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Abstract In this work, we present a Real-Time (RT), on-site, machine-learning-
based methodology for identifying human cancers. The presented approach is reli-
able, effective, cost-effective, and non-invasive method, which is based on Fourier
Transform Infrared (FTIR) spectroscopy—a vibrational method with the ability to
detect changes as a result of molecular vibration bonds using Infrared (IR) radiation
in human tissues and cells.Medical IROptical System (IROS) is a tabletop device for
real-time tissue diagnosis that utilizes FTIR spectroscopy and the Attenuated Total
Reflectance (ATR) principle to accurately diagnose the tissue. The combined device
andmethodwere used for RT diagnosis and characterization of normal and patholog-
ical tissues ex vivo/in vitro. The solution methodology is to apply Machine Learning
(ML) classifier that can be used to differentiate between cancer, normal, and other
pathologies. Excellent results were achieved by applying feedforward backpropa-
gation Artificial Neural Network (ANN) with supervised learning classification on
76 wet samples. ANN method shows a high performance to classify; overall, 98.7%
(75/76 biopsies) of the predictions are correctly classified and 1.3% (1/76 biopsies)
is wrong classification.
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1 Introduction

Tumor detection at initial stages is a major concern in cancer diagnosis [1–9]. Cancer
screening involves costly and lengthy procedures for evaluating and validating cancer
biomarkers. Rapid or one-stepmethod preferentially non-invasive, sensitive, specific,
and affordable is required to reduce the long diagnostic processes. IR spectroscopy
is a technique routinely used by biochemists, material scientists, etc., as a standard
analysis method. The observed spectroscopic signals are caused by the absorption of
IR radiation that is specific to functional groups of the molecule. These absorption
frequencies are associated with the vibrational motions of the nuclei of a functional
group and show distinct changes when the chemical environment of the functional
group is modified [2, 3]. IR spectroscopy essentially provides a molecular fingerprint
and IR spectra contain a wealth of information on themolecule. In particular, they are
used for the identification and quantification of molecular species, the interactions
between neighboring molecules, their overall shape, etc. IR spectra can be used as
a sensitive marker of structural changes of cells and of reorganization occurring in
cells [2–9] and most biomolecules give rise to IR absorption bands between 1800
and 700 cm−1, which are known as the “fingerprint region” or primary absorption
region. Themedical IROS device [2] relates to methods employing EvanescentWave
FTIR (EW-FTIR) spectroscopy using optical elements and sensors operated in the
ATR regime in the MIR region of the spectrum.

Therefore, as recently shown, Fourier transform IR (FTIR) spectroscopy coupled
with computational methods can provide fingerprint spectra of benign tissues and
their counterpart malignant tumors with a high rate of accuracy [3].

Our aim was to use FTIR spectroscopy combined with machine learning methods
for the primary evaluation of the characteristic spectra of colon and gastric tissue
from patients with healthy and cancer tissue, thus creating a novel platform for
the application of FTIR spectroscopy for real-time, on-site early diagnosis of colon
cancer.

In Fig. 1, the circle of data transfer of patients’ data to the medical IROS [2]
for machine learning is presented, whereas Fig. 2 presents full coupled system of
data transfer from each patient of different hospitals into the center of collection
information and its decision made by medical personnel after analyzing results of
machine learning occurring there.

The remainder of this paper is organized as follows. Section 2 presents a short
summary of medical IROS. Basic definitions of ANN are discussed in Sect. 3.
Section 4 provides a description of network training algorithms. Section 5 includes
preliminary practical results. Section 6 concludes the paper.
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Fig. 1 Circle of data transfer

Fig. 2 Transfer of data from
each patient and each
hospital to the center of final
decision

2 Short Summary of Medical IROS

The aim is to develop a dedicated combined apparatus suitable for biological tissue
characterization via FTIR spectroscopic measurement during clinical practice [2].
According to the teachings of the device, it relates to combined device and method
for the in vitro analysis of tissue and biological cells which may be carried out in
a simple and, preferably, automated manner. The device and method produce result
rapidly (up to minutes) and permit the determination/detecting of structural changes
between a biological specimen and a reference sample.

In accordance with the teachings of the medical IROS, the human’s tissue is
applied to unclad optical element (crystal, etc.) working in ATR regime. A beam of
mid-IR (infrared) radiation is passed through a low loss optical element and interacts
with the tissue via ATR effect. In this process, the absorbing tissue is placed in direct
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contact with the optical element. The novel combined apparatus (FTIR spectrom-
eter with opto-mechanical elements and software) adopts an integrative design in
appearance, and it is a bench top device.

