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ABSTRACT 

 
In this work we present a real-time (RT), on-site, machine-
learning based methodology for identifying intrinsic human 
cancers. The presented approach is reliable, effective, cost-
effective and non-invasive and based on the Fourier transform 
infrared (FTIR) spectroscopy - a vibrational method with the 
ability to detect changes as a result of molecular vibration bonds 
using infrared (IR) radiation in human tissues and cells.  
Medical IR optical system (IROS) is a table-top device for real-
time tissue diagnosis that utilizes FTIR spectroscopy and the 
attenuated total reflectance (ATR) principle to accurately 
diagnose the tissue. The ATR measurement principle is 
performed utilizing a radiation source and a Fourier transform 
(FT) spectrometer. Information acquired and analyzed in 
accordance with this method provides accurate details of 
biochemical composition and pathologic condition of the tissue. 
The combined device and method were used for RT diagnosis 
and characterization of normal and pathological tissues ex-
vivo/in-vitro. Therefore, the presented device can be used in 
close conjunction with a surgical procedure 
The solution methodology is to select a set of "features" that can 
be used to differentiate between cancer, normal and other 
pathologies using an appropriate classifier. These features serve 
as spectral signatures (intensity levels) at specific values of 
measured FTIR-ATR spectral responses. 
Excellent results were achieved by applying the following three 
machine learning (ML) based classification methods to 76 wet 
samples: Partial least square regression (PLSR) and Principal 
component regression (PCR)  
Both of the methods (PCR & PLSR) show a high performance 
to classify "Cancer" or "non-Cancer"; Correct Classification: 
100 %; Incorrect Classification: 0.0 %. 
Naive Bayesian classifier (NBC); Shows a high performance to 
classify "Cancer" or "non-Cancer" (benign); Correct 
Classification: 100 %; Incorrect Classification: 0.0 %.  
 
Keywords: Machine learning, FTIR, ATR, Stomach cancer and 
Colorectal cancer. 
 

1.  INTRODUCTION 
 
Tumor detection at initial stages is a major concern in cancer 
diagnosis [1-10]. Cancer screening involves costly and lengthy 
procedures for evaluating and validating cancer biomarkers. 
Rapid or one step method preferentially noninvasive, sensitive, 

