
Implementation Aspects of Tensor
Product Variable Binding
in Connectionist Systems

Alexander Demidovskij(B)

National Research University Higher School of Economics,
Bolshaya Pecherskaya Street 25/12, Nizhny Novgorod, Russia

ademidovskij@hse.ru

https://www.hse.ru/staff/demidovs

Abstract. Tensor Product Variable Binding is an important aspect of
building the bridge between the connectionist approach and the symbolic
paradigm. It can be used to represent recursive structures in the tensor
form that is an acceptable form for neural networks that are highly dis-
tributed in nature and, therefore, promise computational benefits from
using it. However, practical aspects of tensor binding implementation
using modern neural frameworks are not covered in the public research.
In this work, we have made an attempt of building the topology that
can perform binding operation for a well-known framework Keras. Also
we make the analysis of the proposed solution in terms of its applicabil-
ity for other important connectionist aspects of Tensor Product Variabl
Binding. Proposed design of the binding network is the first step towards
expressing any symbolic structure and operation in the neural form. This
will make it possible for traditional decision making algorithms to be
replaced with a neural network that brings scalability, robustness and
guaranteed performance.

Keywords: Connectivism · Decision support systems ·
Tensor computations · Neural networks · Unsupervised learning

1 Introduction

Any knowledge should be expressed in the form of formalized structures in order
to be used in mathematical models and computations. The question on how
to express that knowledge is the key in every symbolic and sub-symbolic or
connectivist approach.

With a certain simplification, we can think of symbolic approach as repre-
senting traditional algorithms when we operate with understandable structures,
terms and operands. For example, multi-round decision making, auction algo-
rithms and so on. At each step of symbolic computation we can understand the
intermediate results as they are symbolic structures.

c© Springer Nature Switzerland AG 2020
Y. Bi et al. (Eds.): IntelliSys 2019, AISC 1037, pp. 97–110, 2020.
https://doi.org/10.1007/978-3-030-29516-5_9

98 A. Demidovskij

With the same simplification, sub-symbolic or connectivist approach [1] can
be described, for example, by neural computations during which multiple tensors
(matrices, vectors) are created and absolutely meaningless until we get the final
result. There is no place for symbolic structures in this paradigm. It is especially
important when we want to build the bridge between connectivist and symbolic
paradigms. This transition should have a sort of communication protocol and
therefore formal knowledge plays that role.

In the decision making field we are trying to find the solution based on
the problem knowledge. Usually it is kept from stakeholders who share that
knowledge with us. One of the possible ways to express this knowledge is to use
ontologies [2]. However, regardless the way we express the knowledge we need
to create the hierarchy. Hierarchy is required to represent relations between ele-
ments, otherwise we loose the semantics imposed by the way those elements
interact. In general, such a structure has unbound nesting levels that consider-
ably complicates creation of representation in a vector format - a natural input
for neural networks.

One of simple examples of such an hierarchy is the natural language sentence
parsing [3]. Hierarchy is essentially built in the sentence in the way how words are
used there and how they are connected. For example, adjective mandatory relates
to a noun, adverb - to a verb. However, when there are several adjectives the only
way to understand what adjective relates to what noun is to take a look at the
interconnection between them. There are multiple examples of natural language
sentence parsing with the help of hierarchy [4], where language is defined as a
text and text is processed as a set of sentences (sequences), each of them is used
for structure construction.

To sum up, the built hierarchy can be considered as an output of the task
solving on the symbolic level. However, there are problems of interpreting this
structure in the vector format, because at the end we want to preform compu-
tations in the neural network that accepts only numbers as inputs. This is the
place where Tensor Product Variable Binding starts shining [1]. We will describe
key aspects later in the paper as well as describing technical aspects of building
a working network with the modern means of network construction. To our best
knowledge this is the first attempt of applying Tensor Product Variable Binding
ideas in the modern neural network frameworks.

The structure of the paper is as follows. Section 2 covers the problem
overview, including analysis of the existing solutions, Sect. 3 contains an exam-
ple of applying Tensor Product Variable Binding to a simple structure. After
that, in Sect. 4 we describe a high level architecture of the Tensor Product Vari-
able Binding network. Then, in Sect. 5 we describe the proposed architecture
of the neural network that solves the binding task. Finally, in Sect. 6 we make
conclusions and define directions of further research.

2 Problem Overview

As we have already noted, the transition between symbolic and connection-
ist paradigms is a key component to make the integration of them possible.

