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Welcome to IEEE ICHI 2017! 
  
The IEEE International Conference on Healthcare Informatics (ICHI) series is the premier community 
forum concerned with the application of computer science principles, information science principles, 
information technology, and communication technology to address problems in healthcare, public health, 
and everyday wellness. It serves as a venue for discussion of innovative technical and empirical 
approaches, highlighting end-to-end applications, systems, and technologies, even if available only in 
prototype form, as well as related social and ethical implications.  
  

The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017) took place in Park City, 
Utah, in the heart of the Rocky Mountains, from August 23rd to August 26th, 2017. 
  

As in the past, the conference featured a number of keynote addresses from renowned researchers and 
practitioners, a multi-track technical and industry program including oral presentations and poster 
sessions, a panel featuring relevant agencies and foundations funding research in this area, specialized 
workshop and tutorials, and a doctoral consortium. 
  

The call for papers attracted 117 submissions from 25 different countries along 3 main tracks: Human 
Factors, Systems, and Analytics. In addition, 11 poster submissions were received (as abstracts only). All 
submissions were peer-reviewed for relevance, technical soundness, originality, and overall quality. 31 
papers were selected for oral presentations (27% acceptance rate), and presented in 6 non-overlapping 
sessions. Another 40 papers were selected for poster presentations (61% acceptance rate). Finally, 7 of the 
11 poster/abstract-only submissions were also accepted. To ensure lively poster sessions, rapid-fire 
sessions were introduced this year giving each poster presenter 1 minute/1 slide to highlight their work in 
a short plenary session preceding their poster session. 
  

The scientific tracks were complemented by an industry track featuring 2 poster presentations and 4 guest 
speakers from very large healthcare companies; a panel comprising representatives from the National 
Science Foundation, the National Institutes of Health, and the Robert Wood Johnson Foundation 
discussed funding opportunities; and a doctoral consortium that attracted 8 doctoral students who were 
able to present a poster of their research and receive individual feedback. 
  

We are most grateful to our Program Committee consisting of over 70 members from 19 countries for 
their tireless work in providing meaningful and constructive reviews, selecting, and organizing papers, 
tutorials and workshops. We also express appreciation to our Keynote and Invited Speakers for graciously 
accepting our invitations, and kindly sharing their experience and expertise with the ICHI 2017 
community. We are indebted to our sponsors, both corporate and government, for their financial support, 
including travel grants to 15 students. Finally, we express our thanks to the staff at Brigham Young 
University’s Conferences and Workshops for their invaluable logistics support throughout. 
  

We hope you enjoy the material found in these Proceedings, and look forward to seeing you again next 
year! 
  
Julio Facelli and Christophe Giraud-Carrier 
General Co-Chairs 
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On Consolidated Predictive Model of the Natural
History of Breast Cancer Considering Primary
Tumor and Primary Distant Metastases Growth

Ella Y. Tyuryumina, Alexey A. Neznanov
International Laboratory for Intelligent Systems and Structural Analysis (ISSA)

National Research University Higher School of Economics, NRU HSE
Moscow, Russia

Email: eyatyuryumina@gmail.com, aneznanov@hse.ru

Abstract—We propose a new mathematical growth model of
primary tumor and primary metastases which may help to
improve predicting accuracy of breast cancer process using an
original mathematical model referred to CoM-IV and corre-
sponding software. The CoM-IV model and predictive software:
a) detect different growth periods of primary tumor and pri-
mary metastases; b) make forecast of patient survival; c) have
higher average prediction accuracy than the other tools; d) can
improve forecasts on survival of BC and facilitate optimisation
of diagnostic tests. The CoM-IV enables us, for the first time,
to predict the whole natural history of primary tumor and
primary metastases growth on each stage (pT1, pT2, pT3, pT4)
considering only on primary tumor sizes. Summarising: CoM-
IV a) describes correctly primary tumor and primary distant
metastases growth of IV (T1-4N0-3M1) stage with (N1-3) or
without regional metastases in lymph nodes (N0); b) facilitates
the understanding of the appearance period and manifestation
of primary metastases.

