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Abstract. Among the problems of neural network design the challenge
of explicit representing conditional structural manipulations on a sub-
symbolic level plays a critical role. In response to that challenge the arti-
cle proposes a computationally adequate method for design of a neural
network capable of performing an important group of symbolic opera-
tions on a sub-symbolic level without initial learning: extraction of ele-
ments of a given structure, conditional branching and construction of a
new structure. The neural network primitive infers on distributed repre-
sentations of symbolic structures and represents a proof of concept for
the viability of implementation of symbolic rules in a neural pipeline for
various tasks like language analysis or aggregation of linguistic assess-
ments during the decision making process. The proposed method was
practically implemented and evaluated within the Keras framework. The
network designed was tested for a particular case of transforming active-
passive sentences represented in parsed grammatical structures.

Keywords: Tensor product representations · Artificial neural
networks · Linguistic decision making · Natural language processing

1 Introduction

Despite existing advances in mathematical models and technologies of deep
learning, neural-inspired computational architectures researchers outline a con-
siderable gap between connectionist sub-symbolic and logic-based symbolic
approaches to representation and higher level reasoning [2,3,15]. From the sym-
bolic perspective, it seems quite apparent that human cognition operates with
complex symbolic data structures: graphs, trees, shapes, grammars etc., performs
symbolic manipulations with means of symbolic logic. However the processing
of these structures in mind is performed on the neural level. At the same time,
existing attempts to build artificial neural systems lose in terms of representa-
tional compositionality [14]. In the framework of neural-symbolic computation,
there is the proved in principle equivalence between dynamical systems with
distributed representations and symbolic systems in terms of representational or
problem-solving capabilities [19]. At the same time there are no exact rules of
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obtaining a sub-symbolic counterpart to symbolic models and vice versa. In prac-
tice, little attention was given to development of practically achievable software
implementations of such sub-symbolic models.

In the neural-symbolic paradigm Artificial Neural Networks (ANN) are the
means of parallel distributed computation and robust learning. In this field
there is an important scientific task of constructing neural networks that per-
form significant intellectual tasks without preliminary training stage [25] in mas-
sively parallel computation environments like multi-agent systems or Internet Of
Things (IoT). Each component of such systems plays a role of a single neuron or
a small sub-network [33]. These distributed computational platforms should be
not only distributed, but also robust to unit failures, self-improving in time and
avoid central control. The first step towards solving that task would be design of
ANN capable of producing an exact solution for a selected motivating problem,
which combines different intellectual operations on complex symbolic structures.

The task of multi-criteria linguistic based decision making can be selected as
an example of appropriate motivating problem [10,32]. Creation of monolithic
neural-symbolic systems for various expert and decision support systems is an
actual task [16,25]. Linguistic assessments aggregation is a key element of fuzzy
decision making models [5] and it seems to be a hard requirement for any neural-
symbolic decision support system.

In order to put step forward on the way of obtaining a practical sub-symbolic
solution a bottom-up approach is proposed. According to that approach sepa-
rate neural networks which perform critical sub-tasks of manipulation without
training (called primitives) should be designed and combined within a single
meta-network capable of producing a final solution of the multi-criteria choice
problem. The term ‘network’ is widely used in different contexts, so we use attri-
bution ‘neural’ in our own method to clearly specify that our approach is based
on combination of existing modules that implement the functionality of neurons.
The application of existing implementations of such modules enables actual soft-
ware design of our proposals. Following the approach proposed a certain schema
of combination of required primitives was designed, see Fig. 1.

There are several recent advances in the field that allow building such sub-
symbolic solutions and prove viability of the proposed approach. Usually the
integrated symbolic and sub-symbolic flow consists of following steps:
1. encoding the symbolic structure as a distributed representation with a neural

network. In [8] a new encoder design was proposed for the simple structure
that has only one nesting level.

2. flattening the distributed representation to a vector format with a neural
network [12].

3. performing domain specific analysis of the structure on the neural level. For
example, aggregation of linguistic assessments during decision making or voice
identification of a sentence during linguistic analysis.

4. structural manipulations on the neural level, for example, joining of two trees
in one [12].

