
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Designing arithmetic neural primitive for sub-symbolic aggregation of
linguistic assessments
To cite this article: Alexander Demidovskij and Eduard Babkin 2020 J. Phys.: Conf. Ser. 1680 012007

 

View the article online for updates and enhancements.

This content was downloaded from IP address 192.198.146.188 on 01/02/2021 at 11:47

https://doi.org/10.1088/1742-6596/1680/1/012007
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstJUbsh-agBMnuQHxaXlA2_20B8Q966msLiZoxethewK8vJ1yAhY4jqXO-9tpxQCJG_RWH2Z-UZ1btYFDNsL63sH0N9zTeqRTi8vqBwgtm-YZoAOUV6t0JTfyqzfhb-QHPhh2rRVH2h-tP5Ioj2WcKP3GTaSFz1auhuWlUFRO1xbpdJ5uQH4znDaUn00SZ0iSEZiKx4wFzkG8DcwcyTJg5e2DlaLHbm8BKBr4LePacUc_w9Iumti7YVCkpPb9nKbS-ygMdKGEFWyMwdc8Fni3uR&sig=Cg0ArKJSzIn9-qMaCLLd&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

Computer-Aided Technologies in Applied Mathematics
Journal of Physics: Conference Series 1680 (2020) 012007

IOP Publishing
doi:10.1088/1742-6596/1680/1/012007

1

Designing arithmetic neural primitive for

sub-symbolic aggregation of linguistic assessments

Alexander Demidovskij and Eduard Babkin

ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod 603005, Russia

E-mail: ademidovskij@hse.ru, eababkin@hse.ru

Abstract. The very first step towards a challenging goal of creation of monolithic generic
neuro-symbolic systems is application of sub-symbolic ideas to particular symbolic algorithms
like aggregation of fuzzy linguistic assessments during Linguistic Decision Making. A novel
theoretical idea is to express this aggregation as structural manipulations and translate them
in a neuroalgorithm. Tensor Product Representation (TPR) methodology provides a generic
framework of designing neural networks that do not require training and produce an exact
result equivalent to the result of symbolic algorithms. This paper demonstrates design of TPR-
based arithmetic as a basic building block for expressing linguistic assessments aggregation on
a sub-symbolic level and a neural architecture for the basic arithmetic operation.

1. Introduction
Building of integrated monolithic neural-symbolic systems is an actual task of modern computer
science field [1], [2], [3] because it can help in understanding human cognition. Cognition operates
with complex symbolic data structures: graphs, trees, shapes, grammars etc., performs symbolic
manipulations with means of symbolic logic. At the same time, processing of these structures
in mind is performed on the neural level. Artificial Neural Networks (ANN) operate on the sub-
symbolic level as a distributed computational mechanism. There is an important scientific task
of constructing neural networks that perform significant intellectual tasks without preliminary
training stage [4] in massively parallel computation environments like multi-agent systems or
Internet Of Things (IoT) [5].

Multi-criteria Linguistic Decision Making is huge field that tries to extend existing decision
making methods with fuzzy assessments from experts that are mostly expressed in a linguistic
format [6], [7]. Designing decision support systems as neural-symbolic solution is an actual,
challenging and open task [4], [8]. The very first step towards this goal could be translation
of linguistic assessments aggregation to a neural level. By design this aggregation consists of
three steps: encoding assessments as numbers, arithmetic manipulations with those numbers
and decoding final assessment to a linguistic form [9]. There is an ongoing research [10], [11]
demonstrating that structural manipulations can be successfully expressed in a neural form.
Therefore, if non-negative integer arithmetics could be expressed as structural manipulations,
then, theoretically, linguistic aggregation could happen on the neural level. This paper is
aimed at proposing a design of a neural network that is capable of operating over structures
that represent numbers and that performs simple arithmetic operation of increasing a given



Computer-Aided Technologies in Applied Mathematics
Journal of Physics: Conference Series 1680 (2020) 012007

IOP Publishing
doi:10.1088/1742-6596/1680/1/012007

2

Figure 1. Evolution of sub-symbolic methods required for expression of linguistic assessments
aggregation during decision making process. Grayed cells refer to the existing research, thick-
bordered cells represent current research direction, dashed-bordered cells stand for directions of
further research.

number by one. From the standpoint of the overall research direction, this work is a continuing
contribution to the idea of sub-symbolic aggregation of linguistic assessments (Fig. 1).

