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1. Introduction

A Feynman formula (in the sense of Smolyanov [38]) is a representation of a function 
as the limit of a multiple integral where the multiplicity tends to infinity. Usually this 
function is a solution to the Cauchy problem for a partial differential equation (PDE). 
In this paper we introduce a more general concept:

Definition 1.1. A quasi-Feynman formula is a representation of a function in a form which 
includes multiple integrals of an infinitely increasing multiplicity.

The difference with a Feynman formula is that in a quasi-Feynman formula summation 
and other functions/operations may be used while in a Feynman formula only the limit 
of a multiple integral where the multiplicity tends to infinity is allowed. Both Feynman 
formulas and quasi-Feynman formulas approximate Feynman path integrals.

Formula (2) and other formulas from Theorem 3.1 are examples of quasi-Feynman 
formulas for the case when the (later discussed) family (S(t))t≥0 consists of integral 
operators; the obtained formulas give the exact solution to the Cauchy problem for the 
Schrödinger equation.

It is known that the solution to the Cauchy problem for the Schrödinger equation 
iψ′

t(t, x) = Hψ(t, x), ψ(0, x) = ψ0(x) is given by the formula ψ(t, x) = (exp(−itH)ψ0)(x); 
the evolution operator exp(−itH) is a one-dimensional (parametrized by t ∈ R) group 
of unitary operators in Hilbert space. Because of the quantum mechanical significance, 
the properties of exp(−itH) have been extensively studied. Research topics include e.g. 
exact solutions to the Cauchy problem, asymptotic behavior, estimates, related spatio-
temporal structures, wave traveling, boundary conditions and other. Some of the recent 
papers related to the Cauchy problem solution study are [22,28,26,41,14,15,23,25,1].

In this paper we propose a method of obtaining formulas that express exp(−itH) in 
terms of the coefficients of the operator H. The solution is obtained in the form of a 
quasi-Feynman formula. Quasi-Feynman formulas are easier to obtain (compared with 
Feynman formulas) but they provide lengthier approximation expressions.
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Suppose that function u(t, x) is the solution for the following Cauchy problem: u′
t =

Lu, u(0, x) = u0(x). The expression

u(t, x) = lim
n→∞

∫
E

. . .

∫
E︸ ︷︷ ︸

n

. . . dx1 . . . dxn

is called a Lagrangian Feynman formula if E is a configuration space for the dynamical 
system that is described by the equation u′

t = Lu; it is called a Hamiltonian Feynman 
formula if E is a phase space for the same system. For the first time Lagrangian Feynman 
formulas appeared in the paper by R.P. Feynman [19] in 1948, who postulated them 
without proof. The proof based on the Trotter product formula was provided by E. Nelson 
[27] in 1964. Hamiltonian Feynman formulas were presented in Feynman’s paper [20] in 
1951, but the proof (based on the Chernoff theorem) was published only in 2002 by 
O.G. Smolyanov, A.G. Tokarev and A. Truman [38].

Note that the terminology can be obscure: we have Feynman integral, Feynman 
(pseudo)measure, Feynman formulas, Feynman–Kac formulas – all these are different 
objects, and different authors define them in different ways.

One of the ways of obtaining and proving Feynman formulas is to use a one-parameter, 
strongly continuous semigroup of bounded linear operators (i.e. a C0-semigroup, Defini-
tion 2.1 below) as a solution-providing object, and the Chernoff theorem (Theorem 2.2
below) as the main technical tool to deal with the C0-semigroup. The Chernoff theorem 
states that to obtain an explicit formula for a C0-semigroup, it is enough to find a one-
parameter family of bounded linear operators that is Chernoff-equivalent (Definition 2.2
below) to the C0-semigroup. So the task of solving the Cauchy problem for an evolution-
ary PDE is reformulated as the task of finding an appropriate family of operators. In all 
known examples, families of integral operators are used, and the Chernoff theorem re-
quires to compose them many times, this is how multiple integrals in Feynman formulas 
arise in this approach. The history of research in this particular direction and a sketch of 
results obtained up to 2009 one can find in [36]; see also the overview [37] dedicated to 
Feynman formulas for a Schrödinger semigroup (2011). The most recent (but not com-
plete) overview is [8] (2014, in Russian). The advances achieved employing this idea can 
be found in papers by Ya.A. Butko (now Kinderknecht), M.S. Buzinov, V.A. Dubravina, 
A.V. Duryagin, A.S. Plyashechnik, V.Zh. Sakbaev, N.N. Shamarov, O.G. Smolyanov and 
in references therein. Some of the relevant papers are [33,9,32,12,7,31,10,6,29,39].

It is known that constructing such Chernoff-equivalent families for a Schrödinger 
equation is much more difficult than doing the same for a heat equation. O.G. Smolyanov 
and his group have constructed Chernoff-equivalent families that provide the solution 
to the heat equation in many cases. Now this material can be used to solve the Cauchy 
problem for the Schrödinger equation.

