
Towards Automatic Manipulation of Arbitrary
Structures in Connectivist Paradigm
with Tensor Product Variable Binding

Alexander V. Demidovskij(&)

Higher School of Economics, ul. Bolshaya Pecherskaya 25/15,
Nizhny Novgorod, Russia
ademidovskij@hse.ru

Abstract. Building a bridge between symbolic and connectionist level of
computations requires constructing a full pipeline that accepts symbolic struc-
tures as an input, translates them to distributed representation, performs
manipulations with this representation equivalent to symbolic manipulations and
translates it back to the symbolic structure. This work proposes neural archi-
tecture that is capable of joining two structures which is an essential part of
structure manipulation step in the connectionist pipeline. Verification of the
architecture demonstrates scalability of the solution, a set of advice for engi-
neering practitioners was elaborated.

Keywords: Connectionism � Tensor computations � Neural networks �
Unsupervised learning

1 Introduction

For a long period, Artificial Intelligence (AI) community investigates two important
paradigms about computations: symbolic and sub-symbolic or connectionist approa-
ches. Although, those two ideas can be considered drastically different, it is likely for
them to become partners rather than competitors. Symbolic level is defined by methods
that manipulate symbols and explicit representations. Connectionist approach [1, 2] is
built around the idea of massive parallelism and mostly characterized by artificial
neural networks. The potential symbiosis of two paradigms can bring robust and
flexible solutions that produce understandable results that are easy to validate.

Symbolic structures can be encoded in the distributed representation with many
means: First-Order Logics (FOLs) [3, 4], Holographic Reduced Representations
(HRRs), Binary Spater Codes and so on [5]. One of the key contributions to the field
are presented in the Tensor Product Variable Binding approach proposed by
Smolensky [6] and further applied in Vector Symbolic Architectures (VSA) [7]. Dis-
tributed representations taken by this method are used in multiple domains, especially
in Natural Language Processing (NLP) [8], where a sentence plays a role of structure.
In order to describe the task and the proposed solution it is essential to give several key
definitions of the Tensor Product Variable Binding (TPVB).

© Springer Nature Switzerland AG 2020
B. Kryzhanovsky et al. (Eds.): NEUROINFORMATICS 2019, SCI 856, pp. 375–383, 2020.
https://doi.org/10.1007/978-3-030-30425-6_44



Definition 1. Filler – a particular instance of the given structural type.

Definition 2. Role – a function that filler presents in a structure.

Definition 3. Tensor multiplication is an operation over two tensors a with rank x and b
with rank y that produces a tensor z has rank x + y and it consists of pair-wise mul-
tiplications of all elements from x and y.

Definition 4. Tensor product of a structure. A structure is perceived as a set of pairs of
fillers ffig and roles frig and its tensor product is found as (1).

w ¼
X

i
fi � ri ð1Þ

There are already solutions that can translate simple structures to tensor repre-
sentations and back to the symbolic structures [9]. However, there is a gap in making
operations over structures on the tensor level. Indeed, there are multiple routine
operations over structures: adding or removing nodes, joining structures together etc. In
this paper the task of joining structures together is considered and thoroughly analyzed.

2 Task Description

There is structure S presented on the Fig. 1. It consists of two levels of nesting (root is
not considered as a first level). This structure contains 3 fillers: A, B, C and only two
elementary roles: r0 (left child) and r1 (right child). Each filler and role should be
transformed to vector representation. There is only one strong requirement: fillers,
defined on vector space VF, should be linearly independent among each other, as well
as roles, defined on vector space VR. At the same time, an assignment for fillers and
roles can be arbitrary with the aforementioned condition being satisfied (2).

A ¼ 8 0 0½ �;B ¼ 0 15 0½ �;C ¼ 0 0 10½ �; r0 ¼ 10 0½ �; r1 ¼ ½0 5� ð2Þ

According to Definition 4 the given structure S can be translated to the distributed
representation (3).

