop only
at the Poisson observation times.

Each player aims at maximising their expected discounted reward functions given by

Vc(τ, σ; x) := Ex

[
e−qτ fc(Xτ )1{τ<σ}

]
and Vp(τ, σ; x) := Ex

[
e−qσfp(Xσ)1{σ<τ}

]
.

The main aim is to obtain, for each x ∈ R, a Nash equilibrium (τ∗, σ∗) ∈ Tc × Tp

such that

Vc(τ
∗, σ∗; x) ≥ Vc(τ, σ

∗; x), ∀ τ ∈ Tc ,

Vp(τ
∗, σ∗; x) ≥ Vp(τ

∗, σ; x), ∀ σ ∈ Tp.

José Luis Pérez (joint work with N. Rodosthenous, and K. Yamazaki). (CIMAT)Optimal Periodic replenishment policies for SPLDP. LSA Autumn meeting, 2021. 4 / 32



Problem Formulation.

Case 1 Case 2

Figure: Illustration of player C and player P’s stopping strategies. The solid black trajectory shows the path of
X and the piecewise horizontal blue lines show player P’s most recent information on X ; observation times are
shown by dotted vertical lines. Given some l∗ > a∗, player P stops at the first observation time of X below l∗

(indicated by red circles) and player C stops at the classical hitting time below a∗ (indicated by green squares).
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Spectrally positive Lévy process.

Let X = (X (t); t ≥ 0) be a spectrally positive Lévy process defined on a probability
space (Ω,F ,P).
Assume that its Laplace exponent ψ : [0,∞) → R, i.e.

E
[
e−θX (t)] =: eψ(θ)t , t, θ ≥ 0,

is given, by the Lévy-Khintchine formula

ψ(θ) := γθ +
ν2

2
θ2 +

∫
(0,∞)

(
e−θz − 1 + θx1{z<1}

)
Π(dz), θ ≥ 0,

where γ ∈ R, ν ≥ 0, and Π is a measure on (0,∞) called the Lévy measure of X
that satisfies ∫

(0,∞)

(1 ∧ z2)Π(dz) <∞.
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Scale functions

Fix q ≥ 0. Let W (q) be the scale function of X . Namely, this is a mapping from R
to [0,∞) that takes the value zero on the negative half-line, while on the positive
half-line it is a strictly increasing function that is defined by its Laplace transform:∫ ∞

0

e−θxW (q)(x)dx =
1

ψ(θ)− q
, θ > Φ(q),

where Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}.
We also define for r > 0,

Z (r)(x ; θ) := eθx
(
1 + (r − ψ(θ))

∫ x

0

e−θu W (r)(u)du

)
, x ∈ R, θ ≥ 0,

If X is of unbounded variation or the Lévy measure is atomless, it is known that
W (q) is C 1(R\{0}).

José Luis Pérez (joint work with N. Rodosthenous, and K. Yamazaki). (CIMAT)Optimal Periodic replenishment policies for SPLDP. LSA Autumn meeting, 2021. 7 / 32



Threshold strategies.

We will prove that, for a large class of reward functions fp and fc satisfying only
certain mild assumptions, a pair of threshold strategies leads to the Nash equilibrium.

In particular, player C ’s optimal strategy will be to stop at the first down-crossing
time of some level, while player P’s optimal strategy will be to stop at the first
Poisson time at which the process is below some other level. To this end, we further
denote, for b ∈ R, the random times

τ−b := inf{t > 0 : Xt < b} ∈ Tc and T−
b := inf{T (n) : XT (n) < b} ∈ Tp,

where we recall (T (n))
n∈IN are the jump times of an independent Poisson process

with rate λ.

For x ∈ R and a ≤ l , we denote

vc(x ; a, l) : = Ex

[
e−qτ−a fc(Xτ−a )1{τ−a <T−

l
}

]
, and

vp(x ; a, l) : = Ex

[
e−qT−

l fp(XT−
l
)1{T−

l
<τ−a }

]
.

Note that T−
l ̸= τ−a a.s. thanks to the independence between X and N.
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Threshold strategies.

Proposition.

For l ≥ a and any locally bounded measurable function fc on R, the function vc(x ; a, l) is
given by

vc(x ; a, l) =

fc(a)
Z (q+λ)(l − x ; Φ(q))

Z (q+λ)(l − a; Φ(q))
, for x > a ,

fc(x) , for x ≤ a .

And,

Proposition

For l ≥ a and any locally bounded measurable function fp on R, the function vp(x ; a, l) is
given by

vp(x ; a, l) =

{
λ
(Z (q+λ)(l − x ; Φ(q))

Z (q+λ)(l − a; Φ(q))
Γ(a; l)− Γ(x ; l)

)
, for x > a,

0, for x ≤ a,

where Γ(x ; l) :=
∫ l−x

0
fp(l − u)W (q+λ)(l − x − u)du, for all x , l ∈ R.
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Optimality over threshold strategies.