In this paper we propose a specific family of operators that is Chernoff-equivalent to 
the evolution operator family (exp(−itH))t∈R for the Schrödinger equation. The family 
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reads as R(t) = exp[i(S(t) − I)] and is a source of the quasi-Feynman formulas that 
provide exp(−itH). The operator R(t) that is introduced depends on the operator H
via the operator S(t); namely, we ask the family (S(t))t≥0 to be Chernoff-tangent (Def-
inition 2.3 below) to the operator −H. Such families (S(t))t≥0 are known for a wide 
range of operators H. The main theorem of the paper (Theorem 3.1) can be viewed as 
an analogue or a generalization of the Trotter product formula and the Chernoff product 
formula for the Schrödinger equation.

With the method presented the difficulty of solving the Cauchy problem for a 
Schrödinger equation reduces twice: we need to construct a less difficult (Chernoff-
tangent) family for a less difficult (heat) equation. This technique deals with the semi-
groups and operator families only, so it works for a large class of Hamiltonians describing 
dynamics in a large class of configuration spaces (two examples are shown in the article).

The method presented opens several challenging questions – for example, it possibly 
may provide better approximations than Feynman formulas do, but this requires a further 
study, see Remarks 2.5 and 3.7 below.

2. Preliminaries

In this section the essential background in C0-(semi)group theory is provided.

Definition 2.1. Let F be a Banach space over the field C. Let L(F) be a set of all 
bounded linear operators in F . Suppose we have a mapping V : [0, +∞) → L(F), i.e. 
V (t) is a bounded linear operator V (t): F → F for each t ≥ 0. The mapping V is 
called a C0-semigroup, or a strongly continuous one-parameter semigroup if it satisfies 
the following conditions:

1) V (0) is the identity operator I, i.e. ∀ϕ ∈ F : V (0)ϕ = ϕ;
2) V maps the addition of numbers in [0, +∞) into the composition of operators in 

L(F), i.e. ∀t ≥ 0, ∀s ≥ 0 : V (t + s) = V (t) ◦V (s), where for each ϕ ∈ F the notation 
(A ◦B)(ϕ) = A(B(ϕ)) is used;

3) V is continuous with respect to the strong operator topology in L(F), i.e. ∀ϕ ∈ F
function t �−→ V (t)ϕ is continuous as a mapping [0, +∞) → F .

The definition of a C0-group is obtained by the substitution of [0, +∞) by R in the 
paragraph above.

If (V (t))t≥0 is a C0-semigroup in Banach space F , then the set

{
ϕ ∈ F : ∃ lim

t→+0

V (t)ϕ− ϕ

t

}
denote= Dom(L)

is dense in F . The operator L defined on the domain Dom(L) by the equality
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Lϕ = lim
t→+0

V (t)ϕ− ϕ

t

is called an infinitesimal generator (or just generator to make it shorter) of the 
C0-semigroup (V (t))t≥0. The generator is a closed linear operator that defines the 
C0-semigroup uniquely, and the notation V (t) = etL is used. If L is a bounded op-
erator and Dom(L) = F then etL is indeed the exponent defined by the power series 
etL =

∑∞
k=0

tkLk

k! converging with respect to the norm topology in L(F). In most inter-
esting cases the generator is an unbounded differential operator such as Laplacian Δ.

One of the reasons for the study of C0-semigroups is their connection with differential 
equations. If Q is a set, then the function u: [0, +∞) ×Q → C, u: (t, x) �−→ u(t, x) of two 
variables (t, x) can be considered as a function u: t �−→ [x �−→ u(t, x)] of one variable t

with values in the space of functions of the variable x. If u(t, ·) ∈ F then one can define 
Lu(t, x) = (Lu(t, ·))(x). If there exists a C0-semigroup (etL)t≥0 then the Cauchy problem

{
u′
t(t, x) = Lu(t, x) for t > 0, x ∈ Q

u(0, x) = u0(x) for x ∈ Q

has a unique (in sense of F , where u(t, ·) ∈ F for every t ≥ 0) solution u(t, x) =
(etLu0)(x) depending on u0 continuously. See [30,18] for details. Note that if there exists 
a strongly continuous group (etL)t∈R then in the Cauchy problem the equation u′

t(t, x) =
Lu(t, x) can be considered not only for t > 0, but for t ∈ R, and the solution is provided 
by the same formula u(t, x) = (etLu0)(x).

The following theorem implies the existence and uniqueness of the solution for the 
Cauchy problem for the Schrödinger equation.

Theorem 2.1. (See M.H. Stone [40], 1932.) There is a one-to-one correspondence between 
the linear self-adjoint operators H in Hilbert space F and the unitary strongly continuous 
groups (W (t))t∈R of linear bounded operators in F . This correspondence is the following: 
iH is the generator of (W (t))t∈R, which is denoted as W (t) = eitH .

Corollary 2.1. If A is a linear self-adjoint operator in Hilbert space, then 
∥∥eiA∥∥ = 1.

Remark 2.1. Note that a linear self-adjoint operator in Hilbert space F by definition is 
closed and its domain is dense in F .

