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Abstract. We prove that the group of automorphisms of any quasi-projective surface S in finite charac-

teristic has the p-Jordan property.

1. Introduction

Groups of regular and birational automorphisms of algebraic varieties are very interesting to study. How-
ever, some of them are immense, they can have infinite dimension or infinite number of connected components.
One approach is to study the structure of their finite subgroups. J.-P. Serre in [Ser09] proved that any finite
subgroup of the Cremona group of rank 2, i.e. the group of birational automorphisms of P2, has a normal
abelian subgroup of bounded index. Then he conjectured that Cremona group of any rank satisfy the same
property:

Definition 1.1. A group Γ satisfies the Jordan property if there exists a number J such that for any finite
subgroup G ⊂ Γ we can find a normal abelian subgroup A ⊂ G of index less than or equal to J .

This property is named after C. Jordan who showed that it holds for GLn(C), see [CR62, Theorem 36.13].
Serre’s conjecture motivated the study of the Jordan property for regular and birational automorphism groups
for many different varieties.

A foundational statement of this type was proved by V. Popov in [Pop11, Theorem 2.32]: he showed that
in characteristic zero the group of birational automorphisms of any surface S satisfies the Jordan property
for all but one birational class of surfaces. Also S. Meng and D.-Q. Zhang in [MZ18] showed that the Jordan
property holds for groups of regular automorphisms of all projective varieties over a field of characteristic
zero. Finally, Yu. Prokhorov and C. Shramov in [PS16] proved the Jordan property for Cremona groups of
all ranks assuming the Borisov–Alexeev–Borisov conjecture which was later proved by C. Birkar in [Bir21].

Another remarkable result in this area is due to T. Bandman and Yu. Zarhin [BZ15]: they showed that
groups of automorphisms of quasi-projective surfaces over a field of characteristic 0 have the Jordan property.

An interesting question arises: can these results be extended to finite characteristic? Many groups defined
over fields of finite characteristic does not satisfy the Jordan property. In fact, this property is not true even
for the group GLn(Fp). In view of this F. Hu suggested the following analogue of the Jordan property:

Definition 1.2 ([Hu20, Definition 1.6]). We say that the group Γ is p-Jordan, if there exist constants J(Γ)
and e(Γ) depending only on Γ such that any finite subgroup G ⊂ Γ contains a normal abelian subgroup A
and

[G : A] 6 J(Γ) · |Gp|e(Γ),

where Gp is a Sylow p-subgroup of G.

This definition is a slight modification of the standard Jordan property and gives us some information
about finite subgroups of the whole group whose order is coprime with p. Definition 1.2 was motivated by a
theorem proved by M. J. Larsen and R. Pink [LP11] which asserts that the p-Jordan property holds for the
group GLn(Fp), see also [BF66]. Then F.Hu generalized the result by S. Meng and D.-Q. Zhang to finite
characteristic:

Theorem 1.3 ([Hu20, Theorems 1.7, 1.10]). Let k be a field of characteristic p > 0. Then for any projective
variety X defined over k the group Aut(X) is p-Jordan.

The next interesting and natural question is whether we can prove the p-Jordan property for groups of
birational automorphisms of projective varieties over a field of finite characteristic. Recently, Y. Chen and C.
Shramov studied this question and managed to generalize V. Popov’s result [Pop11] to finite characteristic:
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Theorem 1.4 ([CS21, Theorem 1.7]). Let k be a field of characteristic p > 0 and S be an irreducible
algebraic surface defined over k. Then the group of birational automorphisms Bir(S) is p-Jordan unless S is
birational to the product E × P1 of an elliptic curve E and a projective line.

In this paper we are going to study another question connected to this theme, namely, we consider groups
of regular automorphisms of quasi-projective surfaces over a field of finite characteristic. Our goal is to prove
an analogue of T. Bandman and Yu. Zarhin theorem [BZ15] in finite characteristic:

Theorem 1.5. If S is a quasi-projective surface defined over a field k of characteristic p > 0, then the group
Aut(S) is p-Jordan.

The first part of the proof of this theorem is similar to that in [BZ15]. It is a series of reductions leading
us to the situation when S is a surface equipped with a surjective regular map π : S → E to an elliptic
curve E such that a general fiber of π is P1. Then [BZ15] shows that Aut(S) is a subgroup in Aut(S) for
some smooth projective closure S of S, then using the study [Zar15] of biregular automorphisms of projective
ruled elliptic surfaces they get the result.

In the case of finite characteristic the analogue of the theorem proved in [Zar15] is unknown. In its place,
we will use Theorem 1.3 in combination with an analysis of the embedding Aut(S) ⊂ Bir(S) and prove our
theorem.

An important detail in our proof is the fact that if S \S contains a curve C which maps dominantly to E
then any birational automorphism of S does not contract C, see Lemma 2.7. This implies that any regular
automorphism of S can be extended to a regular automorphism of a larger open subset of S which contains
an open subset of C. This is true since the multisection C cannot be a rational curve.