First we consider a version of the game where admissible strategies are restricted to
be of threshold-type.

The objective is to find a Nash equilibrium (a∗, l∗) ∈ R2 satisfying simultaneously
the following two equations:

vc(x ; a
∗, l∗) = max

a∈R
vc(x ; a, l

∗),

vp(x ; a
∗, l∗) = max

l∈R
vp(x ; a

∗, l).
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Assumptions.

The reward functions fc(·) and fp(·) satisfy the following properties:
(i) We have fc (·) < fp(·) on R.
(ii) For i ∈ {c, p}, the function fi (·) is strictly decreasing, continuously differentiable and

concave on R and admits a constant

x i ∈ R such that fi (x)

{
> 0, x < x i ,
< 0, x > x i .

Assumption (i) reflects the additional costs bared by player C for the additional
information provided, if and when successfully stopping before player P.

The decreasing reward functions in (ii) reflect the game’s “optimal purchasing”
nature, while the class of concave reward functions associates the present setting
with the widely-used risk-averse or even risk-neutral utility maximisation theory.

An important example for (ii) is the perpetual American option pricing driven by an
exponential Lévy process.
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Benchmark case: Single-player setting.

Consider the special case when λ = 0, i.e. player P can never stop, as a benchmark.

This involves only player C whose expected reward under a threshold strategy τ−a
given by

v o
c (x ; a) := Ex

[
e−qτ−a fc(Xτ−a )1{τ−a <∞}

]
=

{
fc(x) for x ≤ a,

eΦ(q)(a−x)fc(a) for x > a.

Straightforward differentiation gives

∂

∂a
v o
c (x ; a) =

{
0 for x < a,

eΦ(q)(a−x)ho
c (a) for x > a,

where ho
c (x) := Φ(q)fc(x) + f ′c (x), for x ∈ R.
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Benchmark case: Single-player setting.

There exists

a ∈ [−∞, xc) such that for x ∈ R, ho
c (x)

{
> 0, x < a,
< 0, x > a.

Hence by the results in Long and Zhang [1], we have

v o
c (x ; a) = max

a∈R
v o
c (x ; a) = sup

τ∈Tc

Ex

[
e−qτ fc(Xτ )1{τ<∞}

]
, x ∈ R.

Instead, when a = −∞, an optimal stopping time does not exist.

Notice that this provides the solution to the degenerate case in which l ≤ a. Given
that τ−a < T−

l a.s.

vc(x ; a, l) = v o
c (x ; a) := Ex

[
e−qτ−a fc(Xτ−a )1{τ−a <∞}

]
and vp(x ; a, l) = 0

which boils down to a one-player maximisation problem for player C , while player P
does not participate in the game under such a choice of l ≤ a.
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First order conditions.

Lemma

(i) For a < l ∧ x , define I (a; l) := f ′c (a) + Φ(q) fc(a) + λW (q+λ)(l − a)vc(l ; a, l), then

∂

∂a
vc(x ; a, l) =

Z (q+λ)(l − x ; Φ(q))

Z (q+λ)(l − a; Φ(q))
I (a; l).

(ii) For l > a define J(l ; a) := Z (q+λ)(l − a; Φ(q))
(
fp(l)− vp(l ; a, l)

)
then for x ≥ a such

that l ̸= x ,

∂

∂l
vp(x ; a, l)

= λ

(
Z (q+λ)(l − x ; Φ(q))

Z (q+λ)(l − a; Φ(q))
W (q+λ)(l − a)−W (q+λ)(l − x)

)
J(l ; a)

Z (q+λ)(l − a; Φ(q))
.

The first-order condition ∂
∂a
vc(x ; a, l) = 0 for x ≥ a, required for the optimality (best

response to any given l) of the candidate threshold a, implies:

Ca : I (a; l) = 0 .

The first-order condition ∂
∂l
vp(x ; a, l) = 0 for x ≥ a, required for the optimality (best

response to any given a) of the candidate threshold l , implies:

Cl : J(l ; a) = 0.
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Construction of Nash equilibria.

For any threshold l chosen by player P from an appropriate domain, player C
chooses a unique best response ã(l) such that Ca holds, i.e. I (ã(l); l) = 0.

For any threshold a chosen by player C from an appropriate domain, player P
chooses a unique best response l̃(a) such that Cl holds, i.e. J(l̃(a); a) = 0.

The Nash equilibrium will be given by a fixed point (a∗, l∗) satisfying

l∗ = l̃(a∗) and a∗ = ã(l∗) .

Proposition (Existence of Nash Equilibria)

Fix x ∈ R.
(i) There exists a root l∗ to the equation J(·; ã(·)) = 0.