The following Chernoff theorem allows to construct the C0-semigroup in F from a 
suitable family of linear bounded operators in F . This family usually does not have 
a semigroup composition property but is pretty close to a C0-semigroup in the sense 
described in the theorem below. For many C0-semigroups such families G have been 
constructed, see [33,9,32,12,7,31,10,6,29]. Note that we present the Chernoff theorem in 
a new wording, see the motivation of that in section 4.
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Theorem 2.2 (P.R. Chernoff, 1968). (See [13] or Theorem 10.7.21 in [3].) Let F be a 
Banach space, and L(F) be the space of all linear bounded operators in F endowed with 
the operator norm. Let L: Dom(L) → F be a linear operator defined on Dom(L) ⊂ F , 
and G be an L(F)-valued function.

Suppose that L and G satisfy:

(E) There exists a C0-semigroup (etL)t≥0 and its generator is (L, Dom(L)).
(CT1) The function G is defined on [0, +∞), takes values in L(F), and the mapping 

t �−→ G(t)f is continuous for every vector f ∈ F .
(CT2) G(0) = I.
(CT3) There exists a dense subspace D ⊂ F such that for every f ∈ D there exists a 

limit G′(0)f = limt→0(G(t)f − f)/t.
(CT4) The operator (G′(0), D) has a closure (L, Dom(L)).

(N) There exists ω ∈ R such that ‖G(t)‖ ≤ eωt for all t ≥ 0.

Then for every f ∈ F we have (G(t/n))nf → etLf as n → ∞, and the limit is uniform 
with respect to t ∈ [0, t0] for every fixed t0 > 0.

Definition 2.2. Let F and L(F) be as before. Let us call two L(F)-valued mappings G1
and G2 defined both on [0, +∞) (respectively, both on R) Chernoff-equivalent if and 
only if G1(0) = G2(0) = I and for each f ∈ F and each T > 0

lim
n→∞

sup
t ∈ [0, T ]

(resp. t ∈ [−T, T ])

∥∥∥∥
(
G1

(
t

n

))n

f −
(
G2

(
t

n

))n

f

∥∥∥∥ = 0.

Remark 2.2. There are several slightly different definitions of the Chernoff equivalence, 
we will just follow [29] not going into details. The only thing we need from this definition 
is that if G1 and L satisfy all the conditions of the Chernoff theorem, then the mapping 
G1 is Chernoff-equivalent to the mapping G2(t) = etL. In other words, the limit of 
(G1(t/n))n yields the C0-semigroup (etL)t≥0 (or, respectively, C0-group (etL)t∈R) as n
tends to infinity.

Definition 2.3. Let us call a mapping G Chernoff-tangent to the operator L iff it satisfies 
the conditions (CT1)–(CT4) of the Chernoff theorem.

Remark 2.3. With these definitions, the Chernoff-equivalence of G to (etL)t≥0 follows 
from the existence (E) of the C0-semigroup plus Chernoff-tangency (CT) plus the growth 
of the norm bound (N).

Remark 2.4. It is known that if F is a Banach space, and A: F → F is a linear 
bounded operator, then eA =

∑∞
k=0

Ak

k! = limk→∞
(
I + A

k

)k. Indeed, the operator A
is the generator of the C0-semigroup 

(
etA
)
t≥0 defined by the formula etA =

∑∞
k=0

tkAk

k! , 
see [18] Chapter I, section 3: Uniformly continuous operator semigroups. Setting L = A, 
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D = F , G(t) = I + tA and ω = ‖A‖ in Theorem 2.2 establishes the equality 
etA = limn→∞

(
I + tA

n

)n for all t ≥ 0 and for t = 1 in particular.

Remark 2.5. The condition (CT3) of the Chernoff theorem says that G(t)f = f + tLf +
o(t) for each f ∈ D. It seems promising to try to find G(t) such that for fixed k ∈ N that 
G(t)f = f + tLf +o(tk), then one could expect a faster convergence (G(t/n))nf → etLf .

3. Main theorem

In what follows we consider the Schrödinger equation iψ′
t = Hψ in the form

ψ′
t = iaHψ

where a is a non-zero real constant and H is a self-adjoint operator such that aH = −H. 
Adding a 
= 0 to the formula helps to write the C0-groups (eitH)t∈R and (e−itH)t∈R in 
one formula (eiatH)t∈R just setting a = 1 or a = −1, also a may be used as a small or 
large parameter while H is fixed. The motivation for this change of notation is that the 
Chernoff theorem is usually applied to calculate the operator etL which is responsible 
for the solution to the equation u′

t = Lu.

Theorem 3.1. Suppose that F is a complex Hilbert space having a dense linear subspace 
Dom(H) ⊂ F . Suppose that a linear self-adjoint operator H: Dom(H) → F and a non-
zero number a ∈ R are given. Suppose that the mapping S is Chernoff-tangent to H and 
(S(t))∗ = S(t) for each t ≥ 0.

Then the family 
(
eia(S(|t|)−I)sign(t))

t∈R
is Chernoff-equivalent to the group (eiatH)t∈R

and for each fixed t ∈ R and f ∈ F the following hold:

eiatHf = lim
n→∞

(
eia
(
S(|t/n|)−I

)
sign(t)

)n
f = lim

n→∞
eian

(
S(|t/n|)−I

)
sign(t)f, (1)

eiatHf = lim
n→∞

lim
k→∞

k∑
m=0

imamnm(sign(t))m

m!