The article is structured as follows. Section 2 gives a short overview of methods that allow
encoding of symbolic structures. Section 3 demonstrates basic arithmetic operations expressed
as manipulations with structures. Neural design of the primitive that performs incrementing
operation is proposed in Section 4. Final remarks and directions of further research conclude
the article.

2. Background study
There are multiple ways of transforming the recursive structure in a distributed format. One of
them is Tensor Product Variable Binding (TPVB) proposed by Paul Smolensky in [12]. This
approach became a foundation for other methods, like Holographic Reduced Representations
(HRRs), Binary Spater Codes [13] and Vector Symbolic Architectures (VSA) [3]. There multiple
methods proposed in research of Knowledge Base (KB) translation to a form of First-Order
Logics (FOLs) with strictly defined rules and further encoding of such expressions [14], [15],
[16].

Tensor Product Variable Binding (TPVB) as a binding mechanism that encodes arbitrary
symbolic structures in a distributed representation and symbolic operations as weights of the
network so that the resulting structure emerges as a network inference result. TPVB allows to
build recursively such distributed representations on top of atomic elements: fillers and roles.

Definition 1 Fillers and roles [12]. Let S be a set of symbolic structures. A role decomposition



Computer-Aided Technologies in Applied Mathematics
Journal of Physics: Conference Series 1680 (2020) 012007

IOP Publishing
doi:10.1088/1742-6596/1680/1/012007

3

F/R for S is a pair of sets (F,R), the sets of fillers and roles, respectively and a mapping:

µF/R : F ×R 7→ Pred(S); (f, r) 7→ f/r. (1)

For any pair f ∈ F, r ∈ R, the predicate on S µF/R(f, r) = f/r is expressed: f fills role r.

Definition 2 Let s be a symbolic structure that consists of pairs {fi, ri}, where fi represent a
filler and ri represents a role. Tensor product ψ is calculated in the following way:

ψ =
∑
i

fi
⊗

ri (2)

Given notation of roles and fillers, that should be encoded in a linear independent manner,
there are two primitive operations defined: cons and ex. As it was proved in [17] the cons
operation can be expressed as a matrix-vector multiplication.

Definition 3 Let r0, r1 denote role vectors, p, q - symbolic structures. Then, joining operation
cons is defined:

cons(p, q) = p
⊗

r0 + q
⊗

r1

= Wcons0p+Wcons1q
(3)

Definition 4 Let r0 denote a role vector, A is a length of any filler vector. Then joining matrix
Wcons0 is calculated in the following way:

Wcons0 = I
⊗

1A
⊗

r0, (4)

where I is the identity matrix on the total role vector space, 1A is the identity matrix A×A.
Wcons matrices are defined in the manner similar to the Wcons matrices that join two sub-trees
in one structure [17], [11]. Extraction operation ex is defined in analogous way, however, it is
used to extract an element stored in the tree by the given role, for example ex0(p) extracts the
child of tree p that is placed under role r0. This operation is used in both extraction branches
that are described in Section 4.

Definition 5 Let r0 denote a role vector, s = cons(p, q) - a symbolic structure. Then, extraction
operation ex0 is defined:

ex0(s) = ex0(cons(p, q)) = p, (5)

Definition 6 Let u0 denote an extraction vector, dual to r0, A is a length of any filler vector.
Then extraction matrix Wex0 is calculated in the following way:

Wex0 = I
⊗

1A
⊗

u0, (6)

Operations cons, ex0, ex1 are equivalent to operations over lists in software general-purpose
functional programming languages like Lisp: cons, car, cdr. Therefore, implementation of these
operations on the neural level opens the horizon for neural-symbolic computation of symbolic
algorithms such as linguistic assessments aggregation during the decision making process.



Computer-Aided Technologies in Applied Mathematics
Journal of Physics: Conference Series 1680 (2020) 012007

IOP Publishing
doi:10.1088/1742-6596/1680/1/012007

4

Figure 2. Representing non-negative integers as structures. a) a structure representing {0} b)
a structure representing 1 c) a structure representing 2. Note: depth of the tree depends on the
maximum value of integer.