(ii) For any root l∗ in (i) and a∗ := ã(l∗), the pair (a∗, l∗) is a Nash equilibrium.
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Non-uniqueness and Pareto-superior Nash equilibria.

If l∗ satisfying J(l∗; ã(l∗)) = 0 is unique, then the Nash equilibrium (a∗, l∗) is unique.

However, there may be multiple l∗ satisfying J(l∗; ã(l∗)) = 0.

Choosing the smallest (threshold) root, we can construct the unique Nash
equilibrium that is Pareto-superior to any other Nash equilibrium.

If both players are rational and intelligent enough, we can discard other
(Pareto-dominated) equilibria, because all agents are strictly better-off if they switch
to these Pareto-superior equilibrium strategies.

To this end, we denote by l∗min the minimum root, defined by

l∗min := min{l ∈ (xc , xp) : J(l ; ã(l)) = 0}.

Then, with a∗min := ã(l∗min), we conclude that (a∗min, l
∗
min) is a Nash equilibrium.
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Non-uniqueness and Pareto-superior Nash equilibria.

Proposition

The Nash equilibrium (a∗min, l
∗
min) is Pareto-superior to any other Nash equilibrium (a∗, l∗)

satisfying

vc(x ; a
∗, l∗) = max

a∈R
vc(x ; a, l

∗),

vp(x ; a
∗, l∗) = max

l∈R
vp(x ; a

∗, l).

In other words,

vi (x ; a
∗, l∗) ≤ vi (x ; a

∗
min, l

∗
min), for both i ∈ {c, p} and all x ∈ R.

In particular, if x > a∗min, then the above inequality is strict.
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Smoothness and convexity.

We have the following properties of smoothness and convexity of the functions
vc(·; a∗, l∗) and vp(·; a∗, l∗).

Proposition

(I) Regarding the function vc(·; a∗, l∗), we have the following:

(i) vc(·; a∗, l∗) is continuous on R and C 2 (resp., C 1) on (a∗,∞)\{l∗} when X is of
unbounded (resp., bounded) variation.

(ii) vc(·; a∗, l∗) is continuously differentiable at a∗.

(iii) vc(·; a∗, l∗) is continuously differentiable at l∗, only when X is of unbounded
variation.

(iv) vc(·; a∗, l∗) is decreasing and convex on (a∗,∞).

(II) Regarding the function vp(·; a∗, l∗), we have the following:

(i) vp(·; a∗, l∗) is continuous on R and twice continuously differentiable on R\{a∗, l∗}.
(ii) vp(·; a∗, l∗) is continuously differentiable at l∗.

(iii) vp(·; a∗, l∗) is twice continuously differentiable at l∗, only when X is of unbounded
variation.
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Optimality over all stopping times. Verification for player P.

We define the infinitesimal generator L acting on vp(·; a∗, l∗) as follows:

Lvp(x ; a∗, l∗) := −γv ′
p(x ; a

∗, l∗) +
ν2

2
v ′′
p (x ; a

∗, l∗)

+

∫
(0,∞)

[vp(x + z ; a∗, l∗)− vp(x ; a
∗, l∗)− v ′

p(x ; a
∗, l∗)z1{z<1}]Π(dz).

Verification lemma for Player P.

Suppose that

(i) (L − q)vp(x ; a∗, l∗) = 0, for x ≥ l∗ ,

(ii) (L − q)vp(x ; a∗, l∗)− λ (vp(x ; a∗, l∗)− fp(x)) = 0, for x ∈ (a∗, l∗] ,

(iii) vp(x ; a∗, l∗) ≥ fp(x), for x ≥ l∗ ,

(iv) vp(x ; a∗, l∗) ≤ fp(x), for x ∈ [a∗, l∗] ,

(v) vp(x ; a∗, l∗) = 0, for x ≤ a∗ .

Then, vp(x ; a
∗, l∗) = supσ∈Tp

Vp(τ
−
a∗ , σ; x), for x ∈ R.
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Optimality over all stopping times. Optimality for player P.

Proposition (Optimality for Player P)

With (a∗, l∗) satisfying J(l∗; ã(l∗)) = 0 (and a∗ = ã(l∗)), we have

vp(x ; a
∗, l∗) = sup

σ∈Tp

Vp(τ
−
a∗ , σ; x), x ∈ R.
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Optimality over all stopping times. Optimality for player C .

To upgrade the optimality of threshold-type strategies over all stopping times for
player C , we will not rely on an analytical verification theorem.

Instead, we employ here a different methodology that is based on the use of an
average problem approach (see e.g. Long and Zhang [1], Rodosthenous and Zhang
[3], and Surya [4]) to prove the optimality of threshold type strategies over all
stopping times.