(
S(|t/n|) − I

)m
f, (2)

eiatHf = lim
n→∞

lim
k→∞

[(
1 − ian sign(t)

k

)
I + ian sign(t)

k
S(|t/n|)

]k
f, (3)

eiatHf = lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−qimamnm(sign(t))m

q!(m− q)!

(
S(|t/n|)

)q
f, (4)

eiatHf = lim
n→∞

lim
k→∞

k∑
q=0

k!(k − ian sign(t))k−q(ian sign(t))q

q!(k − q)!kk
(
S(|t/n|)

)q
f, (5)

eiatHf = lim
n→∞

lim
k→∞

k∑
m=0

k−m∑
q=0

(−1)k−m−qk! (ian sign(t))k−q

m!q!(k −m− q)!kk−q

(
S(|t/n|)

)m
f (6)

where the limits are taken with respect to the norm in F .
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Proof. At first we obtain the above formulas for the case t > 0, i.e. |t| = t and sign(t) = 1. 
Let us check the conditions of the Chernoff theorem for the L(F)-valued mapping R(t) =
exp(ia(S(t) − I)) and the operator iaH.

For fixed t > 0 the operator ia(S(t) −I) is linear and bounded (recall (CT1) for S), so 
the exponent eia(S(t)−I) is well-defined by the power series and the operator eia(S(t)−I) is 
linear and bounded, see Remark 2.4. The continuity of t �−→ R(t) in the strong operator 
topology follows from the continuity of t �−→ S(t) in the strong operator topology and 
the continuity of the exponent in the norm topology. So (CT1) for R is completed. (CT2) 
for R follows from (CT2) for S: R(0) = eia(S(0)−I) = eia(I−I) = e0 = I.

Let us prove (CT3) for R. Remember that (CT1) for S says that for every f ∈ F the 
function Kf : [0, +∞) � t �−→ S(t)f ∈ F is continuous. So by the Weierstrass extreme 
value theorem the set Kf ([0, 1]) ⊂ F is compact and hence bounded for each f ∈ F . This 
means that for each f ∈ F there exists a number Cf > 0 such that ‖S(t)f‖ ≤ Cf for all 
t ∈ [0, 1]. Next, by the Banach–Steinhaus uniform boundedness principle the family of 
linear bounded operators (S(t))t∈[0,1] is bounded collectively, i.e. there exists a number 
C > 0 such that ‖S(t)‖ < C for all t ∈ [0, 1]. Suppose that linear operator A: F → F
is bounded. Then eA = I + A + A2 1

2! + A3 1
3! + . . . = I + A + A2∑∞

n=0
An

(n+2)!
denote=

I + A + A2Ψ(A). One can see that

‖Ψ(A)‖ =

∥∥∥∥∥
∞∑

n=0

An

(n + 2)!

∥∥∥∥∥ ≤
∞∑

n=0

‖A‖n
(n + 2)! ≤

∞∑
n=0

‖A‖n
n! = e‖A‖.

Set A = ia(S(t) − I). Then the estimates ‖A‖ = ‖ia(S(t) − I)‖ ≤ |a|(C + 1) and 
Ψ(ia(S(t) − I)) ≤ e|a|(C+1) hold for all t ∈ [0, 1]. So for all t ∈ (0, 1] we have

R(t)f − f

t
= ia

S(t)f − f

t
− a2Ψ

(
ia(S(t) − I)

)(
S(t) − I

) S(t)f − f

t
. (7)

Suppose that f ∈ D is fixed. Due to (CT3) for S there exists a limit limt→0
S(t)f−f

t =
Hf , so S(t)f−f

t = Hf + o(1). In the right-hand side of (7) the last term for t ∈ (0, 1] can 
be estimated as follows:∥∥∥∥−a2Ψ(ia(S(t) − I)) (S(t) − I) S(t)f − f

t

∥∥∥∥
≤ | − a2| · ‖Ψ(ia(S(t) − I))‖ ·

∥∥∥∥(S(t) − I)S(t)f − f

t

∥∥∥∥
≤ |a|2e|a|(C+1)‖(S(t) − I)(Hf + o(1))‖

≤ |a|2e|a|(C+1)
(
‖(S(t) − I)(Hf)‖ + ‖(S(t) − I)(o(1))‖

)
.

If t → 0 then ‖(S(t) − I)(Hf)‖ → 0 by (CT1) and (CT2) for S. Also ‖(S(t) −
I)(o(1))‖ → 0 because ‖o(1)‖ → 0 and for t ∈ (0, 1] we have the norm bound ‖S(t) −
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I‖ ≤ C + 1. So proceeding to the limit t → 0 in (7) we obtain limt→0
R(t)f−f

t =
ia limt→0

S(t)f−f
t = iaHf , which is (CT3) for R.

[(CT4) for S] = [(H, D) has the closure (H, Dom(H))] ⇐⇒ [(iaH, D) has the closure
(iaH, Dom(H))] = [(CT4) for R] because Dom(H) = Dom(iaH).