Selected Aspects of Tensor Product Variable Binding 99

This transition can be made with the means of the First-Order Logic (FOL).
Given that expressions from the FOL can be translated to some distributed sub-
symbolic representation, we can translate our knowledge to the set of expressions
in FOL and then, using the known translation rules, transform those expressions
in the vector representation [5–7].

There is a huge list of different logics:

1. First-Order Logic [5]. It is important to note that the distributed represen-
tation is created from FOL expressions, that in turn, contain predicates and
variables.

2. Fuzzy Evidential Logic [6]. It is built around following elements: facts, rules,
weighting scheme and conclusion. Moreover, the expression is mandatory split
into left and the right part.

3. Probabilistic Soft Logic [7]. In this type of logic it is expected that users
define the family of theories that extend the logic, for example, to work with
floating point, binary and complex values. Such theories are called Modulo
Theories.

As we can see this transition is possible and it plays the critical role in the
whole flow to work. In particular, we have the problem situation, then we collect
data about it from stakeholders and experts, then we need to somehow translate
it to the structure and then get its vector representation, so that we can use it
as an input to the neural network. By that we can connect the world of concepts
and terms and the world of numbers and activations. One of the ways for building
it is the knowledge fitting mechanism [8].

Neural Network is capable of building associations that construct definite
structures on the base of the training dataset. However, one of the most pro-
found approaches to representing the structures in the vector format is the Ten-
sor Product Variable Binding approach proposed by Smolensky [1] and further
described in the [9].

2.1 Tensor Product Variable Binding

The main idea of Tensor Product Variable Binding [1] is representing the data
in the hierarchical form containing elements of two types: role and filler.

Definition 1. Filler: Element of the structure that is characterized by the role
that it plays in the structure.

Definition 2. Role: An action, function, model that the given element (filler)
plays in the structure.

Definition 3. Binding: A connection between a filler and a role representing
their relationship in the structure.

If we define a filler and a role in some space, we can use the rules of
tensor algebra for translating the structure in some vector representation.

100 A. Demidovskij

Therefore, we consider the structure as a system that consists of pairs {role,
filler} and each pair is represented as a tensor multiplication of the correspond-
ing pair of vectors.

More importantly, there are local and distributed representation. Local rep-
resentations are so called “hot-encodings”, where each element is represented as
a vector that contains all zeros but the single one on some position. Distributed
representations are, in turn, arbitrary vectors. In a case we get the new element
in the structure and all elements have local representation, we need to add the
new dimension to all elements in the structure with zero value in order to keep
orthogonality of the representation. For the distributed representation, the num-
ber of dimensions is kept the same. Distributiveness can be on the full space or
in some sub-space [6].

It is important to note that it is possible to perform the unbinding procedure
that is by definition getting of the original role or the filler vector by the given
tensor representation of the structure and the filler or role that the element
played in the structure. In other words, we can say what role a particular filler
played in the structure or what filler played the particular role. This is performed
with the usage of the bind space. Finally, it is possible to perform operations
over the structure with only using its tensor representation. This opens the door
for potential computation of those manipulations with neural networks.

Tensor Product Variable Binding is not the only one way to get the dis-
tributed representation of the structure. There also such methods as: Holograhic
Reduced Representations (HRRs), Binary Spater Codes and so on [6]. Tensor
Product Variable Binding is in the focus of current research due to closeness
of its ideas to modern frameworks, therefore, we leave discussion of alternative
structure representation solutions out of the scope of this paper.

The general flexibility of the Tensor Product Variable Binding inspired cre-
ation of Vector Symbolic Architectures (VSA) [9]. There are three consecutive
stages in VSAs:

1. Pre-processing. During this step, symbolic representation (structure) is trans-
lated to the sub-symbolic (vector) one. This step is usually performed once to
generate required vectors. For example, with the use of embeddings - special
vectors that represent words while saving the semantics closed in the context
where those words were used [10,11].

2. Sequence generation.
3. Prediction (output calculation).

2.2 Distributed Representations in Connectivist Approach

Distributed representation plays a key role in the sub-symbolic computations.
For example, any neural network can not work with anything but tensors [12].
Moreover, in this research we focus on such data which structure is of the
same importance as separate elements. There are various methods of getting
distributed representations from the natural language data that essentially has
a structure: grounding [5], doc2vec [13] and word2vec [14].

