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Abstract— One of the main challenges in building hybrid 
systems that integrate symbolic and sub-symbolic levels of 
computations is elaboration of methods that would allow 
expressing symbolic manipulations in a form of neural networks 
dynamics. In particular, it is extremely important to be able to 
process symbolic structures in a distributed format and perform 
analysis over this tensor representation that would be equivalent 
to a sequence of symbolic operations over the original structure. 
In this paper, the novel method is proposed for processing and 
analysis of semantics tree in a form of generated neural network. 
This method is built upon the Tensor Product Representations 
(TPRs) framework, scales well for an arbitrary structure and 
allows expressing simple symbolic operations in a form of neural 
network dynamics. 

Keywords— sub-symbolic computations, artificial neural 
networks, tensor product variable binding 

I. INTRODUCTION 
Symbolic and sub-symbolic approaches to computations 

have been considered as competing paradigms for a long 
period of time. Symbolic level is defined by methods that 
manipulate symbols and explicit representations. Sub-
symbolic paradigm or as it is often referred to as 
connectionism defines massively parallel computations and is 
nowadays strongly associated with Artificial Neural Networks 
(ANNs) [1], [2]. However, there seems to be a considerable 
drawback of neural computation that is low interpretability. At 
the same time intermediate calculation results of symbolic 
methods are quite transparent and easy to work with. 
Therefore, there is a strong intention to build integrated 
systems on top of both computational paradigms and produce 
robust and flexible solutions [3], [4]. 

At the same time, symbols are natural parts of any 
language. Language is considered to be a combinatorial 
system that operates with various symbols [5]: phonemes, 
morphemes, phrases etc. Those symbols are building bricks of 
arbitrary structures that appear after syntax parsing, semantic 
interpretation etc. Resulting symbolic structures become 
inputs and outputs of traditional NLP (Natural Language 
Processing) methods. In this paper the task of voice extraction 
is considered [6]. There are two sample sentences: A 
homework is done by Peter and Peter does a homework.  

After the semantic interpretation of these sentences we get 
the structure shown on Fig. 1 and Fig. 2, where A stands for 
"agent" and P for "patient". Both A and P represent sub-trees. 
It is obvious that presence of Aux symbol as the left-child-of-
left-child-of-right-child-of-root can be used as a marker of 
Passive voice in the sentence. 

The central idea of this paper is elaboration of such a 

neural method that is capable of performing a simple symbolic 
task such as retrieval of the voice marker and overall 

classification task on the neural level. At the same time, the 
framework of research allows generalization of the neural 
approach to solving other simple symbolic tasks, like 
linguistic assessments aggregation during decision making. In 
order to do that, the structure should be transferred to the 
distributed representation as neural networks do not work with 
symbols directly. 

The structure of this work is as follows: Section 2 gives 
overview of the background study, Section 3 contains deep 
analysis of primitive symbolic operations that can be 
expressed in a neural form. In Section 4 the proposed neural 
network is described. Evaluation of the method is 
demonstrated in Section 5. Conclusions and directions of 
further research are formulated in the final part of the paper. 

II. RELATED WORK 
One of the most considerable theoretical approaches that 

is closely related to the discourse of this research was The reported study was funded by RFBR, project number 19-37-90058 

 

 
Figure 1. Parsed structure of Passive voice sentence.  

 

 
Figure 2. Parsed structure of Active voice sentence.  
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proposed in [6] and called Active-Passive Net. The overall 
architecture allows performing extraction of required particles 
of the structure and construction of the new structure that 
represents predicate-calculus expression. Active-Passive Net 
as well as the neural network proposed in current research rely 
on the mechanism of Tensor Product Representations (TPRs) 
[7]. There are several recent advances in the field that allow 
building symbolic and sub-symbolic integrated solutions with 
TPRs. The integrated symbolic and sub-symbolic flow 
consists of following steps (Fig. 3): 

• encoding the symbolic structure as a distributed 
representation with a neural network. In [8] a new 
encoder design was proposed for the simple structure 
that has only one nesting level.  

• flattenning the distributed representation to a vector 
format with a neural network [9]. 

• performing domain specific analysis of the structure on 
the neural level. For example, identification of whether 
the sentence is in Active or Passive voice. 

• structural manipulations on the neural level, for 
example, joining of two trees in one [9]. 

• decoding the new structure from a distributed 
representation to symbolic level.  