specific and affordable is required to reduce the long diagnostic 
processes. IR spectroscopy is a technique routinely used by 
biochemists, material scientists etc., as a standard analysis 
method. The observed spectroscopic signals are caused by the 
absorption of IR radiation that is specific to functional groups of 
the molecule. These absorption frequencies are associated with 
the vibrational motions of the nuclei of a functional group and 
show distinct changes when the chemical environment of the 
functional group is modified [4]. IR spectroscopy essentially 
provides a molecular fingerprint and IR spectra contain a wealth 
of information on the molecule. In particular, they are used for 
the identification and quantification of molecular species, the 
interactions between neighboring molecules, their overall shape, 
etc. IR spectra can be used as a sensitive marker of structural 
changes of cells and of reorganization occurring in cells [5, 10]. 
Organic applications of IR spectroscopy are almost entirely 
concerned with spatial frequencies in the range of 4000 cm -1 to 
400 cm-1 (2.5 um to 25um), which is known as mid-infrared 
(MIR) region of the spectrum. The range of spatial frequencies 
lower than 400 cm-1 is called far-infrared (FIR) and those 
greater than 4000 cm-1 are called near-infrared (NIR) [11-15]. 
Most of the fundamental molecular vibrations and many of the 
first overtones and combinations occur in the MIR range. The 
bands in the MIR tend to be sharp and have very high 
absorption, with both characteristics being desirable. Because 
the bands are sharp, most small molecules have distinctive 
spectral “fingerprints” that can be readily identified in mixtures. 
Also, because individual peaks can often be associated with 
individual functional groups, it is possible to see changes in the 
spectrum of an individual "objects" due to a specific reaction. 
Most biomolecules give rise to IR absorption bands between 
1800 cm-1 and 700 cm-1, which is known as the "fingerprint 
region" or primary absorption region. The medical IROS device 
[2] relates to methods employing Evanescent Wave Fourier 
Transform Infrared (EW-FTIR) spectroscopy using optical 
elements and sensors operated in the ATR regime in the MIR 
region of the spectrum. FTIR can be used to detect vibration in 
chemical bonds [8] and, as such, it is used to sense the 
biochemical composition of tissues [3, 4]. Although not capable 
of detecting specific molecules because many bond vibrations 
are shared among biomolecules, FTIR can be used to quantify 
classes of molecules (i.e. glycogen, protein, fat or nucleic acid 
etc.). FTIR has largely been performed on excised tissues and 
used to demonstrate that the overall biomolecular composition 
of diseased tissues is altered in a predictable manner relative to 
that of adjacent normal tissue [16]. Unlike conventional 
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methods, FTIR-ATR spectroscopy in the MIR region of the 
spectrum probes tissue biochemistry at a molecular level and 
the observed MIR spectra exhibit superimposed or composite 
vibrational bands. Large biomolecules are represented in FTIR-
spectra by groups of characteristic IR-bands from which 
valuable information can be gained regarding the structure of 
the molecule and its interactions depending on position, form 
(shape), and intensity. The medical IROS device provides a 
method to detect functional molecular groups to elucidate 
complex structure within tissue, to characterize, distinguish and 
diagnose healthy, tumorous, precancerous, and cancerous tissue 
at an early stage of development.   Typically, cancer occurs 
when a normal cell undergoes a change which causes the cell to 
multiply at a metabolic rate for exceeding that of its 
neighboring cells. Continued multiplication of the cancerous 
cell frequently results in the creation of a mass of cells called a 
tumor. Cancerous tumors are harmful [1] because they grow at 
the expense of normal neighboring cells, ultimately destroying 
them. In addition, cancerous cells are often capable of traveling 
throughout the body via the lymphatic and circulatory systems 
and of creating new tumors where they arrive. It should be 
noted that in addition to tumors which are cancerous (also 
referred to as malignant tumors) there are tumors which are 
non-cancerous. Non-cancerous tumors are commonly referred 
to as benign tumors. It is useful to be able to determine whether 
a tumor is cancerous or benign. [16]. The device uses IR 
spectroscopic method for determining if a tissue is a malignant 
tumor tissue, a benign tumor tissue, or a normal or benign 
tissue. Includes also nontoxic, ex-vivo, and fast (real-time) 
characterization of normal and abnormal tissue from breast, 
stomach, lung, prostate, kidney and other body parts during 
surgery, allowing an alternative first step of spectral 
histopathological examination and disease state 
characterization. 
 

2. BASIC PRINCIPLES OF FTIR-ATR DETECTION  
 
FTIR is a method of obtaining infrared spectra by first 
collecting an interferogram of a sample signal using an 
interferometer, and then performing Fourier Transform (FT) on 
the interferogram to obtain the spectrum. The detection scheme 
is based on Michelson interferometer, where a moving mirror 
varies the length of one optical path relative to the other, and 
creates an interferogram that is mathematically converted to an 
absorbance spectrum by a Fourier transform. As the optical path 
difference (OPD) in the interferometer grows, different 
wavelengths produce peak readings at different positions. FTIR 
spectroscopy is based on the interaction between the radiation 
and the sample, which absorbs the IR wavelengths causing 
transitions between vibrational energetic levels; therefore, 
vibrational modes of different chemical bonds can be detected 
and allow to identify different molecules. EW-FTIR 
spectroscopy is based on the phenomenon of attenuated total 
reflection (ATR) [15]. ATR spectroscopy utilizes total internal 
reflection phenomenon. In ATR spectroscopy a crystal with a 
high refractive index and IR transmitting properties is used as 
internal reflection element (ATR crystal). The ATR element is 
placed in contact with the sample. The beam of radiation 
propagating in ATR undergoes total internal reflection at the 
interface ATR-sample, provided the angle of incidence at the 
interface exceeds the critical angle θc. Total internal reflection 
of the light at the interface between two media of different 
refractive index creates an "evanescent wave" that penetrates 
into the medium of lower refractive index.  "Evanescent" means 
"tending to vanish", which is appropriate because the intensity 