3 ANN Concept—Basic Definitions

ANN [10] is the mathematical structure, which consists of interconnected artificial
neurons that mimic the way a biological neural network (or brain) works. ANN has
the ability to “learn” from data, either in a supervised or an unsupervised mode
and can be used in classification tasks [11, 12]. In Multi-layer Feedforward (MLFF)
networks, the neurons (nodes) are arranged in layers with connectivity between the
neurons of different layers. Figure 3 is the schematic representation of a simple
artificial neural network model. The artificial neurons have input values, which are
the output product of other neurons or, at the initial level, the input variables (input
p = 1, 2, …, n). These values are then multiplied by a weight W and the sum of all
these products (�) is fed to an activation function F. The activation function alters
the signal accordingly and passes the signal to the next neuron (s) until the output
of the model is reached. Each node is connected by a link with numerical weights
and these weights are stored in the neural network and updated through the learning
process.

Fig. 3 Multi-layer feedforward network, p1, …, pn measured spectral signatures
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4 Network Training Algorithms

Levenberg–Marquardt (LM) backpropagation method is a network training func-
tion that updates weight and bias values according to LM optimization. It is often
the fastest backpropagation algorithm, and is highly recommended as a first-choice
supervised algorithm, although it does require more memory than other algorithms.

LM algorithm is an iterative technique that locates a local minimum of a multi-
variate function that is expressed as the sum of squares of several non-linear, real-
valued functions. The algorithm changes current weights of the network iteratively
such that objective function, F(w), is minimized as shown in Eqs. 1 or 2:

F(w) =
P∑

i=1

M∑

j=1

(
di j − oi j

)2
(1)

F(w) = EET (2)

where w = [w1, w2, …wN ]T is a vector of all weights, N is the number of weights,
P is the number of observations or inputs (signatures), M is the number of output
neurons, and dij and oij are the desired value (“target value”) and the actual value
(“predicted value”) of the ith output neuron and the jth observation.

LM method is very sensitive to the initial network weights. Also, it does not
consider outliers in the data, what may lead to overfitting noise. To avoid those
situations, Bayesian regularization technique can be used.

5 Preliminary Practical Results

Acknowledgment: Data base presented in this paper with a special permission from
P.I.M.S (PIMS LTD, Beer Sheva, Israel). The goal is to analyze the influence of
ANN structure on the results of classification. After choosing the better structure,
the performance of different ANN training methods was compared. Spectral data
used for analysis are presented in Table 1.

Thereinafter, pre-processing, number of inputs selection, ANN design, training,
testing, validation, and selection of training algorithms and optimal amount of
neurons in hidden layer are discussed in Sects. 5.1–5.5, respectively.

Table 1 Spectral data used for analysis (~5.7–11 um waveband)

Spectral interval, cm−1 Resolution, cm−1 Number of spectral signatures

950–1750 4 200
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Fig. 4 Typical molecular
absorption positions
(molecular bonds and
spectral signatures), where
1—protein Amide I,
2—protein Amide II,
3—lipids and protein (CH3),
4—phospholipids and Amide
III, 5—PO2 phospholipids
and nucleic acids. The
strength of spectral
signatures is changed
depending on the tissue
features/pathologies [2–4]

5.1 Pre-processing

The data is extracted and formatted in accordance with ANN demands:

(1) The measured FTIR-ATR signal is converted to a spectral absorbance A(λ)
defined by Eq. 3:

Aλ = − log10

[
Iλ − Idark,λ

Ire f,λ − Idark,λ

]
(3)

where Iλ is the spectral intensity measured with the sample, Iref,λ is the reference
signal (without sample) for source correction, Idark,λ is the dark counts, and λ is the
wavenumber, cm−1.

(2) Peak normalization (Fig. 4). The absorption spectrum A(λ) is normalized by a
maximal value at 1640 cm−1 (Amide I absorption) provided by Eq. 4:

Y (λ) = Aλ/A
(
1640 cm−1

)
. (4)

(3) First derivative of the spectral absorbance is depicted in Fig. 5.

5.2 Number of Inputs Selection

Measured spectral signatures at given wavelengths, pn(λ), n = 200, are used as
the inputs (input layer) to ANN. To reduce amount of inputs, the criterion of “min
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Fig. 5 The graph of first
derivative of the spectral
absorbance

Fig. 6 The graph of CV

variance” was used. The variance and Coefficient of Variations (CV) were calculated
at each wavelength for the data matrix [76 × 200]. Then the threshold was applied
to the CV vector (Fig. 6):

CV =
√
var(p)

p̄
≥ threshold. (5)

The spectral signatures at appropriate CV values (CV ≥ threshold) were used as
the inputs to ANN.
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Table 2 Dataset for ANN
training and validation,
dataset = 76 samples