5. decoding the new structure from a distributed representation to symbolic
level [8].
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Fig. 1. Evolution of sub-symbolic methods required for expression of linguistic assess-
ments aggregation during decision making process. Grayed cells refer to the exist-
ing research, thick-bordered cell represents current research direction, dashed-bordered
cells stand for directions of further research.

Aforementioned papers use the idea of compiling neural networks, therefore,
training step is not required [23]. Such compiled networks produce results equiv-
alent to those produced by the symbolic algorithm, while other, and more popu-
lar nowadays, examples of trainable neural-symbolic systems perform reasoning
probabilistically [22].

This paper offers a novel design of a neural network which is capable of per-
forming conditional transformations of arbitrary structures expressed in terms
of Tensor Product Variable Binding. Such neural network can be embedded to
more complex networks for different computational tasks, thus we call it a neural
network primitive. In particular, the proposed neural network primitive consists
of a cascade of three small neural networks: the first one extracts the marker
from an input structure for a conditional module, the second network performs
conditional extraction of specific structural elements and the final model con-
structs a new structure from elements of the input one. We present design and
evaluation results of the network capable of logical branching. This primitive is
based on the analysis of arbitrary symbolic structures and can be considered
as a sub-symbolic equivalent of IF logical operator in traditional programming
languages. Careful engineering of the network provides better comprehensibility
and maintenance, as well as potential reuse for solving other symbolic operations
translation to the sub-symbolic level. The network inference result is a symbolic
structure encoded in a form of distributed representation. This method of gener-
ating neural networks that are capable of encoding and manipulating structures
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on the tensor level can be used in broad range of cognitive systems. The designed
network addresses an applied task of detecting voice of English language.

The article is structured as follows. Section 2 presents the context of the
research and outlines the most relevant achievements in the field of encoding
symbolic structures in distributed representations. In Sect. 3 the proposed design
of a neural network primitive is presented. Section 4 contains overview and anal-
ysis of experimental results with the elaborated sub-symbolic model. Conclusions
and further directions of research are given in the final part of the paper.

2 Distributed Representations of Symbolic Structures

There are multiple ways of transforming a generic recursive structure in a dis-
tributed format. Foundations were developed in Tensor Product Variable Bind-
ing (TPVB) [27]. Later TPVB approach became an inspiration for such rep-
resentation methods as Holographic Reduced Representations (HRRs), Binary
Spater Codes [4] and Vector Symbolic Architectures (VSA) [15]. These ideas were
generalized as Integrated Connectionist/Symbolic cognitive architecture [29] and
later resulted in Gradient Symbolic Computation (GSC) framework [6,28]. Huge
investments are made in research of Knowledge Base (KB) translation to a form
of First-Order Logics (FOLs) with strictly defined rules and further encoding
of such expressions [26,31]. FOL expressions can be represented as a labelled
directed graph which may be translated to distributed representation with one
of existing conjunctive non-temporal binding mechanism proposed in [24].

We consider TPVB as a relevant approach in our research due to its generic
nature and continuing extensions of the original ideas. For example, recent works
demonstrate applicability of TPVB for such tasks as image captioning [17] or
question answering [21]. Also, TPVB can be used as the mechanism of structure
recovery from a distributed representation to analyse the neural network ability
to generalize and include structural properties of objects embeddings for which
it learns to create [30]. Recent advances in deep learning architectures allowed
several research groups to investigate an idea of learning structural embeddings
so that a neural network decides how to encode the structure [20].

From the encoding strategy perspective, TPVB is a set of predefined rules
for constructing a distributed representation of an arbitrary symbolic structure
with no information loss and corresponding symbolic operations in the weights
of the network so that the resulting structure emerges as a network output.
Tensor Product Variable binding allows to build recursively such distributed
representations on top of atomic elements: fillers and roles.

Definition 1. Fillers and roles [27]. Let S be a set of symbolic structures. A
role decomposition F/R for S is a pair of sets (F,R), the sets of fillers and roles,
their Cartesian product F × R respectively and a mapping:

μF/R : F × R �→ Pred(S); (f, r) �→ f/r. (1)

For any pair f ∈ F, r ∈ R, the predicate on S μF/R(f, r) = f/r is expressed: f
fills role r.
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Definition 2. Let s be a symbolic structure that consists of pairs {fi, ri}, where
fi represent a filler and ri represents a role. Tensor product ψ is calculated in
the following way:

ψ =
∑

i

fi
⊗

ri (2)

Given notation of roles and fillers, there are two primitive operations defined:
cons and ex. The cons(p, q) operation takes two trees as arguments and creates
another tree that has tree p as a left child, or in terms of TPRs gets the role
r0, and q as a right child, or in terms of TPRs gets the role r1. The important
requirement is to select roles vectors so that they are linearly independent. The
same requirement applies for the set of fillers vectors. As it was proved in [29]
the cons operation can be expressed as a matrix-vector multiplication.