of evanescent waves decays exponentially with distance from 
the interface at which they are formed. This distance is typically 
in the 1-10 um range. Based on ATR spectrum, typical IR 
absorbance positions can be mentioned: 
1) The bands around ~1640 cm–1 and ~1550 cm–1 - protein 
absorption region (Amide I and Amide II );  
2) The bands around ~1480 cm–1 and ~1400 cm–1 - lipids and 
protein absorption region (CH3); 
3) The bands between 1000–1300 cm−1 , PO2 symmetrical and 
asymmetrical stretching vibrations, indicate changes for 
phospholipids and nucleic acids: 
4) Phospholipids and Amide III at ~1240 cm–1;  
5) CO stretching at ~ 1160 cm-1 . 
6) The bands between 2800-3100 cm-1 (the stretching vibrations 
of lipid hydrocarbons): the peaks around ~2850 cm-1 and ~2923 
cm-1 indicate enhancement in lipid contents;  
7) The peak around 2350 cm-1 is the carbon dioxide absorption 
(CO2). 
8) The peak around ~3150-3600 cm-1 - strong water absorption; 
 

3. SHORT SUMMARY OF MEDICAL IROS 

 

The aim is to develop a dedicated combined apparatus suitable 
for biological tissue characterization via FTIR spectroscopic 
measurement during clinical practice.  According to the 
teachings of the device, it relates to combined device and 
method for the in-vitro analysis of tissue and biological cells 
which may be carried out in a simple and, preferably, automated 
manner. The device and method produces result rapidly (up to 
minutes) and permits the determination / detecting of structural 
changes between a biological specimen and a reference sample. 
In accordance with the teachings of the medical IROS the 
human's tissue applied to unclad optical element (crystal, etc.) 
working in ATR regime. A beam of mid-IR (infrared) radiation 
is passed through a low loss optical element and interacts with 
the tissue via the ATR effect. In this process, the absorbing 
tissue is placed in direct contact with the optical element. 
The novel combined apparatus (FTIR spectrometer with opto-
mechanical elements and Software) adopts an integrative design 
in appearance, and it is a bench top device (Figure 1). 
 
 
Fig. 1. The benchtop device for tissue 
characterization ex-vivo.   
 

 

3.1. Methods for tissue diagnosis 

Since the peak positions, peak widths, band shapes and relative 
intensities of spectra for tumor tissue may be different from 
healthy tissue, from a large number of spectrum data, the 
regularity of variations and the judgment criteria for diagnosis 
can be obtained. Statistical analysis can be used to assist in the 
identification of cellular types. For instance, several 
multivariate classification methods partial component 
regression (PCR) have been shown to provide satisfactory 
results [11-14]. In one embodiment, providing a diagnosis of 
the tissue includes forming an intensity spectrum. A diagnosis 
probability is computed based on intensities at particular 
wavelengths in the intensity spectrum. The diagnosis 
probability is compared to a threshold probability to 
characterize the tissue.                          a) Main molecular 
bonds: amide-I (~1650 cm–1), amide-II (~1550 cm–1), amide-
III (~1240 cm–1), symmetric phosphate (~1080 cm–1) , 
glycogen (~1030 cm–1), CH2 & CH3 of lipids (~2852 cm–1, 
~2923 cm–1, ~2960 cm–1). 
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b) Main absorbance ratios as malignancy indicators: 
glucose/phosphate (1030/1080), glycogen/amide II 
(1045/1545), Amide I  / Amide II (1650/1550), CH2/CH3 
(2922/2960). 