Index Terms—breast cancer; exponential growth model; math-
ematical model; primary tumor; primary metastases; survival

I. INTRODUCTION

Breast cancer (BC) is the most common cancer and also the
leading cause of cancer mortality in women worldwide. BC
accounts for about 20-25% of all cancer types in women [1].

Finding algorithms to predict the growth of tumors has
piqued the interest of researchers ever since the early days of
cancer research. Many studies were carried out as an attempt
to obtain reliable data on the natural history of BC growth.

Mathematical modeling can play a very important role in
the prognosis of BC. Various mathematical models were built
to describe primary tumor (PT) growth and distant metastases
(MTS) growth separately [2].

These days, the exponential, Gompertz, logistic and von
Bertalanffy models are included into a group of classical
mathematical models of PT growth [3]. For the breast data, the
observed linear dynamics were best captured by exponential
model, which is situated for description of PT growth and,
also, for secondary distant MTS growth [4]–[14]. As for
Gompertz and logistic models, they are used rarely in order to
describe PT growth or secondary distant MTS growth [15]–
[18].

The duration of the period from the first BC cell to death
refers to the natural history of BC [19]. secondary distant
MTS appear in various time in different organs. The interval
between removal of PT and the first clinical manifestation of
MTS (MTS free survival time or nonvisible period) determined
by PT size, the number of affected lymph nodes and MTS
growth rate [4]–[8], [10]–[14], [16]–[18], [20]–[22]. Survival
(lifetime) is the period between the date of diagnosis (TNM
staging system of BC) and the date of a patient death [1].
Survival among BC patients (%) indicates the percentage of
people in a study or treatment group who are alive for a given
period of time after diagnosis. The percentage of patients who
live at least 5-, 10-, 15-, 20-, 25- and 30-years after being
treated PT is defined as 5-, 10-, 15-, 20-, 25- and 30-years
observed survival rate of BC patients [1], [16].

Various forms of genetic instability and increased muta-
tion rate can lead to a development of malignancies. I.A.
Rodriguez-Brenes et al. [2] provides a complete overview of
the history of mathematical models of PT growth. Nowadays,
as I.A. Rodriguez-Brenes concerned, a group of classical
mathematical models of PT growth consists of the exponential
(with or without free initial volume), Gompertz, logistic and
von Bertalanffy models [3]. For the breast data, the observed
linear dynamics is best captured by exponential model that is
situated for description of PT growth and, also, for secondary
distant MTS growth [4]–[8], [10]–[14], [20]. As for Gompertz
and logistic, models are used rarely in a description of PT and
secondary distant MTS growth processes [15]–[18].

S. Benzekry et al. (2014) [3] has completed the experimental
studying about the growth of primary BC and lung cancer. As
researchers indicate, both of the Gompertz and exponential
growth model describes primary BC most voraciously.

Unfortunately, the available papers for this do not offer
mathematical models which describe MTS growth, relating
with TNM classification. Consequently, a new mathematical
model ought to be sough to agree with TNM classification,
have higher prediction score and be independent from statis-
tical parameters.

It is important to highlight that the natural history of BC
continues after removal of PT. The next stage began with



secondary distant MTS manifestation. When the MTS reach
the threshold volume, patients die from process of BC [3]–
[8], [10]–[14], [16], [20], [23], [24]. All BC patients get a
comprehensive treatment of PT, so the whole natural history
of BC should include the period of secondary distant MTS
growth:

1) the nonvisible period of PT growth;
2) the visible period of PT growth, diagnostics and removal

of PT;
3) the nonvisible period of secondary distant MTS growth;
4) the visible period of secondary distant MTS growth,

diagnostics, treatment and patient’s death.