Definition 3. Let r0, r1 denote role vectors, p, q - symbolic structures. Then,
joining operation cons is defined:

cons(p, q) = p
⊗

r0 + q
⊗

r1

= Wcons0p + Wcons1q
(3)

Definition 4. Let r0 denote a role vector, A is a length of any filler vector.
Then joining matrix Wcons0 is calculated in the following way:

Wcons0 = I
⊗

1A
⊗

r0, (4)

where I is the identity matrix on the total role vector space, 1A is the identity
matrix A × A. Wcons1 matrices are defined in the manner similar to the Wcons0

matrices that join two sub-trees in one structure [29]. Extraction operation ex
is defined in analogous way, however, it is used to extract an element stored in
the tree by the given role, for example ex0(p) extracts the child of tree p that is
placed under role r0. The only difference in formulation of Wex0 matrix is that
dual role vectors are used instead of direct roles: r0 or r1. This operation is used
in both extraction branches that are described in Sect. 3.

Definition 5. Let r0 denote a role vector, s = cons(p, q) - a symbolic structure.
Then, extraction operation ex0 is defined:

ex0(s) = ex0(cons(p, q)) = p, (5)

Definition 6. Let u0 denote an extraction (or so-called unbinding [29]) vector,
which belongs to the basis dual to the basis which includes r0, A is a length of
any filler vector. Then extraction matrix Wex0 is calculated in the following way:

Wex0 = I
⊗

1A
⊗

u0, (6)

Aforementioned operations cons, ex0, ex1 are equivalent to operations over
lists in software general-purpose functional programming languages like Lisp:
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cons, car, cdr. These are universal operators that allow implementation of huge
set of algorithms. Considering support of conditional operator, the representa-
tional power of these operators is even bigger. Therefore implementation of these
operations, or equivalent cons, ex0, ex1, on the neural level opens the horizon
for neural-symbolic computation of symbolic algorithms built on top of cons,
car and cdr. Indeed, the matrices Wex0 and Wcons0 determine the weights of a
neural network, capable performing corresponding symbolic operations. In [29]
a formal specification of their combination is given to produce a neural network
equivalent for an arbitrary list manipulation operation.

Many models are already known for representation of linguistic intelligence
capabilities in terms of sub-symbolic neural computations, like [4,6,28] or pre-
trained deep bidirectional representations from unlabeled text like [13]. Among
different approaches we distinguish Active-Passive Network (APNet) proposed
by P. Smolensky [18]. This network performs two tasks: classification of a voice
of a sentence and semantic analysis that allows to extract nominal subject and
direct object dependencies in a form of a structure. Further analysis of this
architecture through lenses of neural-symbolic computation identifies that the
network relies on existence of three actions: extraction of specific elements of
a structure, conditional branching, and construction of new structure from ele-
ments of input structures. Therefore, elaboration of a software design for this
theoretical architecture allows further development of the field and construction
of neural-symbolic means of performing linguistic assessments aggregation.

This network was designed to work over semantic parse trees, estimate the
voice of a sentence and construct a predicate-calculus expression that contains
information about verb V and relationship between agent A and patient P parts
of such trees (Fig. 3a, Fig. 3b). It was proposed to use existence of Aux filler at
a role r001 as a universal marker of Passive voice (Fig. 3a). Such a notation of
roles should be read as left child (0) of the left child (0) of the right child (1)
of the root of the given structure. Aforementioned primitive ex can be used to
extract passive voice marker from a given sentence (7).

PassiveMarkerF (s) = ex0(ex0(ex1(s))) (7)

Once the voice of the input sentence is defined, it is possible to construct a
desired predicate-calculus expression. In order to do that, each filler that is a part
of such target structure (Fig. 3c) should be extracted from the corresponding
input structure. For the Passive voice case extraction rules (8) for each fillers
are different compared to extraction rules of analogous fillers in Active voice
case (9).