Selected Aspects of Tensor Product Variable Binding 101

We would like to draw attention to the mandatory inclusion of coders and
encoders in any workflow that contains sub-symbolic computations [15]. The
role of the encoder is transforming the symbolic phrase to the vector form and
the role of decoder is in contrary translation of given vector representations in
the symbolic phrases. The main difficulty with distributed representations is
that they should store not only content of the original sequence (for example, a
sentence) but also the structure included in that sequence. There are multiple
cases when distributed representations are used for solving the real life cases, for
example in Predication-based Semantic Indexing [16].

Usually, distributed representations have a huge dimension and this dramat-
ically increases the computational complexity of the overall solution. There are
multiple ways to reduce dimensionality, for example Singular Value Decomposi-
tion. For further analysis of the vector space, Hierarchical Clustering is usually
used [17]. Finally, there is the recent effort to introduce new entity called Seman-
tic vector that is designed to be a unified part of any solutions working with the
distributed representations [16].

To sum up, comparing the connectivist and symbolic levels we can say that
symbolic computations are serial and discrete and operations are performed in
the user-friendly format - in known structures with known properties. At the
same time, connectivist calculations are made over local or distributed represen-
tations [8]. Moreover, symbolic level hugely depends on the domain knowledge
while neural computations, obviously, do not depend on that [18]. Interestingly,
there are some works also devoted to the usage of multi-layer (deep) tensor
topologies [19]. However, we strongly consider that there are still remaining
questions that should be addressed. In particular, analysis of the existing theo-
retical architectures and their adoption details in terms of modern frameworks,
applicability of such approaches to a broader set of tasks, for example in building
expert systems and decision support systems.

3 Tensor Product Variable Binding Calculation Rules

Tensor Product Variable Binding is a way to transform the symbolic structure
into the vector format. According to Smolensky [1] it is built on the simple tensor
multiplication operation.

Definition 4. Tensor multiplication is the operation over two tensors f of rank
N and r of rank M that results in the new tensor b of rank N+M so that
bij = fi ∗ rj.

Definition 5. Tensor product ψ for the given structure S containing pairs
{fi, ri} is calculated in the following way:

ψ =
∑

i

fi

⊗
ri (1)

102 A. Demidovskij

r0

A

B C

r01 r11

Fig. 1. A simple structure for demonstration of Tensor Product Variable Binding

In order to understand the ground principles for constructing the distributed
matrix manipulation mechanism in a form of neural network it is important to
understand how the full workflow works for the simple structure (Fig. 1).

Let the structure be a directed acyclic graph with three leaves: A,B,C and
the root ε. As we already know the structure is needed to describe relationships
between the elements. In the sample structure it is obvious that A is the left
child of the root, while B and C are children of the right child of the root. We
ignore that right child because it is not a filler and does not bring any value
in our structure representation. However, we are still interested in other two
fillers B and C and their connections. Having defined fillers is not enough for
representing the structure according to the Tensor Product Variable Binding
rules because we also need to describe roles. Again, from the diagram we can
see that there are three different roles: r0, r01 and r11. Their meaning is quite
simple: r0 denotes the role “left child of the root”, r01 - the role “the left child
of the right child of the root” and r11 - means the role “the right child of the
right child of the root”.

Semantically those rules and fillers are considered different and that should
be reflected in the vector representation of those elements of the structure. Then
we are free to define the vectors representing fillers matrix F (2) and roles matrix
R (3). We need to make sure that they are at least linearly independent or, what
is easier for us, orthogonal and normalized.

F =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 0

⎤

⎦ (2)

R =

⎡

⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤

⎦ (3)

According to (1) we can translate the given structure to the vector represen-
tation by performing pairwise tensor multiplication over the fillers and roles (4)
with the final sum of the terms. In particular:

Selected Aspects of Tensor Product Variable Binding 103

f1
⊗

r1 =
[
1 0 0 0

] ⊗ [
1 0 0 0 0

]
=

⎡

⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎦

f2
⊗

r2 =
[
0 1 0 0

] ⊗ [
0 1 0 0 0

]
=

⎡

⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎦

f3
⊗

r3 =
[
0 0 1 0

] ⊗ [
0 0 1 0 0

]
=

⎡

⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤

⎥⎥⎦

(4)

As we have found standalone tensor multiplications for all three pairs of fillers
and roles in the structure, we are able to find the final tensor representation of
the structure by performing a simple element-wise sum over the given matrices:

ψ = f1
⊗

r1 + f2
⊗

r2 + f3
⊗

r3

=

⎡

⎢⎢⎣

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎦ +

⎡

⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤

⎥⎥⎦
(5)

Finally, we get (5) that is the tensor representation of the given structure S
(Fig. 1). In the next section we will learn how those operations can be performed
in the neural computing paradigm.