Time

Visible period of PT

Diameter (mm)

100 mm

5 mm

t1tumor

tlethal1tumor

68% 32%

U
S 1

U
S 2

PT diameter D2 - US2

PT diameter D1 - US1

Non-visible period of MTS

Non-visible period of PT

Visible period of MTS

Date of
surgery tlethal1mts

Dates of
ultrasonography

t1mts

1 mm

tXmts

tlethalXmts

ttmr5mm tmts5mm

Diagnostic level

Fig. 1. Scheme of the whole natural history of BC (stage I-II) [10], [12],
[13], [20], [23], [24]. As it should be highlighted, the main feature is that
model describes PT growth and secondary distant MTS growth as a whole
(as indivisible dependent process).
Ordinate (Y): Diameter of tumor (mm). Abscissa (X): Time (years).

Legend of Fig. 1:
t1tmr — date of appearance of the first BC stem

cell;
t1tmr5mm — date of appearance of the visible PT with

size 5 mm;
tlethal1tumor — date of appearance of the lethal PT with

size 100 mm (when PT reaches the thresh-
old volume);

t1mts — date of appearance of the first MTS stem
cell, which coincides with the period of
20th doubling time;

t1mts5mm — date of appearance the first visible MTS
of breast cancer with size 5 mm;

tlethal1mts — date of appearance the first lethal MTS of
BC with size 100 mm (when secondary
distant MTS reaches the threshold vol-
ume);

tXmts — date of appearance nXmts cell of BC MTS,
which coincides with date of surgery;

tXmts5mm — date of appearance nXmts visible BC MTS
with size 5 mm;

tlethalXmts — date of appearance nXmts lethal BC MTS
with size 100 mm;

US1 — date and sizes of the first US of PT;
US2 — date and sizes of the second US of PT.
Given the relation between PT and MTS, the problem of

discovering BC process seems to be twofold: firstly, it is
important to describe the whole natural history of BC to
understand the process as a whole; secondly, it is necessary

to predict the period of a clinical MTS manifestation. Yet,
the available papers for this do not offer mathematical growth
models of MTS that relate to TNM classification. That leads
to the demand of building a mathematical model that rests
on exponential classical mathematical model, describes whole
natural history of BC and corresponds to TNM classification.
Moreover, the latter aspect of the problem is reflected only
by statistical tools that are available as open source. In other
words, a patient provides diagnostic data to predictor, and
the tool calculates MTS free period and survival according
to statistical data. Consequently, it is necessary to create a
predictor that makes forecast for patient independently from
statistical data, and requires no expensive diagnostic data.
Thus, this research possesses a novelty since it is the first time
the following tools for BC treatment have been proposed: a)
whole natural history of BC; b) mathematical growth model
corresponding to TNM; c) non-statistical software tool for
prediction of BC developing.

To avoid terminological ambiguities, we dwell upon re-
calling some standard terms and TNM classification of BC
(Tumor-Node-MTS) [1].

TABLE I
TNM STAGING SYSTEM

Stage Parameter T Parameter N Parameter M
I T1 N0 M0
II T1, T2 N0, N1 M0
III T1, T2, T3, T4 N1, N2, N3 M0
IV any T any N M1

Legend of Table 1:
parameter T — size of PT: T1 = 0.1 d  2 cm; T2 =

2 d  5 cm; T3 = d > 5 cm; T4 =
spread;

parameter N — the number of affected lymph nodes:
N0: n = 0; N1: n = 1-3; N2: n = 4-9;
N3: n = 10;

parameter M — existence of distant MTS (lungs,
bones, liver, etc): M0 = MTS not exist;
M1 = MTS exist.