By the Stone theorem the operator (iaH, Dom(H)) is the generator for the strongly 
continuous group (eiatH)t∈R and of the strongly continuous semigroup (eiatH)t≥0 in 
particular, so (E) for R also holds. (N) with ω = 0 for R follows from the condition 
(S(t))∗ = S(t) and the Corollary 2.1.

All the conditions of the Chernoff theorem for R are fulfilled, which proves the first 
identity in (1). The second identity in (1) follows from the fact that (eA)n = enA for 
each natural number n and bounded operator A.

To obtain (2) and (3) recall Remark 2.4 which states for the bounded operator A the 
equalities eA =

∑∞
k=0

Ak

k! = limk→∞(I + A
k )k and set A = ian(S(t/n) − I) in (1). Ap-

plying the Newton binomial formula to (2) and (3), one obtains (4) and (5) respectively. 
Applying it to (5) provides (6).

Now let us go back to the general case t ∈ R. Recall that eiatH exists for all real values 
of t thanks to the Stone theorem. To prove (1)–(6) for t < 0 substitute t by −t, a by −a

and apply the generation theorem for the groups from [18] at p. 79. The case t = 0 is 
trivial. �
Remark 3.1. Note that all the formulas stated in Theorem 3.1 are not formal expressions. 
All the limits exist in F , and this is an important part of the theorem’s statement.

Remark 3.2. Note that in Theorem 3.1 f ∈ F is fixed. The theorem does not state the 
uniform convergence of the limits with respect to f ∈ F or with respect to f from some 
subset of F . If F is a space of some functions F � f : Q → C, x �−→ f(x), then the 
theorem does not state the uniform convergence of the limits with respect to x ∈ Q.

Remark 3.3. If the operators (S(t))t≥0 are integral operators, then the formulas ob-
tained in the theorem above include both multiple integration (like Feynman formulas) 
and summation (not like Feynman formulas), this is why we propose to call them quasi-
Feynman formulas. Such formulas give us one of the ways to solve the Cauchy problem 
for the equation ψ′

t(t, x) = iaHψ(t, x).

Remark 3.4. The conditions S(t) = (S(t))∗ and H = H∗ in the theorem above are not 
independent because the Chernoff tangency implies that S(t)f = f +tHf +o(t) as t → 0
for each f from the core of H.

Remark 3.5. If S is Chernoff-tangent to H but S(t) 
= (S(t))∗ for some t, one can 
substitute S(t) by (S(t) + (S(t))∗)/2.

Remark 3.6. One can put a polynomial of S(t) into the exponent, like R(t) = exp[i(a0I+
a1S(t) +a2(S(t))2 + . . .+an(S(t))n)] or compute the values of S(t) in several points like 
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R(t) = exp[i(a0I + a1S(g1(t)) + . . .+ anS(gn(t)))] for the given functions gj : R → R and 
numbers aj ∈ R, or combine these approaches.

Remark 3.7. Yu.A. Komlev and D.V. Turaev have found the following application of the 
Remarks 3.6 and 2.5. Let us consider S(t) − I = S(t)−I

t t as a two-point finite difference 
approximation for d

dtS(t)
∣∣
t=0. Then, if we try e.g. a simple three-point approximation 

d
dtS(t)

∣∣
t=0 ≈ 1

t (−
3
2I +2S(t) − 1

2S(2t)) then the family R(t) = eia
(
− 3

2 I+2S(t)− 1
2S(2t)

)
may 

give better Chernoff approximations to eiatH , than eia(S(t)−I). One can also ask what 
will happen if we take a d-point approximation and then consider d → ∞.

Remark 3.8. For a fixed t, the map S(t): f �−→ S(t)f is usually an integral operator over 
Gaussian measure. If one applies the finite difference approximation approach from Re-
mark 3.7 directly to the function f , i.e. under the sign of the integral, then we can obtain 
a family S(t) with S(t)

∣∣
t=0 = I, d

dtS(t)
∣∣
t=0 = H, d2

dt2S(t)
∣∣
t=0 = 0, . . . , dn

dtnS(t)
∣∣
t=0 = 0

by using fewer terms, because the Gaussian measure is symmetric.

Remark 3.9. Theorem 3.1 will be more useful if one proves that (at least in the most 
important cases) the limit in (4), (5), (6) exists as a double limit, or at least that there 
exists a sequence (kn) of integers on which the limit lim

n→∞
lim
k→∞

can be substituted by the 

limit lim
n→∞

.

4. Heuristic arguments

It is usually not easy to construct a family which is Chernoff-equivalent to (eitH)t≥0

because the conditions of the Chernoff theorem obstruct each other in some sense when 
dealing with a Schrödinger equation, especially in the case of infinite-dimensional con-
figuration space Q. The main difficulties are: divergence of integrals – one requires 
regularization, which is a change of the family S, i.e. a disturbing factor for the value at 
zero (CT2) and for the derivative at zero (CT3); proving the norm bound (N), which is 
associated with analytical difficulties and sometimes requires a change of the family S or 
a change of the space F ; the selection of the space F , which is connected to (CT1) and 
with all other conditions of the Chernoff theorem. An example of overcoming these diffi-
culties one can find in [31] for the case Q = R

n. Unfortunately in [31] the number ε such 
that 0 < ε < (2n +6)−1 is fixed and appears in a final Feynman formula, so the technique 
presented in [31] cannot be directly applied in the case of infinite-dimensional Q.