Regarding the applied methods, various TPRs-based 
systems were introduced in past years. One of them is TPGN 
that uses TPRs in a task of image captioning [10]. Another 
recent approach called ROLE was proposed as an 
interpretation engine of distributed representations that were 
learned in deep neural networks [11]. This brings the question 
of using this apparatus for performing natural language 
structural analysis in the form of neural networks dynamics, 
for example analysis of parse trees or semantic structures of 
sentences. Finally, TPRs are used in applied tasks, like image 
captioning [12] or question answering [13]. 

III. TENSOR PRODUCT VARIABLE BINDING 
Tensor Product Variable Binding is a way to transform the 

symbolic structure into the vector format [14] using the tensor 
product operation (1). 

Definition 1. Filler – a particular instance of the given 
structural type.  

Definition 2. Role – a function that filler presents in a 
structure. 

Definition 3. Tensor multiplication is an operation over 
two tensors a with rank x and b with rank y that produces a 
tensor z has rank 𝑥 + 𝑦  and it consists of pair-wise 
multiplications of all elements from x and y.    

Definition 4. Tensor product for a structure. A structure 
is perceived as a set of pairs of fillers {𝑓!} and roles {𝑟!} and 
its tensor product is found as (1). 

 𝜓 =*𝑓! ⊗
!

𝑟! (1) 

    The specific operation ex [7] is defined in order to extract 
the sub-tree by a role it plays in the original structure. The 
TPVB approach defines method of constructing a shift matrix 
Wex that performs extraction of structural elements by using 
the distributed representation of the original structure. Shift 
matrix is defined with a recursive formula (5). 

Definition 5. Joining operation	𝑐𝑜𝑛𝑠(𝑝, 𝑞) is an action 
over two structures (trees) so that the tree p is sliding as a 
whole “down to the left” so that its root is moved to the left-
child-of-the-root position and tree q is sliding “down to the 
right”.  

Operation cons can be expressed for binary trees as: 

 
𝑐𝑜𝑛𝑠(𝑝, 𝑞) = 𝑝⊗ 𝑟" + 𝑝	 ⊗ 𝑟#	
𝑐𝑜𝑛𝑠"(𝑝) ≡ 𝑐𝑜𝑛𝑠(𝑝, ∅)	
𝑐𝑜𝑛𝑠#(𝑞) ≡ 𝑐𝑜𝑛𝑠(∅, 𝑞) 

(2) 

where 𝑟" and 𝑟# are roles, ∅ is empty tree. 
It was proved [9] that this operation can be expressed in 

matrix form given that it operates over the tensor 
representation of structures (3). 

 𝑐𝑜𝑛𝑠(𝑝, 𝑞) = 𝑊$%&'"𝑝 +𝑊$%&'#𝑞 (3) 
Definition 6. Extracting operation 	𝑒𝑥((𝑝)  is an action 

over a single structure (tree) so that the 𝑋)* child of the root 
becomes an independent tree and the remaining part of the 
original tree is no longer used.  

Operation 𝑒𝑥( can be expressed for binary trees as: 

 𝑒𝑥"(𝑠) = 𝑝	
𝑒𝑥#(𝑠) = 𝑞 (4) 

where𝑠 = 𝑐𝑜𝑛𝑠(𝑝, 𝑞). 
It was proved [9] that this operation can be expressed in 

matrix form given that it operates over the tensor 
representation of a structure (8). 

 
𝑒𝑥((𝑠) = 𝑊+,!𝑠 

𝑊+," = 𝐼	⨂	1-	⨂	𝑢" (5) 

where I is the identity matrix on the total role vector space,  
1A is the identity matrix. Wex matrices are defined in the 
manner similar to the Wcons matrices that join two sub-trees in 
one structure [9]. Extraction mechanism is central to the task 
of defining the voice of the sentence as it was stated before 
(Section 1). The way the proposed neural architecture uses this 
extraction methodology is described in Section 4. 

 
Figure 3. Desired integrated pipeline of symbolic 

and sub-symbolic computations.  
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IV. PROPOSED NEURAL DESIGN OF CLASSIFICATION TPVB 
NETWORK 

A. Network architecture 
Current research is targeted to propose a novel design for 

the TPVB Clasification network. It is demonstrated on Fig. 4. 
Each block is considered separately below. 

a)  Network inputs. The network accepts 1 variable 
input and 3 constant ones. Single variable input is a vector 
that represents the distributed representation of the variable 
structure that is flattened to a raw vector format. 