Fig. 2. Circle of data transfer. 

  
                   Fig. 3. Transfer of data from each patient and each 

hospital to the Center of final decision. 

 
3.2. Data Base and Cloud 
In Fig. 2, the circle of data transfer of patients' data  to the 
medical IROS for machinery learning is presented, whereas Fig. 
3 presents full coupled system of data transfer from each patient 
of different hospitals into the Center of collection information 
and its decision made by medical personnel after analyzing 
results of machinery learning occurring there. 
   

4. FTIR-ATR DATA CLASSIFICATION 

 

4.1. Problem description: Cancer Detection 
The aim of the presented analysis is to choose and build a 
classifier that can distinguish between cancer, normal and other 
tissue pathologies from the measured FTIR spectroscopy data. 
The solution methodology is to select a set of "features" that can 
be used to distinguish between cancer and other control patients 
using an appropriate classifier. These features are the spectral 
signatures (intensity levels) at specific values of measured 
FTIR-ATR spectral response. The suggested approach - 
Machine Learning takes a known set of input data (spectral 
signatures) and known responses or class labels (e.g. "polyp", 
"cancer", "colitis", etc.) to the data, and seeks to build a 
Predictive Model that generates reasonable predictions / 
classifications for the response to new data. The classification 
methods and results presented based on: 1) Partial least square 
regression (PLSR); 2) Principal component regression (PCR); 
3) Naive Bayesian classifier (NBC);  
4.2. Data preparation and pre-processing 
Acknowledgment: Data base presented in this article with a 
special permission from PIMS LTD, Data from IRB-approved 
human research. All participants in this research were checked 
by a MD or Gastroenterologist and referred by them to 
colonoscopy or gastroscopy. During the colonoscopy, a tissue 
biopsies taken from colon/stomach  lesion/polyp and  from  

adjacent  normal appearing tissue. A minute part of the sample 
being used for conventional diagnosis (Histopathological 
evaluation), where the other wet part of the specimen (not in 
"formalin") is diverted to the Medial I.R.O.S system. The 
technician, operating the system, scanned the designated lesions 
without knowing the clinical diagnosis.(Blind). The data set was 
separated into two groups: training (calibration) set and 
validation (test) set. The training and validation sets include the 
observations (samples) with a known class labels (see Table 1 
and 2).  

Table 1. Calibration (training): 46 samples (spectral signals). 

Table 2. Validation (test): 30 samples (spectral signals). 

* The calibration (training) does not include such class labels as 
"Inflammation", "Crohn", "Pathology" and they are classified as 
"Normal" in the training.  
Two types of classification have been performed: 
1.Binary: 0/1 or "Cancer"/"non-Cancer". Here all other types of 
pathologies (Polyp, LGD, Colitis, etc.) were represented as 
"non-Cancer"; 
2.Full classification following to the class labels in the training 
(Table 1). 

4.2.1 Pre-Processing  
1) The measured FTIR-ATR signal is converted to a spectral 
absorbance, A(λ), defined as:     ( ) ( )[ ]λλ RA 10log−=     (1)      

Where:    ( ) ( ) ( )
( ) ( )λλ

λλ
λ

DarkREF

DarkI
R

−

−
=

   (2)      

I(λ) is the spectral intensity measured with the sample placed on 
HATR; REF(λ) is the reference signal (without sample) for 
source spectrum correction; Dark(λ) is the dark counts; 
λ is the wavenumber, cm-1; 
2) Peak normalization. 
The absorption spectrum A(λ) is normalized by a maximal 
value at 1640 cm-1 (Amide I absorption): 
    Y(λ) = A(λ) / A(1640cm-1),                  (3) 
Measured spectral absorbance according to Eq. (1) The 
normalized absorption spectrum A(λ) is shown in Fig.4 
computed according to spectral data presented in Table 3. 