V = Vpassive = ex1(ex0(ex1(s)))
A = Apassive = ex1(ex1(ex1(s)))
P = Ppassive = ex0(s)

(8)

V = Vactive = ex0(ex1(s))
A = Aactive = ex0(s)
P = Pactive = ex1(ex1(s))

(9)
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Finally, once the fillers are found, the cons operation is used to obtain the
desired structure (Fig. 3c).

AP (s) = cons(V, cons(A,P )) (10)

The aim of this research is elaboration of the neural network primitive capa-
ble of preforming several symbolic operations: conditional branching and extrac-
tion of elements. The aim of Active-Passive Network is intellectual analysis of
parsed grammatical structures that implies application of symbolic operations
mentioned above. Therefore, the design of the neural primitive proposed in this
paper reflects the applied task of Active-Passive Net while persisting generality
of the solution for future re-use in building neural-symbolic decision support
system. Proposed neural design is covered in the next section.

3 Proposed Neural Design of Network with Conditional
Branching

3.1 Network Architecture

Current research is targeted to propose a novel design of neural network primitive
that is capable of performing various tasks on a distributed representation of a
symbolic structure: extraction of elements, condition branching and construction
of a new structure. As a demonstration the Active-Passive Network was chosen.
The proposed design is shown on Fig. 2a. In general the neural network consists
of three important blocks: one classification and two processing branches. The
classification branch is aimed at identification of whether the given sentence is in
Passive or Active voice. At the same time, processing branches extract necessary
elements of a symbolic structure from its distributed representation in order to
construct a predicate-calculus expression. Each branch is considered separately
below.

Classification Branch. According to the semantic parse trees that are
obtained from raw sentences there is an obvious marker that can be used for
identification of a voice in a sentence. As it was mentioned in [18], existence of
Aux is a clear marker of a sentence in a Passive voice iff it is placed as a left-
child-of-left-child-of-right-child-of-root. When TPRs notation is applied to such
structures, marker is expressed as existence of filler Aux with a positional role
r001. The overall idea of the classification branch of the proposed Active-Passive
network is to check this filler on the given position and output a binary value,
where 1 represents that given sentence is in Passive voice and 0 means that it
is in Active voice. The structure of this branch is shown on Fig. 2b.

Inputs. Classification branch has one variable input that is an one-order ten-
sor representing the encoded symbolic structure of the semantic parse tree. In
our approach construction of such parse tree on the basis of an initial text is
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a. Overall design of a network. b. Classification block design.

Fig. 2. Proposed architecture of a neural network primitive the performs: extraction
of symbolic counterparts, conditional branching and construction of a new structure
from input structure elements.

considered as an external task. The semantic parse tree can have an arbitrary
structure, and algorithms from [12] can be used to encode it to the vector for-
mat. Apart from one variable input the network has three constant inputs that
contain weights for the extraction operation. Those three inputs are by design
matrices for operation ex: Wex0 and Wex1 . Matrices are generated in advance
according to the recursive definition (4).

Shift Block. The classification branch of the Active/Passive Network contains
three shift blocks. Each of them receives current tree representation and per-
forms extraction of the particular child of this tree. More specifically, as the aim
of the branch is to find the Aux filler, there is a sequence of three extraction or
‘shift’ blocks that perform retrieval of left child, left child and right child corre-
spondingly. The output of each shift block is the distributed representation of
the particular part of the input structure.

Outputs. As it was mentioned above the classification branch can be consid-
ered as a self-contained neural network capable of performing a basic task of
classifying the voice of a sentence. The only output of a classification branch
is binary and equals 1 when sentence is in Passive voice. From the engineering
perspective, output is implemented as a Keras Mask layer1.

1 From now on network description contains terminology accepted in the Keras [7]
and TensorFlow [1] software frameworks.
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a. Input sentence in the Passive voice. b.  Input sentence in the Active voice.

c. Output structure produced by a network.

Fig. 3. Types of symbolic structures used as inputs/output in a proposed neural net-
work primitive.

