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Abstract— A challenging problem which arises in the domain 
of integrating symbolic and sub-symbolic computations within a 
massively parallel computational environments like Internet of 
Things is considered in application to the Linguistic Decision 
Making tasks. A novel theoretical idea is proposed on expressing 
linguistic operators in dynamics of an artificial neural network. 
The proposal consists of two consequent stages: expressing 
linguistic operators as structural manipulations and translating 
them in a neuroalgorithm. The theoretical foundation is Tensor 
Product Representation (TPR) that provides a generic 
framework of designing a neural network that does not require 
training and produces an exact result equivalent to the result of 
symbolic algorithms. This paper discusses viability of the 
proposed idea, demonstrates design of TPR-based arithmetic as a 
basic building block for construction of such a method and 
elaborates directions of further research.  
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I. INTRODUCTION  

For many years, symbolic and sub-symbolic computations 
were considered as conflicting and competing paradigms. At 
the same time, the question of building integrated solutions has 
received much attention over the last two decades. One of the 
main reasons for building hybrid solutions is to benefit from 
both paradigms’ advantages: high interpretability of symbolic 
models and massive parallelism and robustness of the 
connectionist or sub-symbolic models. Artificial Neural 
Networks (ANN) are often considered as universal highly 
scalable execution units [1], [2] that are incorporated in a wide 
range of industrial applications. In the field of design of 
distributed neural models there is an important scientific task of 
constructing neural networks that perform significant 
intellectual tasks without preliminary training stage [3] in 
massively parallel computation environments like multi-agent 
systems or Internet Of Things (IoT), where each component 
plays a role of a single neuron or a small subnetwork [4].  

The first step towards solving that task would be design of 
ANN capable of producing an exact solution for a selected 
motivating problem. The Multi-Attribute Decision Making 
based on fuzzy linguistic assessments provided by experts [5] 
can be considered as such motivating problem which includes 
different input types of symbolic structures [6]: semantic, 

syntax parse trees, morpheme analysis, as well as the 
alternatives, criteria and experts’ assessments. Application of 
sub-symbolic paradigm to the Decision Making has been 
analyzed by many researchers. General rules of unification and 
logical output are presented in [3], however there is no 
proposal on the way to express arithmetic operations using the 
neural network. On the other hand, in [7] fuzzy assessments are 
considered, and researches made an attempt to build a neural 
model on top of pre-processed fuzzy numbers. However, this 
model requires training on a selected dataset, finding which is 
already a challenge in the field of decision making. Apart from 
that, the constructed neural network is specific for each task 
and should be retrained for each new Decision Making 
scenario. Therefore, the task of expressing Decision Making 
process with fuzzy assessments on the sub-symbolic level is 
still an actual, challenging and open task. 

This paper investigates the foundations for the solution of 
assessments aggregation during Linguistic Decision Making on 
the neural level without initial training.  In this paper the 2-
tuple model and corresponding aggregation operators [8] are 
used for modeling linguistic assessments, while Tensor Product 
Representations approach (TPR) [9] is proposed for encoding 
and decoding of structures as well manipulating them on the 
tensor level. The aim of the current study is to determine vital 
preconditions of further work and analyze the applicability of 
TPR to expressing linguistic operators. The hypothesis can be 
formulated as follows: if 2-tuple manipulations can be 
expressed as structural operations, like joining or extraction of 
elements, then TPRs can be used to encode 2-tuples and 
perform their aggregation on the sub-symbolic level in a 
distributed fashion that neural networks provide. 

This paper is organized as follows. Section II gives a brief 
overview of the Linguistic Decision Making methods and basic 
models. Section III examines the TPR, rules of encoding and 
decoding of arbitrary recursive structures. Design of TPR-
based arithmetic as a foundation for 2-tuple aggregation is 
outlined in Section IV. Directions of further research and 
conclusions are drawn in Section V. 

II. FUZZY LINGUISTIC VARIABLES 

Modern methods of multi-attribute multi-level linguistic 
decision making use a traditional 2-tuple model as a basic 
building block [8]. They are considered to be more effective 
than other ways of elaborating fuzzy judgments of experts [7]. The reported study was funded by RFBR, project number 19-37-90058 
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With this model it is possible to consider not only qualitative, 
but also quantitative estimations given by experts for the given 
alternative solutions. The 2-tuple model is based on the concept 
of symbolic translation [5]. 

Definition 1. A 2-tuple structure includes a pair  
where 

ppppp
– is a linguistic term (concept), – a 

numeric value or a symbolic translation that shows a result of 
execution of membership function. It shows the distance to the 
closest concept 

p
 if a membership function 

does not result in an exact value . 