However, in the case of the heat equation and the C0-semigroup (etH)t≥0 the situation 
is usually simpler, e.g. via the Chernoff theorem Feynman formulas can be obtained for 
the case of infinite-dimensional Q [33,35], see also another approach in [5,4]. So the initial 
idea (introduced in [34]) was to use the family (S(t))t≥0 which is Chernoff-equivalent 
to the C0-semigroup (etH)t≥0 for constructing the family (R(t))t≥0 which is Chernoff-
equivalent to the C0-semigroup (eitH)t≥0.
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It helps to separate the conditions of the Chernoff theorem for (R(t))t≥0 into inde-
pendent blocks: existence of the C0-semigroup (E) + Chernoff-tangency (CT) + growth 
of the norm bound (N). The first block is granted by the Stone theorem as H is self-
adjoint. The second block is achieved by arithmetic manipulations to save identity at 
zero and add i to the derivative at zero. If we have an analytic function r: C → C with 
r(0) = 1 and r′(0) = i then we can define R(t) = r(S(t)). By choosing r(z) = ei(z−1)

and S(t) = (S(t))∗ we can use the Corollary 2.1 to obtain the third block. So we come 
to the formulas R(t) = ei(S(t)−I) and eitH = limn→∞(R(t/n))n.

After all we see that in the proof we do not need the Chernoff-equivalence of the 
family (S(t))t≥0 to the C0-semigroup (etH)t≥0, we need only the Chernoff-tangency of 
(S(t))t≥0 to the operator H. Indeed, the proof holds on even if the C0-semigroup (etH)t≥0
does not exist and the norm of S(t) grows at any rate with respect to the growth of t. 
Thus, by allowing quasi-Feynman formulas instead of Feynman ones, a difficult task of 
a direct construction of the family which is Chernoff-equivalent to (eitH)t≥0 is replaced 
by a simpler task of constructing a family which is Chernoff-tangent to H.

Writing ei(S(|t|)−I)sign(t) instead of ei(S(t)−I) arises as formal generalization step from 
the case t ≥ 0 to the case t ∈ R.

5. Application scheme

As already mentioned, C0-semigroups are used to study evolutionary equations 
u′
t(t, x) = Lu(t, x). Basic examples are heat equation u′

t(t, x) = Hu(t, x) and the 
Schrödinger equation ψ′

t(t, x) = iHψ(t, x). Here t ∈ [0, +∞) is time, and the spatial 
variable x ranges over a set Q.

Above we discussed a very general case as we worked only with C0-semigroups and 
C0-groups not taking into account what space Q stays behind them. So the technique 
presented may, potentially, be employed in a case when Q is Rn or some subset of Rn, 
C

n or some subset of Cn, a linear (Hilbert, Banach, etc.) space or some subset of it, 
a lattice [28], a manifold of a finite or infinite dimension, a group, an algebra, a graph 
or ramified surface [17], etc.

If one wants to do this, then F should be a complex Hilbert space of functions 
f : Q → C. With the method presented we can study equations for such functions 
ψ: [0, +∞) × Q → C that for every fixed moment of time t ∈ [0, +∞) the function 
x �−→ ψ(t, x) belongs to F , and the function t �−→ ψ(t, ·) is continuous and differentiable 
as a mapping [0, +∞) → F . The discussion above does not lean on the nature of the 
scalar product in F . For example, it can originate from the fact that F = L2(Q, μ) for 
some measure μ in Q, or it can be based on some other structures. As a very particular 
yet important case let us mention Q = R

3 and F = L2(R3) for the Schrödinger equation.
As for the operator H, we need it to be linear and self-adjoint (hence densely defined 

and closed). For example, H = Δ or H = Δ2 or (Hψ)(x) = (Δψ)(x) − V (x)ψ(x) or 
some other. We need the coefficients of H not to depend on t; nevertheless, they may 
depend on x ∈ Q.
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Next, to construct a family (S(t))t≥0 which is Chernoff-tangent to the operator H
in F = L2(Q, μ) one can use the following identities. They depend on Q and we 
state them without details, just to sketch the idea. Denote a Gaussian measure [16,
24] in Q with a correlation operator B as μB. Let g: Q → R be a function bounded 
from zero and infinity plus some other properties, one can consider g(x) ≡ 1

2 in 
this paragraph as a particular case. Let V : Q → R be a function with V (x) ≤ 0
and some other properties. Then the identities similar to 

∫
Q
f(x + y)μ2tg(x)A(dy) =

f(x) + tg(x)trace[Af ′′(x)] + o(t) and etV (x)f(x) = f(x) + tV (x) + o(t) hold. If one 
denotes (S(t)f)(x) =

∫
Q
f(x + y)μ2tg(x)A(dy), then (S(t))t≥0 is Chernoff-tangent to 

H = g(·)Δ as (S(t)f)(x) = f(x) + tg(x)Δf(x) + o(t). If one denotes (S(t)f)(x) =
etV (x) ∫

Q
f(x + y)μ2tg(x)A(dy) then (S(t))t≥0 is Chernoff-tangent to H = g(·)Δ + V (·)

as (S(t)f)(x) = f(x) + t[g(x)Δf(x) + V (x)f(x)] + o(t). See these and some other useful 
formulas (e.g. for ∇, Beltrami–Laplace operator, (−Δ)n) in more details with precise 
statements in [33,9,32,12,7,31,10,6,29,17].