Processing Branch. Processing branches play an important role in the Active-
Passive Network and they perform construction of a new structure. It is impos-
sible to exaggerate the importance of the fact that two most valuable structural
operations, such as joining of two trees in a bigger one and extraction of the tree
elements, can be performed on a sub-symbolic level. These two operations are
key ones as a majority of other operations can be expressed with a help of just
cons and ex primitives. There are two parallel processing branches due to the
fact that sentences in Passive and Active voice have different architecture that
is reflected in Fig. 3a and Fig. 3b respectively. As a result of each processing
branch it is required to obtain a predicate-calculus expression that itself is a
structure and consists of three elements: agent, patient and verb. Refer to Fig.
3c as a visual representation of the network output.

Inputs. Each of these branches accepts the one-order tensor that is used for
further manipulations and construction of a new structure. This vector either
contains the distributed representation of the input structure or is a placeholder
filled with zeros. This completely depends on the type of the branch and results
of the model classification.

When the sentence is in Passive voice then the input of the Passive voice
processing branch is exactly the distributed representation of the input structure
and Active voice processing branch receives a placeholder. In case a sentence is in
Active voice, the first processing branch accepts a placeholder with zeros while
the second branch receives the embedding of the structure. This behaviour is
handled by the masking head before the Active voice processing branch. The
idea behind such a switch implemented on the neural level is that in Active
voice the sentence has a completely different structure and in order to extract
particular filler, for example V (Verb), the completely different set and sequence
of operations is needed.

The overall architecture of the processing branch is reflected in Fig. 4. In
general, it consists of two parts: extraction and joining logic. Extraction part is
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Fig. 4. Architecture of processing branch.

voice-specific and is different between sentences in Passive and Active voice. At
the same time construction part is common and does not depend on the type
of input sentence. Details about each type of processing branch elements are
covered below.

Extraction Blocks. As it was stated above, extraction rules are fully defined by
the type of the sentence. For example, in order to extract verb from the sentence
in Passive voice it is required to perform operation ex1(ex0(ex1(s))) while for
the Active voice sentence it is enough to execute ex1(ex0(s)) in order to extract
V (Verb). Difference in operations results in different architecture of extraction
branches. Figure 5a reflects extraction of V in Passive voice sentence and Fig.
5b shows extraction of the same filler in an Active voice sentence.

It is important to note that the idea of the extraction block is to extract a
given filler from the input structure encoded in a form of a vector. This brings
several limitations. The biggest one is that input sentences have to be encoded
in a vector of the same size. This implies that Active voice sentence have to
be encoded with an additional placeholder tensor in order to be on par with
the Passive voice sentence. As a consequence, extraction of the left child of the
root results not in the vector representing a filler A (Agent) but in a vector of
bigger format. In order to satisfy the condition that any extraction branch results
in the vector representing a filler, the additional cropping operation has to be
introduced. In this task, it is specific for Active voice branch and is reflected on
the Fig. 5b.

There are three extraction blocks in each extraction branch in the proposed
design on the Active-Passive network due to the fact that the resulting structure
(Fig. 3c) is constructed from three fillers.

Join Blocks. The next step after all the required fillers are extracted is to per-
form construction of the new structure that stands for the predicate-calculus
expression (Fig. 3c). It is suggested to reuse existing mechanism of joining trees
in one bigger tree with appropriate role assignment [8,12]. A scheme of such a
join block is shown in Fig. 6. Each joining block accepts two variable inputs
each representing the tree that would become a part of a resulting structure.
Also, there are two constant inputs that represent the joining matrix (4) and
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a. Case of sentence in a passive voice

b. Case of sentence in an active voice

Fig. 5. Example architecture of extraction branches

one is used as a utility constant when there is mismatch between the two vari-
able inputs. A final operation of this branch is an addition operation that joins
shifted sub-trees in a single distributed representation. The block shown in Fig.
6 represents the second join block in Fig. 4.

Outputs. The output of each processing branch is either a distributed represen-
tation of a new structure or a placeholder of the same dimension. According to
the aforementioned condition, distributed representation of a new structure is
presented as an output of the Passive branch if a sentence is in Passive voice
and, in contrary, in case a sentence is in Active voice, distributed representation
of a new structure appears as an output of an Active voice processing branch.
The final sum of outputs of both branches is needed because there is no a-priori
knowledge about input sentence voice. The output of the Active-Passive neural
network is a distributed representation of a valid structure and it can be decoded
with an existing methods of extracting fillers [18,27].