Definition 2. Translation rule. Let  be a 
linguistic scale, where denotes granularity level 
of

g
. If  is a result of symbolic aggregation, then 

there is a way to recover a corresponding 2-tuple element: 

 

 
(1) 

Definition 3. Reverse translation rule. Let  
be a linguistic scale, where denotes granularity level 
of . Let  be a 2-tuple element on a linguistic scale , 

where . Then there is a way to transform 2-
tuple element to a numeric form of 

y
: 

 

 

(2) 

Recent developments in Linguistic Decision Making 
approaches have led to elaboration of multiple algorithms of 
aggregating linguistic data. They are usually referred to as 
Linguistic Operators: MTWA (Multigranularity 2-tuple 
Weighted Averaging), MHTWA (Multigranularity Hesitant 2-
tuple Weighted Averaging) [10], P2TLWA (Pythagorean 2-
tuple Linguistic Weighted Averaging) [11] etc. One of them, 
MTWA, performs calculation of weighted average across a set 
of 2-tuple elements. 

Definition4. MTWA operator. Let  be a 2-tuple 
element on a linguistic scale , . Let 

 be a given weighting vector where  
denotes a weight for , . Then the MTWA 
operator is defined by: 

     
(3)

 

However, the 2-tuple model is a basic model, in recent 
years various methods that extend the original ideas of 
aggregating quantitative data were put forward: Hesitant Fuzzy 
Linguistic Term Sets (HFLTS) [12], Institutional 2-tuple [13], 
[14], hybrid models [15] etc. 2-tuple model and its 
modifications have received much attention in the past decade 
among traditional Decision Making methods that start actively 
integrating linguistic information aggregation. Several studies, 
for instance, have been carried out to integrate 2-tupel models 
into the TOPSIS (Technique for Order of Preference by 
Similarity to Ideal Solution) framework [16], [17]. More recent 
evidence [18], [19] shows that there are emerging methods that 
consider linguistic assessments given by experts as well as a 
degree of their confidence in given estimations. 

III. TENSOR PRODUCT VARIABLE BINDING FRAMEWORK 

As it was stated before, representing knowledge in a form 
of a recursive structure has many applications in the field. At 
the same time, the structure is a symbolic element by 
definition. Therefore, it cannot be used directly in sub-
symbolic computations. For many years there has been a 
proposal to consider any structure as a set of pairs, each pair 
containing a filler and a role. In [9] P. Smolensky states that 
considering a structure as a set of pairs is a viable solution and 
formulated it in a form of Tensor Product Variable Binding 
rules. Moreover, they proposed a method of translating 
symbolic structure to a distributed tensor representation as well 
as general rules of expressing symbolic operations on the 
tensor level [20]. 

Definition 4. Filler – a particular instance of the given 
structural type.  

Definition 5. Role – a function that filler presents in a 
structure. 

Definition 6. Tensor multiplication is an operation over 
two tensors a with rank x and b with rank y that produces a 
tensor z has rank  and it consists of pair-wise 
multiplications of all elements from x and y.    

Definition 7. Tensor product for a structure. A structure is 
perceived as a set of pairs of fillers  and roles  and its 
tensor product is found as (4). 

 
(4) 

Definition 8.Joining operationn  is an action over 
two structures (trees) so that the tree p is sliding as a whole 
“down to the left” so that its root is moved to the left-child-of-
the-root position and tree q is sliding “down to the right”.  

Operation cons can be expressed for binary trees as: 

 
(5) 

where  and  are roles,  is empty tree. 

It was proved [9] that this operation can be expressed in 
matrix form given that it operates over the tensor representation 
of structures (6). 

 (6) 

Definition 9. Extracting operation  is an action over 
a single structure (tree) so that the  child of the root 
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becomes an independent tree and the remaining part of the 
original tree is no longer used.  

Operation  can be expressed for binary trees as: 

 
 

(7) 

where . 

It was proved [9] that this operation can be expressed in 
matrix form given that it operates over the tensor representation 
of a structure (8). 

  (8) 

For the past five years there has been a rapid rise in the use 
of TPR in the applied tasks. In particular, modern neural 
architectures were proposed to encode a structure in a tensor 
form [21], recover a structure without any information loss 
from a distributed representation [22], as well as performing 
basic structural operation of joining two trees in one and 
extracting sub-tree by a given set of rules [23]. 