Fig. 1. Sample structure

376 A. V. Demidovskij



w ¼
X

i
fi � ri ¼ A� r0 � r0 þC � r1 � r0 þB� r1 ð3Þ

It is easier to first calculate compound roles (4) and then apply them to (3) in order
to find the corresponding tensor representation (5).

r00 ¼ r0 � r0 ¼ 10 0½ � � 10 0½ � ¼ 100 0½ �
0 0½ �

� �

r10 ¼ r1 � r0 ¼ 0 5½ � � 10 0½ � ¼ 0 0½ �
50 0½ �

� � ð4Þ

w ¼ A� r00 þC � r10 þB� r1

¼ 8 0 0½ � � 100 0½ �
0 0½ �

� �
þ 0 0 10½ � � 0 0½ �

50 0½ �

� �

þ 0 15 0½ � � 0 5½ � ¼

¼ 800 0½ �
0 0½ �

� �
0 0½ �
0 0½ �

� �
0 0½ �

500 0½ �
� �� �

þ
0 0½ �
0 75½ �
0 0½ �

2
64

3
75

ð5Þ

It is extremely important to note that the resulting tensor representation contains
tensors of different rank that cannot be summed as plain matrixes. Instead there is a
direct sum operation. The idea is that a tensor of rank N can be represented as a list of
tensors of rank 1..N with tensors of rank 1..N−1 being just filled with zeros. Therefore,
when a sum of tensor representation is performed tensors are summed according to
their rank.

At this moment, it is clear how to build a binary tree of the predefined height using
sub-symbolic operations. In order to better understand the requirements of the task of
the paper it is necessary to analyze the algorithm that is used to construct the considered
example (Fig. 2).

Fig. 2. Possible stages of building structure from subtrees. (a) There are independent fillers.
(b) A and C are joined as left and right children of root accordingly. B is still an independent
filler. (c) A subtree from (b) is taken as a left subtree and a free filler B is taken as a right subtree.

Towards Automatic Manipulation of Arbitrary Structures 377



From Fig. 2 it is clear that building a structure inherently means joining subtrees. In
case of binary tree there are one or two subtrees that can be joined. Also, it is vital that
at the beginning each filler is considered as a separate tree that can participate in the
joining procedure.

This brings to the formulation of the task. The target task of the current paper is to
propose the robust neural architecture for performing dynamic construction of tensor
representation of the arbitrary structure via joining the subtrees and investigate engi-
neering aspects of its implementation.

3 Theoretical Method of Building Shift Matrix

Joining two subtrees as direct children of the new root and by that constructing the new
tree is by nature a simple operation that makes a whole subtree play a new role in terms
of Tensor Product Variable Binding. It is extremely clear from Fig. 2b, where instead
of taking big trees, there are only two fillers that play a role of left and right subtree
correspondingly. In order to achieve the same result on tensor level it is enough to
perform tensor multiplication of the filler and corresponding role. Generalizing it to the
case when instead of a filler there is a representation of a tree, there is still a need to
perform tensor multiplication of the tree distributed representation and the assigned
role. The complexity in this case lies in the fact that tensor representation of the
structure is the multi-component list of tensors of different depth and it is no longer a
plain vector-vector multiplication.

Definition 5. Joining operation cons(p, q) is an action over two structures (trees) so
that the tree p is sliding as a whole ‘down to the left’ so that its root is moved to the left-
child-of-the-root position and tree q is sliding ‘down to the right’.

Operation cons can be expressed for binary trees as:

cons p; qð Þ ¼ p� r0 þ p� r1
cons0 pð Þ � cons p; ;ð Þ
cons1 qð Þ � cons ;; qð Þ;

ð6Þ

where r0 and r1 are roles, ; is empty tree.
It was proved [10] that this operation can be expressed in matrix form given that it

operates over the tensor representation of structures (7).

cons p; qð Þ ¼ Wcons0pþWcons1q ð7Þ

Matrix exposes a shifting mechanism over a tensor representation of a structure that
contains tensors of different rank. Technically, to shift the tree ‘down to the left’
(‘down to the right’) means to apply the role r0 (r1) to each tensor from tensor rep-
resentation. This is what Wcons0 (Wcons1) matrices perform. These matrices take symbols
at depth d from p and put them at depth d + 1.The form of these matrices is the
following: all elements are zeros except the elements under the main diagonal. This is
true because of the fact that cons operation just shifts the tree one level down. As both

378 A. V. Demidovskij



matrices are constructed in the same manner, only Wcons0 is considered in this section.
Matrix is computed from the role vector and identity matrices (8).