         Fig. 4. Normalized spectrum,Eq.(3); peak normalization.            

Class labels Count Percent 

Norm 40 86.96% 

Polyp 1 2.17% 

Colitis 2 4.35% 

LGD 1 2.17% 

Cancer 2 4.35% 

Class labels Count Percent 

Norm 25 83.33% 

Pathology* 2 6.67% 

Crohn* 1 3.3% 

Inflammation* 1 3.3% 

Polyp 1 3.3% 
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Table 3. Spectral data used for analysis. 
Spectral interval, 
cm-1   
 

Resolution, 
cm-1 

Number of spectral 
signatures ("features") 

950 - 1750  
 

4 200 

Selected feature parameters are organized in an n×p data matrix 
Y[n,p], where the n objects (samples) constitute the rows; and 
the p variables (feature parameters or spectral signatures at a 
specific wavenumber) the columns. In training set, the data 
matrix Y has n = 46 rows representing 46 patients and p = 200 
columns representing 200 spectral signatures (see Table 1 and 
Table 3).  
4.3. Machine Learning approach for classification 
The data set contains samples with measurements of different 
variables (predictors or spectral signatures), i.e. signal responses 
at a specific wavenumber Y[n, pλ], and their known class 
labels, e.g. "polyp", "cancer", "colitis", etc.  
The problem of classification can be formulated as following:  
If we obtain data for new samples K[n, pλ], could we determine 
to which classes those samples probably belong? 
The steps in Machine Learning and classification / prediction 
are presented in a flowchart below (see Fig. 5). 

 
Fig. 5. Flowchart of machine learning approach. 

 
5. PARTIAL LEAST SQUARE REGRESSION (PLSR) 

AND PRINCIPAL COMPONENT REGRESSION (PCR) 

 
The measurement variables (responses) are the dependent (Y) 
variables. The rest of the variables are the independent (X) 
variables (spectral signatures). The purpose of a multiple 
regression is to find an equation that best predicts the Y variable 
as a linear function of the X variables. 
The general equation for the regression is: 

∑
=

++=++=+++=
k

i

iikk BXfbfxbbfxbxbbY
1

00110 ...   (4) 

where Y is the response (sample), xk are the predictors (spectral 
signatures or "features"), bk are the regression coefficient to be 
determined, b0 is the offset and a constant factor, and f is the 
residual. If X and Y are mean-centered, then b0 =0. 
Equation (4) can be written in matrix form: Y=Xb+f. 
The parameters b can be estimated by a least squares (LS) fit 
minimizing the sum of squared residuals. Multiple linear 
regression (MLR) is used for estimating the regression vector b. 
The solution for regression coefficient for the LS is  

b =(XT
X)−1

X
T
Y    (5) 

where T means transpose of the matrix. The LS may not work 
since the inverse of XTX might not exist or may be unstable. It 
is also sensitive to noise. 
Principal component regression (PCR) is a type of regression 
analysis, which considers principle components (PC) as 
independent variables, instead of adopting original variables. 

The basic idea behind PCR is to calculate the principal 
components and then use some of these components as 
predictors in a linear regression model fitted using the typical 
least squares procedure. The PCs are the linear combination of 
the original variables which can be obtained by PCA. 
The equation for regression can be formulated as 
     Y=Vd+f,  d =(VTV)−1VTY,   (6) 