3. Design of TPR-based arithmetic as a foundation for 2-tuple aggregation
Aggregation of linguistic information implies translation to the numeric values according to [9].
This section demonstrates how basic arithmetic rules can be expressed in terms of structural
manipulations with the help of TPR. To design TPR-based arithmetic the axiomatic should be
defined, including both primitives and operators. It was decided that the best procedure would
be to formulate arithmetic in a Peano arithmetic [18] manner, where three basic actions should
be defined: inc - increase by one, equal - check for equality and if – select between actions
depending on equality of condition to zero. In the framework of that axiomatic and following
basic TPR principles we propose to consider any number as a tree with two positional roles: r0
(left child) and r1 (right child). As it was mentioned above, there are two primitive values: 0
(Fig. 1.a), 1 (Fig. 1.b). Those two primitive values are used for construction of other numbers,
for example 2 (Fig. 1.c). Using the structures proposed basic arithmetic operations can be
expressed as follows.

Definition 7 TPR-Inc. The operator for increasing a value by one. Let 1 denote a structure,
representing integer 1. Then incrementing operator receives a structure a, representing a number
as an input:

inc(a) = cons(a, {1}). (7)

Definition 8 TPR-Dec. The operator for decreasing a value by one. Let {0} denote a structure,
representing 0. Then decrementing operator receives a structure a, representing a number, as
an input:

dec(a) =

{
{0} ifequal(a, {0})
ex0(a) otherwise

(8)

Definition 9 TPR-Eq. The operator for checking two structures on equality. Let a, b denote
two structures. Then the operator can be defined by:

equal(a, b) =


equal(dec(a), dec(b)) ifa 6= {0}, b 6= {0}

{0} ifa 6= {0}, b = {0}
{0} ifa = {0}, b 6= {0}
{1} ifa = {0}, b = {0}

(9)

Definition 10 TPR-Sum. The operator for sum of two integers. Let a, b denote two structures.
Then the operator can be defined by:

plus(a, b) =

{
plus(dec(a), inc(b)) ifa 6= {0}

b ifa = {0} (10)



Computer-Aided Technologies in Applied Mathematics
Journal of Physics: Conference Series 1680 (2020) 012007

IOP Publishing
doi:10.1088/1742-6596/1680/1/012007

5

Figure 3. Proposed architecture of TPR-Inc Network.

4. Proposed neural design of TPR-Inc Network
From definitions of basic arithmetic operations in the previous section and the overall scheme
of achieving sub-symbolic aggregation of linguistic assessments (Fig. 1) it is clear that TPR-Inc
is one of main building blocks. This paper aims at proposing a design of a neural network that
performs incrementing operation over the distributed representation of a number.

A neural network accepts one variable input and 6 constant inputs (Fig. 3)1. A variable
input is a flattened distributed representation of a structure that in turn is encoded number.
Neural network can be re-compiled for a representation of arbitrary size. As for the constant
inputs, the most considerable one is distributed representation of number 1 as it is used for
incrementing the input number. Other constant inputs will be discussed below.

Neural network inference starts from the cons operation expressed via parallel application of
role r0 to the input structure and role r1 to the constant input 1. Application of roles is performed
with the help of Wcons0 and Wcons1 matrices (4). After the roles are applied, parallel branches
are merged and the output represents a structure that is likely to stand for an incremented
number. The joining procedure is explained in huge details in [11]. Due to specifics of such a
neural implementation, the resulting tensor should be concatenated with a simple constant stub
in order to make it correctly decoded by the existing mechanism described in [10]. Then the
execution is transferred to the Conditional Block.

4.0.1. Conditional block Conditional block is needed to track the case when the input number
is 0. In that case, aforementioned joining procedure of input number and a constant 1 would
not produce a distributed representation of 1, although mathematically it is 1. It is explained
by the fact that we have two primitive values defined and any computation in terms of TPR-
based arithemtics should handle this case. Conditional block accepts three variable inputs and

1 From now on network description contains terminology accepted in the Keras [19] and TensorFlow [20] software
frameworks



Computer-Aided Technologies in Applied Mathematics
Journal of Physics: Conference Series 1680 (2020) 012007

IOP Publishing
doi:10.1088/1742-6596/1680/1/012007

6

Figure 4. Architecture of condition block.