Wcons0 ¼1A � r0 þ 1R � 1A � r0 þ 1�2
R � 1A � r0 þ

þ . . .þ 1�d
R � 1A � r0 þ . . .;

ð8Þ

where d is the depth of the representation, 1A is an identity matrix of width and height
equals number of elements in the filler vector and 1R is an analogous identity matrix
with size depending on the role vector.

The key point in constructing the matrix is to keep the order of tensor multipli-
cations. This is not so obvious because the way tensor representation is considered in
TPVB is rather unbounded – TPVB only recognizes the feature that resulting tensor
contains all multiplications of input tensors elements. However, for Wcons0 it is very
important to keep dimensions of roles first. Finally, we get the following matrix for
depth = 2, role vector with 2 elements, filler vector with 3 elements (9).

r00
r01

� �
0 0

0
r00
r01

� �
0

0 0
r00
r01

� �

2
6666664

3
7777775

0

0

r00
r01

� �
0 0

0
r00
r01

� �
0

0 0
r00
r01

� �

2
6666664

3
7777775

0

0

r00
r01

� �
0 0

0
r00
r01

� �
0

0 0
r00
r01

� �

2
6666664

3
7777775

2
66666666666666666664

3
77777777777777777775

2
66666666666666666666666666666664

3
77777777777777777777777777777775

ð9Þ

During the computation phase the matrix is flattened and does not contain the block
structure present in (9). Blocks are shown for better visualization of the matrix
structure.

4 Proposed Neural Architecture

The overall scheme of the proposed neural architecture for joining structures is
demonstrated on the Fig. 3. Neural Network is designed to accept multiple inputs of
two types: constant and variable ones, they will be described later. After that each filler

Towards Automatic Manipulation of Arbitrary Structures 379



processing subtree is flattened to a vector format while a shifting matrix is prepared
based on the role that is chosen for this sub-tree. Finally, each subtree vector repre-
sentation is multiplied by the shifting matrix and all the resulting vectors are summed
and by that the tensor representation of the structure that contains inputs structures as
direct children of the new root is produced. All the layers details are covered below.

Input Layers. As it was stated in (4) tensor representation is by definition a list of
tensors. Number of elements in the list hugely depends on the depth of the structures
that should be joined. Each variable input corresponds to the tensor of the particular
rank. Also, there can be multiple structures that we are going to join, that is why the
number of inputs can drastically grow with the demand of the original task. The second
type of inputs is constant inputs. Those inputs are filled with roles vectors. On the
Fig. 2 it is clear that there are only two roles taken for simplicity of description. In
reality there can be plenty of roles and Neural Network is designed to be easily
extended to a larger case.

Reshaping Layers. Those layers are part of the subtree flattening branch (Fig. 4) and
exist for input tensors or rank 1 and 2. It is a technical requirement of the imple-
mentation in the Keras1 framework due to the fact that Flatten layer can work only with
tensors of rank bigger than two. So, Reshaping layers expand dimensions of such
inputs with fake dimension of 1 to satisfy Flatten layer requirements.

Fig. 3. Overall scheme of the neural architecture

1 https://keras.io/.

380 A. V. Demidovskij



Flattening Layers. Those layers are part of the subtree flattening branch (Fig. 4) and
exist for all input tensors. Those layers transform tensors of different rank to a simple
vector format according to the ordinary rules of flattening multi-dimensional tensors.