This is the reason why the proof of Theorem 1.5 cannot be easily extended to dimension 3 since in finite
characteristic there exist several examples of unirational non-rational surfaces A, in Example 2.10 we recall
a construction of such surface introduced by T. Shioda. If the direct product P1 ×A contains a rational
surface which projection to A is surjective, then Lemma 2.7 fails for open subsets of the product P1×A and
possibly this can lead to a construction of quasi-projective threefold which is not p-Jordan.

Acknowledgements. I am very grateful to my advisor, Constantin Shramov, for suggesting this problem
as well as for his patience and invaluable support. This work is supported by Russian Science Foundation
under grant №18-11-00121.

2. Automorphisms of quasi-projective surfaces

In this section we are going to prove Theorem 1.5. We will need the following well-known assertion which
shows that the p-Jordan property holds for finite extensions of p-Jordan groups:

Lemma 2.1 (see, e.g., [CS21, Lemma 2.8]). Assume that a group Γ contains a p-Jordan subgroup Γ′ of finite
index. Then Γ is p-Jordan.

We consider an irreducible quasi-projective surface S. Denote by S its projective closure. That is, S is
a projective surface such that S embeds into S as a dense subvariety. Any automorphism of S induces a
birational automorphism of S.

Lemma 2.2. If S is an irreducible surface which is not birational to a product P1 × E of a projective line
and an elliptic curve E, then the group Aut(S) is p-Jordan.

Proof. Any automorphism of S induces a birational automorphism of S. Since the group Bir(S) is p-Jordan
by Theorem 1.4 we get the result. �

Now we study quasi-projective surfaces S which are birational to the product P1 ×E of a projective line
and an elliptic curve E. Denote by π : S → E the projection to E. It is the Albanese map; thus it is regular.
Finite subgroups of automorphisms of such surfaces can be represented as extensions of two groups.

Lemma 2.3. Assume that S is a smooth quasi-projective surface over a field k birational to P1×E, here E
is a smooth curve of positive genus and π : S → E is a projection. Then there exists an exact sequence:

(2.4) 1→ Bir(S)π → Bir(S)→ Γ,

where Bir(S)π ⊂ PGL(2, k(C)) and Γ ⊂ Aut(E). Moreover, the group Bir(S)π is p-Jordan.
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Proof. See, for instance, [CS21, Corollary 2.14, Lemma 4.16]. �

Now we show that in several cases the group of automorphisms of a rationally connected fibration over an
elliptic curve happens to be p-Jordan. Here we consider the case when Aut(S) fixes a finite subset of fibers
of π.

Lemma 2.5. Assume that S is a smooth quasi-projective surface birational to P1 ×E and π : S → E is the
projection. Denote by Γ the group of automorphisms of E induced by Aut(S). If there exists a finite subset
Z ⊂ E such that Γ preserves Z, then the group Aut(S) is p-Jordan.

Proof. Since Γ preserves Z there exists a subgroup H of Γ of index |Z| which stabilizes a point z ∈ Z. The
group H acts faithfully on E; thus, it is finite and |H| 6 24 by [Sil17, Exercise A.1(b)]. Therefore, |Γ| 6 24|Z|.

Thus, by Lemma 2.3 The group Aut(S) contains a p-Jordan subgroup Aut(S)π of finite index. There-
fore, Aut(S) is also p-Jordan by Lemma 2.1. �

Starting with a smooth quasi-projective surface S birational to P1 × E we can choose a good projective
closure of S.

Lemma 2.6. Assume that S is a smooth quasi-projective surface birational to P1 ×E over an algebraically
closed field k, where E is an elliptic curve and π : S → E is a projection. Then there exists a smooth
projective variety S and a open embedding ι : S ↪→ S such that π induces a morphism π from S to E:

S �
� ι //

π

��

S

π��
E

Proof. Consider some projective closure S
′

of S. We normalize S
′

and then after a sequence of blow-ups we

obtain a smooth model S. Since S is a smooth dense subset in S
′

it does not intersect centers of blow-ups.
Thus, S is a projective closure of S.

The induced map π : S→ E is regular since π is the Albanese map. �

The complement S \S can contain multisections of π. However, any automorphism of S cannot contract
such multisection.

Lemma 2.7. Assume that S is a smooth quasi-projective surface birational to P1 ×E over an algebraically
closed field k, where E is a smooth projective curve of positive genus and π : S → E is a projection. If C is a
curve in S such that π(C) is a dense subset in E, then for any birational automorphism g of S the curve C
does not lie in the exceptional locus of g.

Proof. Let C ⊂ S be an irreducible curve such that π(C) = E. Then C dominates a curve of positive genus
and by [Har77, Corollary IV.2.4] and [Har77, Proposition IV.2.5] the curve C cannot be rational. Thus, C
is not contractible. �

There is many different ways to choose a smooth projective closure of S. Some of them are very useful:

Definition 2.8. Assume that S is a smooth quasi-projective surface birational to P1×E over an algebraically
closed field k, where E is an elliptic curve and π : S → E is a projection. Let S be a smooth projective
closure of S. We say that it is minimal if there is no (−1)-curve C in the complement S \S lying in fiber
of π.