4 High-Level Theoretical Architecture for Tensor
Product Variable Binding

It was already mentioned above that the Tensor Product Variable Binding was
proposed in [1] as well as the network paradigm that can create tensor repre-
sentation of the given pairs of roles and fillers. This high level architecture is
presented in Fig. 2.

We start reviewing this architecture from the case when the network performs
one binding operation per the given time period. Figure 2a represents such a
network. As we can see the idea is that the network has two inputs: for a filler
f̃ and a role r̃ vectors correspondingly. The network itself consists of sigma-pi
units [20].

Each sigma-pi unit has one or several input sites {σi} that are connected
with other units in the network. Each site σi performs a product of its input
connections {Iσi}. The resulting value of the unit can be computed as a weighted
sum of products from each input site (6).

v =
∑

σ

wσ ×
∏

i

Iσi (6)

104 A. Demidovskij

However, weights are ignored in the proposed architecture, so they are equal
to 1 for each input site and the formula (6) is a bit simplified (7).

v =
∑

σ

1 ×
∏

i

Iσi =
∑

σ

∏

i

Iσi (7)

A well known advantage of neural networks is the high level of computations
distributiveness and easy scalability on the growing number of inputs that is
often called batching. There is an extension of the network accepting two vectors
and therefore performing serial computations to the architecture that provides
simultaneous binding operation for N pairs of such vectors. This extension is
presented on the Fig. 2b. For simplicity, we refer to the case when the network
performs two simultaneous binding operations.

The overall idea of the network that consists of sigma-pi units is kept the
same although each sigma-pi unit now contains N input sites. In our case each
input site receives signals from the corresponding values in input vectors. The
nice fact about this architecture is that adding new inputs and new connections
to the sigma-pi units is enough to add parallelism in network computations. In
other words we utilize natural properties of neural networks.

However, a gap between the theory and practice exists so that practitioners
face the problem of expressing the network architecture in the terms of modern
frameworks and approaches to training and inference of neural networks. The
purpose of this research is to close this gap for the binding network and we will
demonstrate it in the following section.

5 Modern Architecture for Tensor Product Variable
Binding

As you have seen from the previous section, the proposed network is rather
high level and described in very abstract terms. This brings a huge gap when
someone decides to use this architecture in enterprise applications or for some
further research. Practically, all the questions about the network inputs, out-
puts, mechanics, implementation details are left not described although they are
critical for building real life solutions.

Therefore, in this paper, we propose the implementation of the topology that
performs binding operation. You can find the overall scheme in Fig. 3. It is impor-
tant to mention that we prototype the network in the Keras [21] framework that
is the superstructure over the popular frameworks: TensorFlow [22] and PyTorch
[23]. The main advantage of this framework is the high level of abstraction for
network description when compared to other analogues. This framework is con-
sidered to be ideal for prototyping and therefore is our framework of choice.

Selected Aspects of Tensor Product Variable Binding 105

Fig. 2. High-level theoretical architecture for Tensor Product Variable Binding
network [1]

106 A. Demidovskij

5.1 Topology Structure

Network Inputs. As we can see the network accepts two inputs: one for fillers
and one for roles. Each input is a batch of vectors while batch can vary depending
on the number of roles and fillers in our structure. Using batch is a common
approach for building networks that automatically scale for the given number
of input samples. Note that roles and fillers are not constrained to be of the
same size as in general they represent different spaces. We do not perform any
additional manipulations with the input and let the network do it for us. In
other words we feed the network with raw data.

Preparing Inputs for Binding. The next step is preparing one of the inputs
for tensor multiplications. It is easy to see that tensor multiplication over vectors
can be expressed in a usual vector product operation with one of the vectors
being transposed (8):

v = fi

⊗
ri = fT

i × ri (8)

This equivalence lets us avoid using tensor product directly in the network
described in the terms of the Keras framework. It is extremely vital as the tensor
product layers are absent in all modern frameworks. Therefore we perform the
permutation operation that switches dimensions in a way that we can use vector-
vector multiplication with standard framework layers.