3.2 Network Analysis

The proposed architecture demonstrates practical feasibility of expressing sym-
bolic operations in a distributed and robust manner that is a neural network.
It is implemented with the Keras framework [7] and Tensorflow backend [1].
There is a clear separation of responsibilities in the network and selected parts
can be considered as standalone neural networks that solve more specific task.
Moreover, the proposed neural network combines both joining and extraction
operations and also contains conditional branching for handling conditions on
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Fig. 6. Join block architecture

the sub-symbolic level. However, there are several important aspects that should
be considered as directions of further research:

1. common sub-graphs sharing. More strict analysis of the proposed architecture
would reveal that parallel processing branches as well as classification branch
contain execution sub-graphs that are common by the operation they perform.
At the same time, in the neural network this property is not re-used, although
more smart construction rules would allow to decrease computational com-
plexity of the solution. At the same time, there should be a certain trade-off
because once those sub-graphs become common across all the branches the
overall network cannot be expressed as a cascade of smaller neural networks
that can be also executed separately on different instances of hardware. The
maximum performance gain and various optimization options should be inves-
tigated in order to understand the best possible trade off between network
architecture expressiveness and utility.

2. generation of the network that solves the task described by arbitrary combi-
nation of primitive operations like cons or ex. The overall goal of research in
this field is building a bridge between symbolic and sub-symbolic computa-
tions. Therefore, elaboration of a flexible network generator would allow to
make a step forward in this direction. However, this is a challenging task that
requires thorough research and identification of minimum set of operations
that should be supported by such generator in order to express arbitrary
symbolic algorithm in a distributed manner.

3. comparison of semantic tree embeddings obtained with TPRs approaches and
deep learning. Due to the fact that TPRs allow getting embeddings of a sen-
tence it would be extremely interesting to analyse validity of using them
in a generic text analysis task. However, in order to prove it, those embed-
dings have to be really representative and reflect the context of the usage.
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This direction is the most open one and goes far beyond elaboration of neural
architectures for expressing symbolic operations.

The proposed neural design considers generation of the network that is not
trainable and produces results equivalent to those produced by the symbolic
algorithm, compared to other examples of trainable neural-symbolic systems [22]
that perform reasoning probabilistically. Network generation, or compilation, is
not a novel topic in the field of neural architectures applied to neural-symbolic
computation, for example networks compiled from logic formulas [23]. Such net-
works are characterised by thousands of neural units and connections between
them. However, due to the fact that neural networks are by design distributed
and parallel, it is a topic of another research to analyze large-scale gains of mas-
sive parallelism that would make such architectures computationally justified.
The Active-Passive Network works on top of distributed Tensor Product Repre-
sentations that provide compact and scalable binding capabilities for expressing
symbolic structures and operations on them.

4 Evaluation of the Proposed Method

In order to explain application of the developed primitive for conditional struc-
tural transformations, we embedded it inside the APNet for active-passive voice
recognition. In [9] detailed examples of actual text sentences are given those pars-
ing trees correspond to symbolic structures from Fig. 3a and Fig. 3b. In order
to encode each structure in a distributed form each filler and role are defined as
linearly independent vectors, exact values are selected randomly as they do not
play any role other than encoding a particular element.

A =
[
7 0 0 0 0

]
V =

[
0 4 0 0 0

]

P =
[
0 0 2 0 0

]
Aux =

[
0 0 0 5 0

]

by =
[
0 0 0 0 3

]
r0 =

[
10 0

]
r1 =

[
0 5

]
(11)

According to the rules defined in [27] and using the lightweight binding net-
work proposed in [8,12], both sentences are translated to the distributed repre-
sentation (12), (13).