b) Shift block. From the architectural point of view the 
massive part of the network is a set of consecutive Shift 
Blocks. The first input of the Shift Block is a constant input of 
the network that is prepared in advance during network 
generation on the base of vectors dual to the roles vectors (5). 
The second input is a structure representation at the current 
nesting level. This input is then used for extraction of a sub-
tree by the particular role. Another considerable 
implementation aspect of the Shift Block is the chain of tensor 
manipulation layers. In particular, cascade of Reshape, 
Crop3D and Reshape layers. The main reason for those 
manipulations is technical limitations of available Keras 
primitives [15]. Extraction matrix is quite specific as it 
accepts as an input not just the flattened representation of the 
structure, but a reduced version of representation without 
components representing level 0 in the tensor representation 
of the whole structure. However, available Crop3D primitive 
requires tensor of a rank higher than the variable input. That 
is why there are additional reshaping layers to satisfy 
software requirements. Output of the Shift Block (Fig. 5) 
stands for the distributed representation of the sub-tree of the 
input structure that was binded with the specific role vector. 
Number of shift blocks hugely depends on the maximum 
depth of the input structure and on what exact part of the 
given structure should be retrieved. In this particular case, the 
maximum depth of the tree is 3 and the element to be 
retrieved is Aux. 

c) Global Pooling layer. In the circumstances of the 
given task, the input of this layer is a plain vector. It 
represents extracted filler and can either contain at least one 
non-zero element (local representation) or no non-zero 
elements at all. The latter case means that there is no 
matching filler in the structure and the sentence is of Active 
voice. Due to these facts, the GlobalMaxPooling1 primitive 
is used and it produces a single number as an output that 
represents the biggest value in the row. 

d) Mask Lambda layer. Finally, the Mask layer accepts 
a single number as an input and should produce a boolean 
output. Keras framework exposes Mask functionality that 
allows to perform conditional operations inside the neural 
network. The condition is very simple: in case the input is a 
non-zero element, the sentence is of a Passive voice and the 
layer and the Network should return "one". Otherwise, the 
sentence is built with the use of Active voice. 
 
B. Network generation 

As it was already highlighted, the proposed design of the 
neural network does not imply any kind of training and is a 

one-shot generated architecture. In order to generate this type 
of networks the following inputs are required: 

• maximum depth of the tree and dimensionality of 
fillers. It is required to know how deep is the tree or, 
more specifically, what is the maximum rank of the 
distributed representation of an arbitrary structure.  

• set of roles vectors. Extraction operation (5) cannot be 
performed with dual role vectors. 

• extraction rules. According to the task considered in 
this paper, definition of sentence voice depends on 
existence of leaf (Aux). In order to do that in a neural 
network several consequent shifting matrix should be 
applied to the input tensor, each of them corresponds 

 

 
Figure 4. Proposed architecture of TPVB 

Classification network.  
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of extraction of a sub-tree that is present at a particular 
role.     

 

Finally, it is important to mention that there are two 
distinct steps in using the proposed approach. The first one is 
one-time generation of the network depending on the size of 
structures, roles and fillers vectors. Once the network is 
generated, it can be used multiple times for inference and only 
requires the distributed representation of input structure as 
input. The source code for further experiments can be found 
at the open source repository1. 

V. EVALUATION OF THE METHOD PROPOSED 
In order to explain the dynamics of the neural network, the 

following example is taken. Lets consider two sample 
sentences. The first one is A homework is done by Peter. The 
second is Peter does a homework. Firstly, semantic trees are 
created after processing of these sentences. The first sentence 
is split in several parts: <Patient> replaces <A homework>, 
<Aux> replaces <is>, <Verb> goes for <done>, <by> is left 
unchanged, <Agent> replaces <Peter>. The second sentence 
is split in three parts: <Agent> replaces <Peter>, <Verb> 
stands for <does>, <Patient> is for <a homework>. It is 
obvious that these sentences become structures from Fig. 1 
and Fig. 2 correspondingly. From this moment on, symbolic 
structures representing two sentences become central 
elements of the system. The next step is to encode each 
structure in a tensor form. For that each filler and role are 
defined as linearly independent vectors. 

 
1 https://github.com/demid5111/ldss-tensor-structures 

 

𝐴 = [7	0	0	0	0]	
𝑉 = [0	4	0	0	0]	
𝑃 = [0	0	2	0	0]	
𝐴𝑢𝑥 = [0	0	0	5	0]	
𝑏𝑦 = [0	0	0	0	3]	
𝑟" = [10	0]	
𝑟# = [0	5] 

(6) 

 According to the rules defined in [14] and using the 
lightweight binding network proposed in [8], [9], both 
sentences are translated to the distributed representation, an 
example of passive and active voice sentences representation 
are demonstrated in (7) and (8) correspondingly. 