where V is the principal components and d contains 
coefficients.  The number of components needs to be 
determined by testing and checking. The principal components 
are latent variables. PLS is an alternative for PCR. The latent 
variables in PLS are also linear combinations of the descriptive 
variables in the data set, but instead of maximizing the variance 
in the matrix with descriptive variables like in PCA, the 
covariance with the response variable is maximized. The scores 
on the PLS factors are used as input for multiple linear 
regression after selection of the optimal number of PLS-factors 
to be considered. In PLSR method, data is compressed into 
orthogonal factors, which have similar properties to PCs in 
PCA. The prediction performance can be evaluated using a) the 
coefficient of determination (R2) of the linear regression of 
predicted against measured values; b) the root mean square 
errors of calibration (RMSEC); c) the root mean square errors 
of prediction (RMSEP). 
In the present analysis the class labels were defined as: 
1) Ordinal variables (Table 4), i.e. each sample was assigned a 
dummy variable for calibration modeling;  
2) Binary variables (Table), which have values +1 for samples, 
belonging to class "Cancer", and –1 for samples, which are not 
from the class, i.e., "non-Cancer". 

Table 4. Ordinal variables as a response in calibration  
(training) set. 

 
Table 5. Binary variables as a response in calibration set. 

5.1. Training and Calibration 
Figures 6a and 6b presents numerical analysis of error as a 
function of the number of PCs and PLS components. Figure 
from 7 present the  14-components PLSR model, of PCR 
model, and of PCR/PLSR model, based on data presented in 
Table 3 to Table 5, respectively. 
Fig. 6. (a) Percent of Variance explained in the data vs principal 
components; (6) Prediction error performance with the number 
of PLS components (ordinal variables). 
Fig. 7. The 14 components PCR/PLSR model trained with 46 
samples and binary variables (Table 5): +1 - "Cancer"; -1 - 
"non-Cancer". R2(PLSR) =0.9918  ;  R2 (PCR) =0.9085. 
5.2. Validation 
After the learning phase, 30 test values have been analyzed 
when the class labels are represented as ordinal and binary 
variables (according to Table 4  and Table 5), and presented in 

Class labels ordinal variables Count 

Norm 10 40 
Polyp 30 1 
Colitis 50 2 
LGD 70 1 
Cancer 90 2 

Class labels binary variables Count 

Norm -1 40 

Polyp -1 1 

Colitis -1 2 

LGD -1 1 

Cancer +1 2 
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Fig, 8 and Fig. 9. respectively. 

 
 
Fig. 8. Observed and Predicted classes: ordinal variables in 
Table 4.  Fig. 9. Observed and Predicted classes: binary 
variables in Table 5.  

 
 

5.3. PCR/PLSR Summary 
a) In the case of binary variables (Table 5), if a predicted 
response value is above or equal to 0, the corresponding object 
or sample is considered to be a member of the class "Cancer". If 
not, the object is rejected as a non-member. 
Both of the methods (PCR & PLSR) show a high performance 
to classify "Cancer" or "non-Cancer" (Fig.7):  
Correct Classification: 100 %; Incorrect Classification : 0.0 %. 
b) Classification with Ordinal classifiers (Fig.6): following to 
the class labels (Table 4), the values "10" and "30" correspond 
to "normal" and "polyp" respectively. There are values between  
[10...30] that should be defined and classified as belong to an 
appropriate class. The threshold should be determined, e.g. 
"25", where below this value all data are classified as "normal".   
To prevent misclassification, the additional analysis should be 
performed (e.g. PLS-DA method). Partial least squares 
Discriminant Analysis (PLS-DA) is a variant used when the 
class label is categorical (nominal) as in our case (Table 1). 
c) The PCR method shows reduced performance in training (R2 
= 0.85) for the ordinal responses .  Increasing database will 
improve the performance of PCR method. 
5.4. Naive Bayes classifier (NBC) 
The Naive Bayesian classifier is based on Bayes’ theorem with 

 
 
 
 
 
 
 
 
 
 
 
 
 
independence assumptions between predictors. 
Bayes theorem provides a way of calculating the posterior 
probability, P(c|x), from P(c), P(x), and P(x|c). Naive Bayes 
classifier assumes that the effect of the value of a predictor (x) 
on a given class (c) is independent of the values of other 
predictors. This assumption is called class conditional 
independence. 