Now, suppose that all the above conditions are satisfied. Suppose that we have con-
structed a family (S(t))t≥0 which is Chernoff-tangent to H. Then the Cauchy problem 
in F {

ψ′
t(t, x) = iaHψ(t, x); t ∈ R, x ∈ Q

ψ(0, x) = ψ0(x); x ∈ Q

stated for arbitrary ψ0 ∈ F and non-zero a ∈ R has the unique in F solution 
ψ(t, x) =

(
eiatHψ0

)
(x) depending on ψ0 continuously with respect to the norm in F , 

where for every t ∈ R the operator eiatH from the C0-group 
(
eiatH

)
t∈R

in F is 
given by Theorem 3.1. If ψ0 ∈ Dom(H), then the obtained solution is a strong 
solution, and in the general case ψ0 ∈ F it is a mild solution, see [18] for defini-
tions.

6. Examples of application

6.1. One-dimensional equation with bounded smooth potential

A.S. Plyashechnik proposed a simple model to show how the method works and what 
sort of formulas for the solution it provides. The equation considered was previously 
solved by different methods (including Feynman formulas), but quasi-Feynman formulas 
are obtained for the first time.

Suppose that a non-zero number a ∈ R and a differentiable function V ∈ C1
b (R, R)

bounded along with its first derivative are given. Consider the Cauchy problem in 
L2(R1, C)

{
i
aψ

′
t(t, x) = −1

2ψ
′′
xx(t, x) + V (x)ψ(t, x); t ∈ R, x ∈ R

ψ(0, x) = ψ0(x); x ∈ R
(8)
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Let us rewrite it in the form

{
ψ′
t(t, x) = iaHψ(t, x); t ∈ R, x ∈ R

ψ(0, x) = ψ0(x); x ∈ R
(9)

where H is an operator defined for f ∈ W 2
2 (R) by the formula

(Hf)(x) = 1
2f

′′(x) − V (x)f(x).

Here W 2
2 (R) ⊂ L2(R) is the Sobolev class, i.e. the linear space of all the functions 

f ∈ L2(R) such that f ′ ∈ L2(R) and f ′′ ∈ L2(R) where f ′ and f ′′ are the distributional 
derivatives of f . So in Theorem 3.1 one can set F = L2(R) and Dom(H) = W 2

2 (R). This 
corresponds the case Q = R in section 5.

The operator S(t) is constructed as follows. Define

(Ftf)(x) = exp
(
− t

2V (x)
)
f(x)

and

(Btf)(x) = 1√
2πt

∫
R

e
−(x−y)2

2t f(y)dy = 1√
2πt

∫
R

e
−y2
2t f(x + y)dy

for t > 0 and B0f = f . Then let us set S(t) = Ft ◦Bt ◦ Ft, i.e.

(S(t)f)(x) = 1√
2πt

∫
R

exp
(
−y2

2t − t

2

[
V (x) + V (x + y)

])
f(x + y)dy.

It is not very difficult to check (this was done by D.V. Grishin and A.V. Smirnov [21]) 
that all conditions of Theorem 3.1 are fulfilled. To do this one can take the set C∞

0 (R, R)
of all infinitely differentiable functions R → R with compact support for D in the def-
inition of the Chernoff tangency, and then perform the calculations that are similar to 
what is done in [35] in the proof of item 4 of Theorem 4.1.

Now take one of the formulas stated in Theorem 3.1, say, formula (4):

eiatHf = lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−q(ian)m(sign(t))m

q!(m− q)!

(
S(|t/n|)

)q
f.

In our particular case it implies that the Cauchy problem (8) has defined for all t ∈ R, 
the unique in L2(R) solution
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ψ(t, x) = lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−qimamnm(sign(t))m

q!(m− q)!

(
n

2π|t|

)q/2

×
∫
R

. . .

∫
R︸ ︷︷ ︸

q

exp

⎧⎨
⎩−|t|

n

⎡
⎣1

2V (x) +
q∑

p=2
V

⎛
⎝x +

q∑
j=p

yj

⎞
⎠+ 1

2V

⎛
⎝x +

q∑
j=1

yj

⎞
⎠
⎤
⎦
⎫⎬
⎭

× exp

⎡
⎣− n

2|t|

q∑
j=1

y2
j

⎤
⎦ψ0

⎛
⎝x +

q∑
j=1

yj

⎞
⎠ q∏

p=1
dyp.

6.2. Equation with a polyharmonic Hamiltonian

Another example is provided by M.S. Buzinov [11]. Here we see the solution to the 
Cauchy problem for a type of Schrödinger equation that was not previously represented in 
a form of Feynman formula, but Feynman formulas were obtained for the corresponding 
heat equation [12].