The goal of the research is to improve the prediction
accuracy of BC process, using the original Consolidated
mathematical growth Model of primary tumor and primary
metastases (CoM-IV). To make precise the scope of the study
it is necessary to fulfil several tasks:

1. To model the whole natural history of PT and MTS for
stage IV;

2. To develop adequate and precise CoM-IV which reflects
relations between PT and primary MTS building Consol-
idated mathematical growth model for PT and primary
MTS, IV stage, (CoM-IV);

3. To analyse the CoM-IV scope of applications;
4. To implement the model as a software tool.
Practical value. As it turns out, a new software tool for

prediction of BC developing can calculate more accurately: a)
MTS free period; b) survival for stage IV of BC including



primary MTS and primary MTS. Moreover, the predictor can
estimate a quality of treatment which was prescribed to a
patient. Summarising: CoM-IV a) describes correctly PT and
primary distant MTS growth of IV (T1-4N0-3M1) stage with
(N1-3) or without regional metastases in lymph nodes (N0);
b) facilitates the understanding of the appearance period and
manifestation of primary MTS.

II. MATERIALS AND METHODS

Consolidated mathematical growth Model of PT and sec-
ondary MTS, I-II stages, (CoMPaS)

In 2015 we proposed a consolidated mathematical growth
model of PT and secondary MTS (CoMPaS) that describes
correctly PT growth (parameter T) as well as secondary
MTS growth (parameter M), corresponds to TMN [25], [26].
Also, the CoMPaS might facilitate the survival (lifetime) and,
as a consequence, make predictions of a future metastatic
manifestation after removal of the PT.

It is important to define several admissions (1-3 [3]–[13],
[20], [24], [27]):

1) the exponential growth model was used to describe ”nat-
ural” growth rate of primary BC;

2) natural rate of secondary distant MTS is the same as
”natural” growth rate of primary BC;

3) the period of appearance the first metastatic cell of
secondary distant MTS coincides with the 20th doubling
of primary BC (Fig. 2 ). It allows us to define the
nonvisible growth period of MTS and the initial period
of nonvisible MTS manifestation;

4) the whole nature history of the PT and secondary distant
MTS is 60 doublings (Fig. 3).
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Fig. 2. The first MTS cell appears on the 20th doubling of PT

The CoMPaS is based on exponential growth model and
consisted of nonlinear and linear determined equations [3]–
[14], [18], [20]–[22], [24], [27]:
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Fig. 3. The whole nature history of the PT and secondary distant
MTS is 60 doublings

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

dV

dt
=

log 2

DT
V, t  DT log2

✓
✓ DT

log2
V0

◆
;

dV

dt
= ✓ log V, t > DT log2

✓
✓ DT

log2
V0

◆
;

V (t = 0) = V0

Survival = PTlog(V ) +Nonvislog + V islog = 60;

TV DTnon = TV DTvis =
NonV isdays + V isdays
NonV islog + V islog

;

log 2
DT — the fraction of proliferative cells

times;
✓ — drives the linear phase;
pTlog(V ) — the number of PT doublings;
Nonvislog — the number of doublings for nonvisi-

ble growth period of MTS;
V islog — the number of doublings for visible

growth period of MTS;
TV DT — tumor volume doubling time;
60 doublings — the whole nature growth history of the

PT and secondary distant MTS.
According to M. Schwartz (1961), the doubling time (DT )

can be calculated via the measurement of tumor volume (V1)
at surgery t1, the first measurement of tumor volume (V0) at
diagnostic t0 and the period between the measurements (days)
(�t = t1 � t0) [24]:

DT =
log 2 (�t)

log V1 � log V0

Consolidated mathematical growth model of PT and primary
MTS, IV stage, (CoM-IV)

Stage IV (T1-4N1-3M1) means that secondary distant MTS
exist meanwhile PT is growing (M1 - lungs, bones, liver, etc.)
[1], [28]. Five-year survival rate of stage IV is about 20-25%
among BC patients [16]. Unfortunately, the available papers
for this do not offer a mathematical model that describes stage
IV of BC, i.e. the simultaneous growth of PT and primary
distant MTS.