Class labels (biopsy) Count Percent

Norm 72 94.74

Polyp 2 2.63

Cancer 2 2.63

Fig. 7 Example of ANN
structure for classification of
the dataset with 10 hidden
layer neurons and 3 output
neurons: 55 spectral
signatures (Input); 3 outputs:
Cancer, Normal, Polyp

5.3 ANN Design

The data partitioning is the following: training set 60%, testing set 20%, and valida-
tion set 20%. The experimental data used for ANN models development are given
in Table 2. 45 samples were used for training set and the rest are used for testing and
validation (31 samples). The selection of data for training and testing was made in
such a way that at least one sample of polyp and one sample of cancer will be in the
training and testing sets.

The selected ANN structure is a three-layer feedforward, fully connected hierar-
chical network consisting of one input layer, one hidden layer, and one output layer.
Different iterative backpropagation algorithms have been implemented to determine
errors for the hidden layer neurons and subsequent weight modification. To define
the number of neurons in the hidden layer of the network, Mean Square Error (MSE)
and R2 were analyzed. In order to avoid undesirably long training time, a termination
criterion has been adopted. This criterion may be either completion of a maximum
number of epochs (training cycles) or achievement of the error goal (Fig. 7).

5.4 Training, Testing, and Validation

The training stopped when the validation error is starting to increase (occurred at 15
training cycle (epoch) which is presented in Fig. 8.

To evaluate the performance of the network and indicate the error rate of presented
model, statistical error estimation methods are used. The basic error estimation
method is MSE provided by Eq. 6:

MSE =
n∑

t=1

(
Xt − Xo

t

)2
/n. (6)
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Fig. 8 Training, testing, and
validation

5.5 Selection of Training Algorithms and Optimal Amount
of Neurons in Hidden Layer

The best results obtained with LM training algorithm are presented in Table 3.
Performance evaluation examines the confusion matrix between target classes

(True) and output classes (predicted). The confusion matrix shows the percentages
of correct and incorrect classifications. Classification accuracy is the percentage of
the number of the correctly classified samples over the total number of samples in
each group or class (Table 4). Figure 9 shows an example of using LM algorithm for
ANN training and validation.

Overall, 98.7% (75/76 biopsies) of the predictions are correctly classified, while
1.3% (1/76 biopsies) is wrong classification.

Table 3 Network training backpropagation algorithms

Algorithm Number
of inputs

Transfer
functions

Number of
hidden
neurons

Network
performance
MSE

Best
validation
performance

R2

LM 138 Tansig-pureline 2 0.01 3.3×10−3 0.95

5 0.0088 1.5×10−4 0.96

LM 55 Tansig-pureline 2 0.014 3.7×10−3 0.92

5 0.009 4.87×10−4 0.96

8 0.0088 2.4×10−4 0.96

11 0.009 8×10−4 0.95
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Fig. 9 Output class (predicted) and Target class (desired): 1—Normal; 2—Polyp; 3—Cancer
Green—correctly classified; Red—misclassified; Blue—total percent of correctly and misclas-
sified

6 Conclusions

This report aims to evaluate ANN in predicting cancer and other pathologies based
on measurements by FTIR-ATR device. The feedforward backpropagation neural
network with supervised learning is proposed to classify the disease: cancer/non-
cancer or cancer-polyp-normal. The reliability of the proposed neural network
method is examined on the data collected throughMedical IROS (FTIR-ATR) device
and obtained by a biopsy.
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Choosing the optimal ANN architecture is followed by selection of training algo-
rithm and related parameters. The selected ANN structure is a three-layer feed-
forward, fully connected hierarchical network consisting of one input layer, one
hidden layer, and one output layer. Six iterative backpropagation algorithms have
been implemented to determine errors for the hidden layer neurons and subsequent
weight modification. The determination of the number of layers and neurons in the
hidden layers is done by the trial-and-error method. In order to determine optimal
ANNmodel, a number of hidden neurons (2–11) in single hidden layer were consid-
ered and varied. The transfer functions tansig in hidden and linear in output layer
were found to be optimal. After training, each ANN model is tested with the testing
data, and optimal ANN architecture was found by minimizing test error with testing
data and Mean Square Error (MSE) for training data. The final network structure
in the first strategy has 55 inputs, 8 neurons in the hidden layer, and 3 neurons in
the output layer. The best performance was obtained with LM training algorithm.
Overall, 98.7% (75/76 biopsies) of the predictions are correctly classified and 1.3%
(1/76 biopsies) is wrong classification. Using ATR-FTIR with ANN software with
large database may have an important role for the development of next-generation
real-time techniques for ex vivo identification tests of tumors.
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