Figure 5. Architecture of
shift block.

one constant input. Variable inputs are the tensor that should be checked on equality to 0,
the second input stores the tensor that should be taken as an output of the block in case the
first variable is bigger than zero, the third input stores tensor that should be taken as output
otherwise.

Conditional block inference starts from the Shift Block. In turn, Shift Block receives one
variable input that is the structure that should be used for extraction of its child and one
constant input that stores the Wex1 matrix (6). Shift block reshapes the input vector in the
three dimensional tensor with two dimensions equal to one. This is a requirement from the
Keras framework in order to use Crop layer. Crop layer is used to adjust the tensor size for the
extraction procedure that is the final operation of the whole block.

Once the shift block extracts the right child of the input structure of the Conditional Block,
this child is then checked with a sequence of Reshape, GlobalMaxPooling1D and Mask layers,
that perform check of the input tensor on the non-equality to 0 and result in a single binary
scalar value. It is used as a multiplier for the second variable input of the Conditional Block
and as an input for the sequence of layers that negate this multiplier and apply the result to the
third variable input. Finally, both parallel branches are merged, while it is guaranteed that at
least one branch is absolutely filled with zeros. This conditional block is of high reuse for future
networks that implement other arithmetic procedures from Fig. 1 and Section 3.

5. Conclusion
It was demonstrated that numbers can be encoded as a recursive TPR-based structure and
integer arithmetic can be expressed in a form of structural TPR-based manipulations. Moreover,
the basic operation of incrementing an integer value is designed in a neural form. Implementation
of the neural network primitive is available as an open-source project2. This is proof of
concept that demonstrates feasibility of building a neural-symbolic system for aggregation of

2 https://github.com/demid5111/ldss-tensor-structures



Computer-Aided Technologies in Applied Mathematics
Journal of Physics: Conference Series 1680 (2020) 012007

IOP Publishing
doi:10.1088/1742-6596/1680/1/012007

7

linguistic assessments. The further direction of research is designing small neural models for
other arithmetic operations on top of the proposed incrementing architecture. The techniques
described in this article may be used to build networks that perform fast and reliable linguistic
assessments aggregation.

Acknowledgments
The reported study was funded by RFBR, project number 19-37-90058.

References
[1] Besold T R et al. 2017 arXiv preprint arXiv:1711.03902
[2] Besold T R and Kühnberger K U 2015 Biologically Inspired Cognitive Architectures 14 97–110
[3] Gallant S I and Okaywe T W 2013 Neural computation 25 2038–2078
[4] Pinkas G, Lima P and Cohen S 2013 Biologically Inspired Cognitive Architectures 6 87–95
[5] Yousefpour A, Nguyen B Q, Devic S, Wang G, Kreidieh A, Lobel H, Bayen A M and Jue J P 2020 arXiv

preprint arXiv:2002.07386
[6] Cheng P, Zhou B, Chen Z and Tan J 2017 2017 IEEE 2nd Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC) (IEEE) pp 1603–1607
[7] Demidovskij A and Babkin E 2019 Business Informatics 13
[8] Golmohammadi D 2011 International Journal of Production Economics 131 490–504
[9] Wei C and Liao H 2016 International Journal of Intelligent Systems 31 612–634

[10] Demidovskij A 2019 Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) (Association for
Computational Linguistics)

[11] Demidovskij A V 2019 International Conference on Neuroinformatics (Springer) pp 375–383
[12] Smolensky P 1990 Artificial intelligence 46 159–216
[13] Browne A and Sun R 2001 Neural Networks 14 1331–1355
[14] Serafini L and Garcez A d 2016 arXiv preprint arXiv:1606.04422
[15] Teso S, Sebastiani R and Passerini A 2017 Artificial Intelligence 244 166–187
[16] Pinkas G, Lima P and Cohen S 2012 International Conference on Artificial Neural Networks (Springer) pp

482–490
[17] Smolensky P and Legendre G 2006 The harmonic mind: From neural computation to optimality-theoretic

grammar (Cognitive architecture), Vol. 1 (MIT press)
[18] Van Heijenoort J 1967 From Frege to Gödel: a source book in mathematical logic, 1879-1932 (Harvard

University Press)
[19] Chollet F et al. 2015 Keras https://keras.io

[20] Martin A et al. 2015 TensorFlow: Large-scale machine learning on heterogeneous systems software available
from tensorflow.org URL http://tensorflow.org/