We propose a new mathematical growth model for PT and
primary MTS. The model may help to improve predicting
accuracy of BC process using an original mathematical model
referred to CoM-IV and corresponding software.

The CoM-IV rests on CoMPaS and complemented by
formulas that describes correcting coefficient of primary MTS
growth rate (KpMts) relating with PT growth rate, tumor
volume doubling time of primary MTS (TV DTpMts) relating
with TVDT of PT:

8
>>>>><

>>>>>:

pMtslog(m) = pTlog(V ) � 20;

KpMts =
pMtslog(V )

pMtslog(m)
;

TV DTpMts =
TV DTpT

KpMts
;

pMtslog(m) — the number of primary MTS dou-
blings, corresponding to IV stage;

pTlog(V ) — the number of PT doublings;
KpMts — correcting coefficient of primary MTS

growth rate, relating with PT growth
rate;

TV DTpMts — tumor volume doubling time of pri-
mary MTS, relating with Tumor
volume doubling time of the PT
(TV DTpT );

pMtslog(V ) — the number of primary MTS dou-
blings.

III. RESULTS

Whole Natural History and calculations

The ”whole natural history” of PT and primary MTS
growth of BC for different stages (parameter T from TNM),
according to CoMPaS and CoM-IV. Tab II provides calcula-
tions for the whole natural history of stageIV.

Legend of Tab. II:

• TNM parameters depend on PT size: T1, T2, T3, T4, N1,
N2, N3, M1 [1] (see detailed description on Tab. I);

• row 1 uses data from tables of paper [28];
• row 2 is calculated from row 1;
• row 3 uses data from figure of paper [16];
• pT(D) means a mean size (mm) of primary tumor at

surgery (removal PT);
• pTlog(V ) means the number of doublings of PT at surgery

(removal PT);
• TV DTpT means a mean tumor volume doubling time of

PT at surgery (removal PT);
• pMts(D) means a mean size (mm) of primary distant

MTS at surgery (removal PT);
• KpMts means a mean correcting coefficient of MTS

growth rate.
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Fig. 4. Scheme of the whole natural history of BC. Stage IV

TABLE II

pT1aN1-3M1 (Fig. 5)
pT(D) 5.0 4.5 5.0
pTlog(V ) 26.9 26.4 26.9
TV DTpT 80.0 80.0 80.0
pMts(D) 5.0 9.0 50.0
pMtslog(m) 26.9 29.4 36.9
KpMts 3.9 4.6 5.34
TV DTpMts 20.5 17.4 15.0

pT1bN1-3M1 (Fig. 6)
pT(D) 5.0 8.5 10.0
pTlog(V ) 26.9 29.2 29.0
TV DTpT 75.0 75.0 75.0
pMts(D) 5.0 9.0 50.0
pMtslog(m) 26.9 24.9 36.9
KpMts 3.9 3.2 3.72
TV DTpMts 19.2 23.4 20.1

pT1cN1-3M1 (Fig. 7)
pT(D) 10.0 15.1 20.0
pTlog(V ) 29.9 31.7 32.9
TV DTpT 70.0 70.0 70.0
pMts(D) 5.0 9.0 50.0
pMtslog(m) 26.9 29.4 36.9
KpMts 2.7 2 2.52 2.86
TV DTpMts 25.8 27.8 24.5

pT2N1-3M1 (Fig. 8)
pT(D) 20.0 28.5 50.0
pTlog(V )) 32.9 34.4 36.9
TV DTpT ) 65.0 65.0 65.0
pMts(D) 5.0 9.0 50.0
pMtslog(m) 26.9 29.4 36.9
KpMts 2.09 2.04 2.19
TV DTpMts 31.2 31.8 29.7

pT3N1-3M1 (Fig. 9)
pT(D) 50.0 64.6 70.0
PTlog(V )) 36.9 38.0 38.3
TV DTPT ) 60.0 60.0 60.0
pMts(D) 5.0 9.0 50.0
PMtslog(m) 26.9 29.4 36.9
KPMts 1.59 1.64 2.01
TV DTPMts 37.7 36.7 29.8

A. Limitations

Model describes only stage IV of breast cancer [2], [3],
[14].
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B. Summary

The ”whole natural history” of PT and primary MTS
growth of BC for different diameters of primary tumor (pa-
rameter T from TNM) was described via CoM-IV.