By the following lemma any smooth ruled quasi-projective surface S admits a minimal projective closure.

Lemma 2.9. Assume that S is a smooth quasi-projective surface birational to P1 ×E over an algebraically
closed field k, where E is an elliptic curve and π : S → E is a projection. Then there exists a minimal
projective closure of S. Moreover, if all fibers of S are smooth, then the same is true for S.

Proof. In [Fuj82, Section 4] the same assertion was proved in characteristic 0. In fact all arguments from
that paper work in positive characteristic.

By Lemma 2.6 we consider some smooth projective closure π : S → E of S. If the complement S \S
contains a (−1)-curve lying in fiber of π, then it can be blown down. Thus, we obtain a new smooth
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projective closure π : S
′ → E of S and the number of codimension 1 components of S

′ \S is less then one
of S \S. Repeating this process several times we can construct a smooth projective closure π0 : S0 → E of S
such that S0 \S does not contain (−1)-curves lying in fibers of π0.

If some fiber F of π0 is singular, then F is reducible, its components are rational curves and the dual
graph is a tree. In particular it contains two (−1)-curves corresponding to hanging verteces of the dual graph
of F . If we assume that all fibers of S are smooth irreducible and reduced this implies that S0 \S contains
a (−1)-curve lying in the fiber of π0. Thus, all fibers of π0 are smooth. �

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. We can assume that k is algebraically closed. If the quasi-projective surface S is
not irreducible, we consider its irreducible component S0. By Lemma 2.1 the group Aut(S) is p-Jordan if
Aut(Si) is p-Jordan for all irreducible components S1, . . . , Sm of S. Thus, from now on we assume that S is
irreducible.

By Lemma 2.2 we reduce to the case when S is birational to P1×E since otherwise Aut(S) is a p-Jordan
group.

Any regular automorphism of S can be lifted to its normalization; thus, we can assume that S is normal.
Replacing S by its minimal resolution of singularities we can assume that it is smooth. The group of
automorphisms of S embeds to the group of automorphism of the resolution. Thus, we can assume that S
is smooth.

Since S is birational to P1 × E we can consider the projection π : S → E. It is regular since it is the
Albanese map from a smooth variety.

If π(S) is a proper subset or if there are non-reduced or reducible fibers on S, then by Lemma 2.5 we get
that Aut(S) is p-Jordan. From now on we assume that all fibers of S are smooth and π(S) = E.

By Lemma 2.9 we can construct a minimal closure S of S such that all fibers of S are smooth and
irreducible. Since S is minimal and π(S) = E, then the complement S \S is a set of curves which do not lie
in fibers of π. If g ∈ Aut(S), then it induces a birational automorphism g ∈ Bir(S). The exceptional locus
of g lies in S \S. Thus, by Lemma 2.7 we get that the exceptional locus of g is empty. Then g induces a
regular automorphism of S.

We get that Aut(S) is embedded to Aut(S) for a minimal projective closure S of S. By Theorem 1.3 we
get that Aut(S) is p-Jordan. �

The proof of Theorem 1.5 can not be easily modified to the case of quasi-projective threefolds. The main
problem is that Lemma 2.7 may fail for P1-fibration over non-rational surfaces, since there are examples of
non-rational unirational surfaces in finite characteristic. Here we recall a construction of such surface.

Example 2.10. We recall a construction of a unirational general type surface discovered by T. Shioda [Shi74].
The surface A is a Fermat surface lying in P3 over an algebraically closed field k of characteristic p:

A =
{

(x0 : x1 : x2 : x3) ∈ P3
∣∣ xn0 + xn1 + xn2 + xn3 = 0

}
We choose n > 5 to be such that there exists ν and pν ≡ −1 mod n. Then we consider the following finite
cover:

f : Spec
(
k[x1, x2, x3, (x1 + x2)

1
p ]/(xn1 + xn2 + xn3 + 1)

)
→ Spec (k[x1, x2, x3]/(xn1 + xn2 + xn3 + 1)) ⊂ A.

The affine variety on the left hand side is rational by [Shi74, Proposition 1], we denote its projective closure
by T . The right hand side is an open subset of A.

This allows us to embed the rational surface T = Spec
(
k[x1, x2, x3, (x1 + x2)

1
p ]/(xn1 + xn2 + xn3 + 1)

)
to

the product X = P1 ×A. Note that Spec (k[x1, x2, x3, y]/(xn1 + xn2 + xn3 + 1)) is an affine chart in X. Then
the embedding ι : T → X is defined by the homomorphism of algebras

ι∗ : k[x1, x2, x3, y]/(xn1 + xn2 + xn3 + 1)→ k[x1, x2, x3, (x1 + x2)
1
p ]/(xn1 + xn2 + xn3 + 1),

which is defined by the following formula:

ι∗(y) = (x1 + x2)
1
p .

Other examples of unirational non-rational surfaces in finite characteristic can be found in these pa-
pers: [Kat81], [KS20], [KS79], [Miy76], [Miy77], [Ohh92], [RS78], [Shi77a], [Shi77b].
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