On the other hand, TPR ideas are widely used for Deep 
Neural Networks. For example, this approach was applied to a 
caption generation task [24]. TPR are attracting considerable 
attention due to their ability to examine distributed 
representations that a Deep Neural Network can learn during 
the training process. In [25], authors try to investigate whether 
a neural network was capable of learning structural relations 
between objects in the input data. To sum up, TPR provide a 
generic theoretical framework for translating structures to the 
distributed representation, performing symbolic operations on 
the tensor level and recovery of the symbolic structure from the 
resulting representation. 

IV. DESIGN OF TPR-BASED ARITHMETIC AS A FOUNDATION 

FOR 2-TUPLE AGGREGATION 

Aggregation of linguistic information that is expressed in a 
form of 2-tuples implies translation to the numeric values 
according to (1). This reveals a hypothesis that expression of 
basic arithmetic rules in terms of structural manipulations with 
TPR would allow aggregation of 2-tuple on the neural level.    
To design TPR-based arithmetic the axiomatic should be 
defined, including both primitives and operators.  It was 
decided that the best procedure would be to formulate 
arithmetic in a Peano arithmetic [26] manner, where three basic 
actions should be defined:  – increase by one,  – 
check for equality and  – select between actions depending 
on equality of condition to zero. 

In the framework of that axiomatic and following basic 
TPR principles we propose to consider any number as a tree 
with two positional roles:  (left child) and  (right child). A 
structure is defined recursively and has an arbitrary depth. As it 
was mentioned above, there are two primitive values. Let  
be a structure that consists of only zeros (Fig. 1,a). At the same 
time, the other primitive value 

y
 (Fig. 1.b) consists of a filler 

with a role . Those two primitive values would be used for 
construction of structures that stand for other numbers, for 
example {2} (Fig. 1,c). 

Using the structures proposed all foundational arithmetic 
operations can be expressed in terms of TPR as follows. 

 
Fig. 1. Representing non-negative integers as structures. a) a structure 

representing {0} b) a structure representing {1} c) a structure 
representing {2}. Note: depth of the tree depends on the maximum value 
of integer that should be represented in distributed fashion 

TPR-Inc. The operator for increasing a value by one. Let 
 denote a structure, representing integer 1. Then 

incrementing operator receives a structure , representing a 
number as an input. Result is a structure  that represents the 
number incremented by {1}. The operator can be defined by: 

  (9) 

TPR-Dec. The operator for decreasing a value by one. Let 
 denote a structure, representing 0. Then decrementing 

operator receives a structure , representing a number as an 
input. Result is a structure  that represents the number 
decremented by {1}. The decrementing operator can be defined 
by: 

  (10) 

TPR-Eq. The operator for checking two structures on 
equality. Let  denote two structures. Then the operator can 
be defined by: 

 

 

(11) 

TPR-Sum. The operator for sum of two integers. Let  
denote two structures. Then the operator can be defined by: 

 
(12) 

TPR-Mult. The operator for multiplication of two integers. 
Let  denote two structures. Then the operator can be 
defined by: 

 

 

(13) 

Examples of getting new numbers from primitive constants 
 and  are demonstrated on Fig. 1. For example, number 2 

is a result of application operator to the primitive number 1, 
that is on the structural level equivalent to joining procedure of 
a structure that represents 1 with a role  and a structure that 
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represents 1 with a role . Definition of basic operators allows 
defining more complicated operators like TPR-Sum (12) and 
TPR-Mult (13). The most basic building blocks, such as TPR-
Inc (9), are designed in a neural form and available as an open-
source project (https://github.com/demid5111/ldss-tensor-
structures). 

V. CONCLUSION 

To sum, it was demonstrated that numbers can be encoded 
as a recursive TPR-based structure and integer arithmetic can 
be expressed in a form of structural TPR-based manipulations. 
These results confirm our initial hypothesis of feasibility of 
creation a method that allows aggregating fuzzy linguistic 
estimations on the neural level. Indeed, as it was demonstrated 
in Section II, any linguistic estimations can be translated to a 
numeric format and after aggregation back to a new 2-tuple 
element. Then an average weighting operator (3) that by 
definition consists of sums and multiplications could be 
expressed in a form of structural manipulations because each of 
these arithmetic operations is expressed in structural form (12, 
13). In turn, there are known methods and instruments that 
allow performing such manipulations with a help of generated 
neural network [20], [21], [22], [23]. As our foundational 
hypothesis was confirmed the further research topic is 
integration of the blocks designed for building a complete 
solution capable of performing linguistics assessments 
aggregation on the neural level. 
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