Vector Multiplication Layer. This brings us to the next layer that has two
inputs: raw fillers vectors left unchanged and transposed role vectors. This layer
performs the operation described in (8). Although this is the usual vector-vector
multiplication it was a surprise for us to recognize absence of a layer that receives
two vectors and outputs the product of them.

However, as it was already stated, Keras has a flexible and expandable archi-
tecture, therefore we created the custom layer that computes product of two
vectors. It is a primitive Lambda layer (Listing 1.1).

Listing 1.1. Implementation of the vector-vector multiplication layer

from keras . l a y e r s import Lambda
def mul vec on vec (t en so r s) :

return [t en s o r s [0] [i] ∗ t en so r s [1] [i] \
for i in range (l en (f i l l e r s))]

b i n d i n g c e l l = Lambda(mul vec on vec)

Sum Layer. This layer takes a variable number of input matrices as an input
and performs the element-wise sum over them. According to the definition of
the tensor product for the given structure (1), we need to perform exactly this
operation to get the tensor representation.

Selected Aspects of Tensor Product Variable Binding 107

M
ul

V
ec

La

ye
r

(K
er

as
 L

am
bd

a)

1
x

ro
le

 v
ec

to
r

le
ng

th
(v

ar
ia

bl
e)

, e
.g

. 5

ba
tc

h0
1

0
0

0
E

xa
m

pl
e

ro
le

ve

ct
or

:

1
x

fil
le

r
ve

ct
or

 le
ng

th
(v

ar
ia

bl
e)

, e
.g

. 4

ba
tc

h0
0

1
0

E
xa

m
pl

e
fil

le
r

ve
ct

or
:

P
er

m
ut

e
La

ye
r

(T
ra

ns
po

si
ng

 d
at

a)

ba
tc

h

Te
ns

or
 p

ro
du

ct
 r

es
ul

t
fir

st
 r

ol
e

ve
ct

or
 in

 b
at

ch

m
ul

tip
ly

 tr
an

sp
os

ed

fil
le

r
ve

ct
or

fil
le

r
ve

ct
or

si

ze
,

e.
g.

 4

ro
le

 v
ec

to
r

si

ze
,

e.
g.

 5

ba
tc

h
si

ze
,

e.
g.

 5

A
dd

La

ye
r

Te
n

so
r

P
ro

d
u

ct

V
ar

ia
b

le
 B

in
d

in
g

 R
es

u
lt

(m
at

ri
x)

fil
le

r
ve

c
si

ze
,

e.
g.

 4

ro
le

 v
ec

to
r

si

ze
,

e.
g.

 5

Fig. 3. Modern architecture for Tensor Product Variable Binding

108 A. Demidovskij

5.2 Training and Inference

Once the topology is designed and described in the terms of the framework, we
can move to its training and inference. However, for the given binding network
we can see that it is designed for a feed forward inference without preliminary
training. In point of fact, the topology does not keep any weights which are
usually trained in canonical neural models. Speaking about the inference side, it
absolutely follows the example that we examined in Sect. 3.

The source code for further experiments can be found at the open source
repository1.

6 Conclusion

To sum up, we have demonstrated how the binding network can be implemented
with the means of the Keras framework, what are the obstacles and limitations
of modern frameworks when they are applied to the implementation of such
networks. Also we have considered inference aspects.

However, when analysing the proposed architecture, we see the following cons
of the design:

1. Absence of training. The network is not trainable due to absence of weights.
When it is planned to reuse existing binding values the network should be
inferred again to obtain values. Instead, they could be trained and stored in
the serialized network file.

2. Absence of any structure manipulation on the tensor level. From the perspec-
tive of current research, it is possible to translate a structure to the tensor
level, however, it is not clear what we can do with that. There are numerous
potential operations that can be done over the structure: adding new chil-
dren, replacing elements, removing them completely. That is why we should
be able to make such transformations not only on the symbolic level, but also
on the connectivist side or, in other words, on the tensor level.

3. Need in the decoder. The binding network by definition plays the role of
encoder translating the given arbitrary structure to the tensor representation.
However, after the structure is encoded and changed on the tensor level, it
should be translated to the symbolic form again. Otherwise it is not possible
to analyse the result gained by the neural network.

Apart from the fact that this research clearly closes the practitioner gap in
implementing binding networks, we can highlight several advantages of such an
architecture:

1. Scalability. The network does not depend on the number of fillers and roles.
It can accept any quantity of them with the obvious requirement that each
filler should have one and only one matching role. Moreover, this scalability
is inherently built in the topology with the usage of batch dimension.