The CoM-IV allows us to calculate different growth periods
of PT and primary MTS: 1) ”non-visible period” for primary
tumor; 2) ”non-visible period” for primary MTS; 3) ”visible
period” for primary MTS.

Tab. III illustrates the variety of KpMts. The higher KpMts

is, the shorter TV DTpMts, the lower lifetime of patient and
the worse forecast are.

TABLE III
SUMMARY

Stage Primary MTS KpMts

pT1a ( 1 mm < d  5 mm) 3.90 - 5.34
pT1b ( 5 mm < d  10 mm) 5 mm < d  50 mm 3.72 - 3.90
pT1c (10 mm < d  20 mm) 2.72 - 2.86
pT2 (20 mm <d  50 mm) 2.09 - 2.28

pT3-4 (50 mm <d ) 1.59 - 2.01



Predictor

At this stage, it is relevant to shed light on predictor
specifications. The CoM-IV was implemented as a software
tool. The application is build using Swift and referred as
CoMPaS.

TABLE IV
INFORMATION

Developer Ella Tyuryumina
Category Medicine
Updated 5.04.2017
Version 2.0
Size 29 MB
Compatibility Requires iOS 9.1 or later.

Compatible with iPhone and iPod touch
Languages English

INPUT DATA:
• the first ultrasound diag-

nostic data:
– date (dd.mm.yyyy)
– diameter (mm)

• the second ultrasound
diagnostic data:

– date (dd.mm.yyyy)
– diameter (mm)
– diameter of primary

MTS (mm)

OUTPUT DATA:

• forecast:

– the number of
months

– category of fore-
cast:

⇤ favorable
⇤ mid-favorable
⇤ unfavorable

Date	1:	27.01.2015
US	1:	

Diameter	of	PT:	6
Date	2:	27.06.2015
US	2:	

Diameter	of	PT:	6
Diameter	of	primary	MTS:	6 Forecast: unfavorable

Fig. 10. Clinical example CoM-IV

It is necessary to collect predictions in one database to
compare forecasts with real data and estimate effectiveness
of proposed model. Consequently, the CoMPaS connects to
database that allows us to test application and model.

As it turns out, the new predictive tool: 1) is a solid
foundation to develop future studies of BC models; 2) does not
require any expensive diagnostic tests; 3) is the first predictor
which makes forecast using only current patient data, whilst
the others are based on the additional statistical data.

IV. CONCLUSION

The CoM-IV: a) describes correctly PT and primary distant
MTS growth of IV (T1-4N0-3M1) stage with (N1-3) or
without regional MTS in lymph nodes (N0); b) facilitates the
understanding of the survival period of patients with primary
MTS (T1-4N1-3M1 stage IV).

The CoM-IV describes correctly (T1-4N1-3M1 stage IV):
1) the period of PT growth and corresponds to TNM classi-
fication (parameter T); 2) the period of primary distant MTS
growth and 5-10 years survival of patients with stage IV of
BC.

The CoM-IV calculates the variety of correcting coefficients
of primary MTS growth rate, relating with PT growth rate. The
constraints of application CoM-IV are imposed.

At this stage, it is relevant to dwell upon the work still to
be done: 1) testing the CoM-IV on clinical data; 2) analysing
forecasts statistically; 3) expanding the limits of applicability
of the CoM-IV, in other words, add parameters that correspond
to affected lymph nodes (N1-3); 4) implementing CoM-IV to
medical practice.
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