Using the definition of T−
l∗ and the independence of the Poisson process N and Lévy

process X , we can rewrite the current optimal stopping problem with random
time-horizon T−

l∗ , in the form of

sup
τ∈Tc

Vc(τ,T
−
l∗ ; x) = sup

τ∈Tc

Ex

[
e−qτ fc(Xτ )1{τ<T−

l∗ }

]
= sup
τ∈Tc

Ex

[
e−AX

τ fc(Xτ )1{τ<∞}

]
,

where the latter is a perpetual optimal stopping problem with stochastic discounting
given by the occupation time

AX
t := qt + λ

∫ t

0

1{Xu<l∗}du, ∀ t ≥ 0,
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Optimality over all stopping times. Optimality for player C .

Hence, using the results in Long and Zhang [1].

Proposition (Optimality for Player C)

With (a∗, l∗) satisfying J(l∗; ã(l∗)) = 0 (and a∗ = ã(l∗)), we have

vc(x ; a
∗, l∗) = sup

τ∈Tc

Vc(τ,T
−
l∗ ; x), x ∈ R.
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Optimality over all stopping times.

By the previous results, we immediately get that the pair of strategies (τ−a∗ ,T
−
l∗ ) is a

Nash equilibrium, when the strategy sets of both players are unrestricted (most general
ones possible); this is formally stated in the following.

Theorem

With (a∗, l∗) satisfying J(l∗; ã(l∗)) = 0 (and a∗ = ã(l∗)), we have for all x ∈ R,{
Vc(τ

−
a∗ ,T

−
l∗ ; x) ≥ Vc(τ,T

−
l∗ ; x), ∀ τ ∈ Tc ,

Vp(τ
−
a∗ ,T

−
l∗ ; x) ≥ Vp(τ

−
a∗ , σ; x), ∀ σ ∈ Tp.
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Numerical results.

In this section, we confirm the analytical results focusing on a case study with
put-type payoffs for both players. Suppose that fi (x) = Ki − ex , for i ∈ {c, p}, for
some fixed Kp > Kc .

As an underlying asset price eX , we consider the case of X that is of the form

Xt = X0 − µt + νBt +

Mt∑
n=1

Zn, 0 ≤ t <∞,

where µ > 0 and ν ≥ 0 are constants, B = (Bt : t ≥ 0) is a standard Brownian
motion, M = (Mt : t ≥ 0) is a Poisson process with arrival rate α, and
Z = (Zn : n = 1, 2, . . .) is an i.i.d. sequence of exponential random variables with
parameter β.

The processes B, M, and Z are assumed mutually independent. In this model, the
scale functions admit explicit expressions.

We use the parameter values ν = 0.2, α = 1, β = 2, q = 0.05 and µ = 0.31333 so
that (e−qt+Xt ; t ≥ 0) becomes a martingale. In particular, we set Kp = 60 and
Kc = 50, we also set λ = 1.

José Luis Pérez (joint work with N. Rodosthenous, and K. Yamazaki). (CIMAT)Optimal Periodic replenishment policies for SPLDP. LSA Autumn meeting, 2021. 24 / 32



Numerical results.
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Figure: Plots of ex 7→ vc (x ; a
∗, l∗) in red, along with ex 7→ vc (x ; a, l

∗) in dotted blue for

ea = exc , (exc + ea
∗
)/2, (ea

∗
+ Kc )/2,Kc . The points at a and a∗ are indicated by circles and a star,

respectively. The value at l∗ is indicated by the dotted vertical line.
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Numerical results.
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Figure: Plots of ex 7→ vp(x ; a
∗, l∗) in red, along with vp(x ; a

∗, l) in dotted blue for

e l = ea
∗
, (ea

∗
+ e l

∗
)/2, (Kp + e l

∗
)/2,Kp . The points at l and l∗ are indicated by circles and a star,

respectively. The value at a∗ is indicated by the dotted vertical line and the green line depicts the (reward)
mapping ex 7→ Kp − ex .
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Numerical results.
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Figure: The value functions ex 7→ vc (x ; a
∗, l∗) for λ = 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 300, 500.
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Numerical results.
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Figure: The value functions ex 7→ vp(x ; a
∗, l∗) for λ = 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20, 50, 100, 200, 300, 500.
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Numerical results.
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Figure: The barriers l∗ and a∗ as functions of λ.
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Numerical results.
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Figure: Value of additional information δ := Kp − Kc , such that vc (x ; a
∗, l∗) = vp(x ; a

∗, l∗), as a function of
the observation rate λ.
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Conclusion

Thank for your attention!

José Luis Pérez (joint work with N. Rodosthenous, and K. Yamazaki). (CIMAT)Optimal Periodic replenishment policies for SPLDP. LSA Autumn meeting, 2021. 31 / 32



Conclusion

Long, M. & Zhang, H. On the optimality of threshold type strategies in single
and recursive optimal stopping under Lévy models. Stochastic Process. Appl.,
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