In this subsection we assume Q = R. The function V : R → R is bounded and con-
tinuous. Arbitrary integer N ≥ 2 is fixed. Consider the Cauchy problem for the higher 
order heat type parabolic equation

{
∂
∂tω(t, x) = −(−Δ)Nω(t, x) − V (x)ω(t, x); t ∈ R, x ∈ R,

ω(0, x) = ω0(x); x ∈ R,
(10)

and for the corresponding Schrödinger equation

{
i ∂
∂tψ(t, x) = (−Δ)Nψ(t, x) + V (x)ψ(t, x); t ∈ R, x ∈ R,

ψ(0, x) = ψ0(x); x ∈ R.
(11)

Denoting H = (−Δ)N + V one can see that the equation (10) can be rewritten as 
ω′
t = −Hω. The equation (11) can be rewritten as iψ′

t = Hψ, which is the same as 
ψ′
t = −iHψ. The Hamiltonian H is a self-adjoint operator H: Dom(H) → L2(R), where 

Dom(H) is a domain of the closure in L2(R) of the operator (−Δ)N initially defined on 
the Schwarz space S(R) ⊂ L2(R).

Feynman formulas for a heat-type equation. Let us (following M.S. Buzinov) define 
for all ω ∈ L2(R)

(B(t)ω)(x) = (l(t) ∗ ω) (x) =
+∞∫

−∞

l(t, y)ω(x− y)dy =
+∞∫

−∞

l(t, y)ω(x + y)dy

where for all t > 0 and all y ∈ R we define l(t, y) by the equality
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(l(t))(y) = l(t, y) = l(t,−y) = 1
2π

∫
R

eixydx

1 + tx2N

which can be rewritten as a finite sum using the Cauchy residue theorem:

1
2π

∫
R

eixydx

1 + tx2N =
(
Nt

1
2N

)−1 ∑
1≤k≤N+1

2

[
αk cos

(
βkt

−1
2N |y|

)
+ βk sin

(
βkt

−1
2N |y|

)]

× exp
(
−αkt

−1
2N |y|

)
where for integer and positive k is defined

αk = sin (2k − 1)π
2N , βk = cos (2k − 1)π

2N .

Let us also denote (F (t)ω)(x) = e−tV (x)ω(x). M.S. Buzinov proved [11] that 
a) B(t)∗ = B(t) for all t ≥ 0, b) B(t) is Chernoff-equivalent to e−t(−Δ)N , c) F (t) ◦B(t)
is Chernoff-equivalent to e−tH, d) for all ω0 ∈ L2(R) the Cauchy problem (10) has the 
solution

ω(t, x) =
(
e−tHω0

)
(x) =

(
lim
n→∞

(F (t/n) ◦B(t/n))nω0

)
(x)

= lim
n→∞

+∞∫
−∞

. . .

+∞∫
−∞︸ ︷︷ ︸

n

ω0

(
x +

n∑
k=1

yk

)(
n∏

k=1

l

(
t

n
, yk

))

× exp

⎡
⎣−t

n
V (x) − t

n

n−1∑
k=1

V

⎛
⎝x +

k∑
j=1

yk

⎞
⎠
⎤
⎦ dy1 . . . dyn.

Quasi-Feynman formulas for a Schrödinger equation. Operators F (t) and B(t) are self-
adjoint, but F (t) ◦B(t) is not. Nevertheless we can define (F1/2(t)ω)(x) = e−

1
2 tV (x)ω(x)

and S(t) = F1/2(t) ◦ B(t) ◦ F1/2(t) which provides S(t)∗ = S(t). This allows to employ 
Theorem 3.1 and obtain the solution of (11) in the form of a quasi-Feynman formula.

Indeed, let us set in Theorem 3.1 F = L2(R), S(t) = F1/2(t) ◦B(t) ◦ F1/2(t), H = H, 
a = −1, D = S(R) ⊂ L2(R) – the Schwarz space, and Dom(H) as before in this 
subsection. We have

(S(t)ω)(x) = e−
1
2 tV (x)

+∞∫
−∞

l(t, y)e− 1
2 tV (x+y)ω(x + y)dy.

Now we take one of the formulas from Theorem 3.1, say, formula (4) and after calculation 
of the (S(t/n)qω)(x) arrive to the following solution for (11):
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ψ(t, x) = lim
n→∞

lim
k→∞

k∑
m=0

m∑
q=0

(−1)m−qimamnm(sign(t))m

q!(m− q)!

×
+∞∫

−∞

. . .

+∞∫
−∞︸ ︷︷ ︸

q

ψ0

⎛
⎝x +

q∑
j=1

yj

⎞
⎠ q∏

p=1
l

(
|t|
n
, yp

)
exp
[
−|t|
2n V (x)

]

× exp

⎡
⎣−|t|

n

q∑
p=1

V

⎛
⎝x +

q∑
j=p

yj

⎞
⎠+ |t|

2nV

⎛
⎝x +

q∑
j=1

yj

⎞
⎠
⎤
⎦ dy1 . . . dyq.
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