Concatenate Layers. Those layers are part of the subtree flattening branch (Fig. 4).
Those layers join vectors that correspond to each level of the tensor representation in
one vector. The order is very important here: from vectors representing zero depth level
to N.

Transpose Layers. Those layers are part of the subtree flattening branch (Fig. 4). Due
to the fact that next operation is matrix-vector multiplication it is required to transform
a vector into a column vector. Transpose layers enclose the subtree flattening branch
and their output is used in the final part of the network.

ShiftMatrix Layers. Those layers are part of the role propagating branch (Fig. 5). The
primary and only purpose of this layer is production of the shift matrix that was
discussed in Section “Theoretical method of building shift matrix”. In practice it is a
tensor of rank 2 or an ordinary matrix. It is interesting to estimate it dimensions. Width

Fig. 4. Subtree flattening branch of the proposed architecture

Towards Automatic Manipulation of Arbitrary Structures 381



of the matrix or a shift operator equals to the size of the vector representing the tree that
should be assigned to a given role while height of the matrix equals the size of vector
representing a structure assigned to a new role.

MulVec Layers. Those layers are part of the neural network tail (Fig. 3). Those layers
perform ordinary matrix-vector multiplication and the resulting vector contains tensor
representation of the current subtree assigned to a new role.

Add Layer. This layer is an output of the network (Fig. 3). All the subtrees are now
assigned to new roles and it is required to join them together and the sum vector would
represent the resulting structure after joining all subtrees on the tensor level.

5 Conclusion

The novel neural architecture that solved a task of joining structures was proposed and
implemented in the Keras framework. The implementation is open-source and available
online2. Several conceptual gaps of original works devoted to the same topic were
closed, in particular the mechanics of building the shift matrix. The elaborated network
is robust and is designed to work with arbitrary number of roles and existing tensor
representations of different depth. This result provides an essential brick in the bridge
between symbolic and sub-symbolic levels of computations.

However, there is still an opened question on performing other operations over
arbitrary structures on the tensor level, for example adding or removing nodes or
moving nodes to other positions in the structure. Also, current proposal requires initial
definition of the structure maximum depth that can be an obstacle in edge cases, as well

Fig. 5. Role propagating branch

2 https://github.com/demid5111/ldss-tensor-structures.

382 A. V. Demidovskij



as constructing the shifting matrix depending on number of roles. So, there is an actual
direction for further development of Tensor Product Variable Binding methods.

References

1. Rumelhart, D.E., Hinton, G.E., McClelland, J.L.: A general framework for parallel
distributed processing. Parallel Distrib. Process. Explor. Microstruct. Cogn. 1, 26 (1986)

2. Rumelhart, D.E., McClelland, J.L.: PDP Research Group: Parallel Distributed Processing,
1st edn, p. 184. MIT press, Cambridge (1988)

3. Serafini, L., Garcez, A.D.A.: Logic tensor networks: deep learning and logical reasoning
from data and knowledge. arXiv preprint. arXiv:1606.04422 (2016)

4. Teso, S., Sebastiani, R., Passerini, A.: Structured learning modulo theories. Artif. Intell. 244,
166–187 (2017)

5. Browne, A., Sun, R.: Connectionist inference models. Neural Netw. 14(10), 1331–1355
(2001)

6. Smolensky, P.: Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artif. Intell. 46(1), 159–216 (1990)

7. Gallant, S.I., Okaywe, T.W.: Representing objects, relations, and sequences. Neural Comput.
25(8), 2038–2078 (2013)

8. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

9. Demidovskij, A.: Considering selected aspects of tensor product variable binding in
connectionist systems. In: Proceedings of the 2019 Intelligent Systems Conference
(IntelliSys). The conference will be held in September, pp. 5–6. Springer, Cham (2019)

10. Smolensky, P., Legendre, G.: The Harmonic Mind: From Neural Computation to
Optimality-Theoretic Grammar (Cognitive Architecture), 1st edn. MIT press, Cambridge
(2006)

Towards Automatic Manipulation of Arbitrary Structures 383