1 https://github.com/demid5111/ldss-tensor-structures.

Selected Aspects of Tensor Product Variable Binding 109

2. Simplicity. The network does not contain overcomplicated parts that are hard
for implementation. For example, sigma-pi units can be expressed by a com-
bination of primitive layers that do the same operations but with clear and
transparent data flow. Moreover, using the sigma-pi unit is overcomplication
as by definition it contains weights, but in binding network it is ignored (set
as equal to 1).

3. Known language for practitioners. The binding topology architecture was
proposed 30 years ago and the field has rapidly rocketed from that moment
as well as tooling and frameworks. Binding mechanism is a crucial part of
Tensor Product Variable Binding mechanism and its derivatives and it is
vital to express the topology in modern terms for further development of the
field.

To sum up, we consider items 2 and 3 from the list of current design limita-
tions as concrete directions for further research. At the same time we formulate
following research questions that are still open:

1. Training in sub-symbolic systems. Do we need it to be a supervised or unsu-
pervised one? Do we need a labelled data or such networks can generalize and
learn patterns from raw data without a teacher?

2. Attainability of any symbolic operation expression in terms of neural
paradigm so that the neural model produces results acceptable by accuracy?
What about expressing traditional decision making approaches in the neu-
ral form? A positive answer could give a start for huge usage of connectivist
ideas in dozens of actual problems including those from the decision making
domain.

References

1. Smolensky, P.: Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artif. Intell. 46(1–2), 159–216 (1990)

2. Wang, H., Dou, D., Lowd, D.: Ontology-based deep restricted Boltzmann machine.
In: International Conference on Database and Expert Systems Applications,
pp. 431–445. Springer (2016)

3. Margem, M., Yilmaz, O.: How much computation and distributedness is needed in
sequence learning tasks? In: Artificial General Intelligence, pp. 274–283. Springer
(2016)

4. Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., Pallier, C.: The neural rep-
resentation of sequences: from transition probabilities to algebraic patterns and
linguistic trees. Neuron 88(1), 2–19 (2015)

5. Serafini, L., d’Avila Garcez, A.: Logic tensor networks: deep learning and logical
reasoning from data and knowledge. arXiv preprint arXiv:1606.04422 (2016)

6. Browne, A., Sun, R.: Connectionist inference models. Neural Netw. 14(10), 1331–
1355 (2001)

7. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif.
Intell. 244, 166–187 (2017)

110 A. Demidovskij

8. Besold, T.R., Kühnberger, K.-U.: Towards integrated neural-symbolic systems for
human-level AI: two research programs helping to bridge the gaps. Biol. Inspired
Cogn. Archit. 14, 97–110 (2015)

9. Gallant, S.I., Okaywe, T.W.: Representing objects, relations, and sequences. Neural
Comput. 25(8), 2038–2078 (2013)

10. Blacoe, W., Lapata, M.: A comparison of vector-based representations for semantic
composition. In: Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning,
pp. 546–556. Association for Computational Linguistics (2012)

11. Cheng, J., Wang, Z., Wen, J.-R., Yan, J., Chen, Z.: Contextual text understanding
in distributional semantic space. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management, pp. 133–142. ACM
(2015)

12. Rumelhart, D.E., McClelland, J.L., PDP Research Group, et al.: Parallel Dis-
tributed Processing, vol. 1. MIT Press, Cambridge (1987)

13. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364 (2015)

16. Widdows, D., Cohen, T.: Reasoning with vectors: a continuous model for fast
robust inference. Log. J. IGPL 23(2), 141–173 (2014)

17. Frank, R., Mathis, D., Badecker, W.: The acquisition of anaphora by simple recur-
rent networks. Lang. Acquis. 20(3), 181–227 (2013)

18. Yilmaz,Ö., d’Avila Garcez, A.S., Silver, D.L.: A proposal for common dataset in
neural-symbolic reasoning studies. In: NeSy@HLAI (2016)

19. Wang, H.: Semantic deep learning, pp. 1–42. University of Oregon (2015)
20. Rumelhart, D.E., Hinton, G.E., McClelland, J.L., et al.: A general framework for

parallel distributed processing. Explor. Microstruct. Cogn. 1(45–76), 26 (1986)
21. Chollet, F., et al.: Keras (2015). https://keras.io
22. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irv-
ing, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015).
Software available from tensorflow.org

23. Paszke, A., Gross, S, Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