5.4.1 Training 
The details of the misclassifications are shown in Table 9 - the 
confusion matrix between target classes (True) and output 
classes (predicted). 
Table 9. Confusion matrix between True and predicted classes 
(training) 

Predicted class  
True class (biopsy) 

Normal Polyp Colitis LGD Cancer 

Normal 40 0 0 0 0 

Polyp 0 1 0 0 0 

Colitis 0 0 2 0 0 

LGD 0 0 0 1 0 

cancer 0 0 0 0 2 

Percentage Correct Classification: 100 % 
Percentage Incorrect Classification: 0.0 % 
The confusion matrix in Fig.10 shows the percentages of correct 
and incorrect classifications in the case of "Cancer" or "non-
Cancer" derivation (binary). Correct classifications are the 
green squares on the matrix diagonal. Incorrect classifications 
form the red squares. 
If the method has learned to classify properly, the percentages 
in the red squares should be very small, indicating few or zero 
misclassifications. If this is not the case then further training 
would be advisable. 
In the Fig.10, the first two diagonal cells show the number and 
percentage of correct classifications by the training: 44 biopsies 
are correctly classified as "non-Cancer", benign (or normal). 
This corresponds to 95.7% of all 46 biopsies. Similarly, 2 cases 
are correctly classified as "Cancer" or malignant. This 
corresponds to 4.3% of all biopsies. Overall, 100% of the 
predictions are correct and 0% are wrong classifications. 

5.4.2 Validation 

The confusion matrix in Fig.11 shows the percentages of correct 
and incorrect classifications in validation. 
Percentage Correct Classification   : 100 % 
Percentage Incorrect Classification : 0.0 % 
 
Table 10. Confusion matrix between True and predicted classes 
(validation). 

Predicted class True class (biopsy) Normal Polyp 

Normal 29 0 

Polyp 1 0 
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Fig. 10. Training: "Cancer"/          Fig.11. Validation: "Cancer"/    

"non-Cancer"  "non-Cancer" 
 
Here: [29 0] means Naive Bayes classifier (NBC) classified 29 
"Normal" correctly; 
[1 0] means Naive Bayes classifier (NBC) classified 0 "Polyp" 
correctly, and misclassified one "Polyp" as "Normal" 
 
Assess Classifier Performance:  
The out-of-sample misclassification rate is   3.3%. 
Percentage Correct Classification:   96.67 % 
Percentage Incorrect Classification:   3.33 % 
 

6. SUMMARY 

 
In this work,  we presented and built an ATR-FTIR system for a 
fast colon cancer/non-cancer detection. The decision algorithm 
is based on Machine Learning classifier that can distinguish 
between cancer and other tissue pathologies from the measured 
FTIR spectroscopy data taken by a top table device Medical 
IROS (by PIMS LTD). 
The solution methodology was to select a set of "features" that 
used to distinguish between cancer and other control patients 
using an appropriate classifier. These features are the spectral 
signatures (intensity levels) at specific values of measured 
FTIR-ATR spectral response. 
The classification methods and results, based on 76 wet 
samples, presented: 
Partial least square regression (PLSR);  
Principal component regression (PCR); 
1) Both of the methods (PCR & PLSR) show a high 
performance to classify "Cancer" or "non-Cancer"  
2) Correct Classification: 100%; Incorrect Classification: 0.0%. 
Naive Bayesian classifier (NBC); 
1) Shows a high performance to classify "Cancer" or "non-
Cancer" (benign) 
2) Correct Classification: 100%; Incorrect Classification: 0.0%. 
During the next steps, more machine learning classifiers, should 
be investigates, for example, LDA and ANN. to choose the best 
classifier for real time, on site, cloud based diagnosis using 
Artificial Intelligence (AI) together with the medical device 
IROS. We plan to increase database to improve the performance 
of the machine learning classifier. 
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