SPassive =
⎡

⎢⎢⎢⎢⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

[0, 0]
[0, 0]
[20, 0]
[0, 0]
[0, 0]

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

[[0, 0], [0, 0]]
[[0, 0], [0, 0]]
[[0, 0], [0, 0]]
[[0, 0], [0, 0]]
[[0, 0], [0, 0]]

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

[[[0, 0], [0, 0]], [[0, 0], [0, 875]]]
[[[0, 0], [0, 0]], [[0, 1000], [0, 0]]]

[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
[[[0, 2500], [0, 0]], [[0, 0], [0, 0]]]
[[[0, 0], [0, 750]], [[0, 0], [0, 0]]]

⎤

⎥⎥⎥⎥⎦

(12)
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SActive =
⎡

⎢⎢⎢⎢⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

[70, 0]
[0, 0]
[0, 0]
[0, 0]
[0, 0]

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

[[0, 0], [0, 0]]
[[0, 200], [0, 0]]
[[0, 0], [0, 50]]
[[0, 0], [0, 0]]
[[0, 0], [0, 0]]

⎤

⎥⎥⎥⎥⎦

(13)

One of the requirements for correct inference of the classification branch
is that representation of active and passive sentences should be of the same
size. For that, the Active sentence representation is extended with an additional
tensor filled with zeros. When classification branch is executed, the Aux filler is
extracted. For the Passive voice sentence this filler is extracted without any loss,
while for the Active voice sentence it is absent and application of the extraction
rules results in the vector of the same size as any of fillers is but filled with
all zeros. As a result, the branch outputs 1 for the first sentence and 0 for the
second one.

Another important aspect is the output of the model. As it was described
above, the output of the model is the distributed representation of the new
structure that stands for the predicate-calculus expression. For this example,
such representation would be the same for both sentences (14) as we encode
fillers but not particular words of those sentences.

SResult =
⎡

⎢⎢⎢⎢⎣

0
0
0
0
0

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

[0, 0]
[0, 40]
[0, 0]
[0, 0]
[0, 0]

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎣

[[0, 350], [0, 0]]
[[0, 0], [0, 50]]
[[0, 0], [0, 00]]
[[0, 0], [0, 0]]
[[0, 0], [0, 0]]

⎤

⎥⎥⎥⎥⎦

(14)

Finally, each filler can be extracted according to the rules defined in [27]. The
proposed neural network solves the task of defining the voice of the sentence as
well as allows constructing the new structure from the elements of input sentence
in a scalable and robust manner. From the performance perspective, grammat-
ical parse trees encoding takes approximately 1.3 ms, Active-Passive Network
generation and inference take 5.5 and 1.4 ms respectively. Benchmarking was
made with the following setup: Intel(R) Core(TM) i7-4770HQ CPU 2.20GHz
(not fixed frequency). Implementation of the neural network primitive is avail-
able as an open-source project2. Experimentation results show that the devel-
oped neural network primitive enables conditional distributed computations as
required.

The method proposed imposes limitations to the maximum depth of the pro-
cessed symbolic structures. Thus a designer should know the maximum depth
of the structures in advance and use it as a parameter for generating the corre-
sponding primitive.

2 https://github.com/demid5111/ldss-tensor-structures.

https://github.com/demid5111/ldss-tensor-structures
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5 Conclusion

The results obtained in this paper contribute to the neural-symbolic paradigm
by demonstrating execution of symbolic operations on the sub-symbolic level [2]:
translation of symbolic knowledge into the network, executing the network or
performing reasoning and knowledge extraction from the network output. Our
method enables automatic design of Keras-based software implementation of a
distributed computational structure for a generic primitive for conditional struc-
tural transformations. Authors consider that primitive as an important building
element of a linguistic-based decision-making support system as it was depicted
in Fig. 1. A recent work [11] demonstrates joint application of the developed
primitive with other elements of that scheme for distributed implementation of
arithmetic operations, which in own turn will be applied for distributed imple-
mentation of aggregation operators. The results of these works contribute to
the support of the principal hypothesis, which states that linguistic information
aggregation can be expressed in the form of structural manipulations and if it
is true, then this aggregation step of multiple decision-making methods can be
expressed in a distributed and robust manner of sub-symbolic, or connectionist,
computation. The development of such models would allow for construction of
fully-integrated monolithic neural-symbolic systems. At the same time, there is
an important practical aspect of the selected binding mechanism (TPRs) that
should be further analyzed: the size of the distributed representations and the
dependence of this size on the size of the input structures that should be encoded.

Acknowledgements. Authors sincerely appreciate all valuable comments and sug-
gestions given by the reviewers. The reported study was funded by RFBR, project
number 19-37-90058.
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