𝑺𝑷𝒂𝒔𝒔𝒊𝒗𝒆 = 

[𝟎	𝟎	𝟎	𝟎	𝟎],	 

M[𝟎, 𝟎], [𝟎, 𝟎], [𝟐𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎]O,	 
PM[0, 0], [0, 0]O, M[0, 0], [0, 0]O, M[0, 0], [0, 0]OQ ,	

[PM[0, 0], [0, 0]O, M[0, 200], [0, 0]O, M[0, 0], [0, 0]OQ ,	

PM[0, 0], [0, 0]O, M[0, 0], [0, 0]O, M[0, 0], [0, 875]OQ ,	

PM[0, 0], [0, 0]O, M[0, 200], [0, 0]O, M[0, 1000], [0, 0]OQ ,	

PM[0, 2500], [0, 0]O, M[0, 200], [0, 0]O, M[0, 0], [0, 0]OQ ,	

PM[0, 0], [0, 750]O, M[0, 200], [0, 0]O, M[0, 0], [0, 0]OQ] 

(7) 

 

 

𝑺𝑨𝒄𝒕𝒊𝒗𝒆 = 

[𝟎	𝟎	𝟎	𝟎	𝟎],	 
M[𝟕𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎]O,	 

[M[𝟎, 𝟎], [𝟎, 𝟎]O, M[𝟎, 𝟐𝟎𝟎], [𝟎, 𝟎]O, M[𝟎, 𝟎], [𝟎, 𝟓𝟎]O,	 
M[0, 0], [0, 0]O, M[0, 0], [0, 0]O] 

 

(8) 

Each of these tensors is flattened and fed into the 
classification network as a plain vector. In order to execute the 
first shift block it is required to know what is the depth of the 
original structure. In other words the neural network has to 
extract the child of the root of the encoded tree. Within the 
Tensor Product Variable Binding framework, the depth of the 
maximum structure should be known in advance. 

The output of the first shift block for the passive and active 
voices are shown in (9), (10) respectively. 

𝑺𝑷𝒂𝒔𝒔𝒊𝒗𝒆 = 

[𝟎	𝟎	𝟎	𝟎	𝟎],	 

M[𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎]O,	 

[M[𝟎, 𝟎], [𝟎, 𝟎]O, M[𝟎, 𝟐𝟎𝟎], [𝟎, 𝟎]O, M[𝟏𝟕𝟓, 𝟎], [𝟎, 𝟐𝟎𝟎]O,	 
M[0, 0], [0, 500]O, M[0, 0], [0, 0]O]	 

(9) 

 

 

 
Figure 5. Proposed design of a single shifting block.  
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𝑺𝑨𝒄𝒕𝒊𝒗𝒆 = 

[𝟎	𝟎	𝟎	𝟎	𝟎],	 

M[𝟏𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎]O,	 
[M[𝟎, 𝟎], [𝟎, 𝟎]O, M[𝟎, 𝟎], [𝟎, 𝟎]O, M[𝟎, 𝟎], [𝟎, 𝟎]O,	 

M[0, 0], [0, 0]O, M[0, 0], [0, 0]O]	 

(10) 

 

The output of the second shift block for the passive and 
active voices are shown in (11), (12) respectively. 

𝑺𝑷𝒂𝒔𝒔𝒊𝒗𝒆 = 

[𝟎	𝟎	𝟎	𝟎	𝟎],	 

M[𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟐𝟎, 𝟎]O,	 
 

(11) 

 

𝑺𝑨𝒄𝒕𝒊𝒗𝒆 = 

[𝟎	𝟎	𝟎	𝟎	𝟎],	 

M[𝟎, 𝟒], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎], [𝟎, 𝟎]O,	 
 

(12) 

The output of the third shift block for the passive and 
active voices are shown in (13), (14) respectively. 

𝑺𝑷𝒂𝒔𝒔𝒊𝒗𝒆 = [𝟎	𝟎	𝟎	𝟓	𝟎] (13) 
 

𝑺𝑨𝒄𝒕𝒊𝒗𝒆 = [𝟎	𝟎	𝟎	𝟎	𝟎] (14) 
It is obvious that from one shift block to another the 

dimensionality of data tensor reduces as well as reduces the 
depth of the structure that it represents. Each shift block 
performs extraction logic that allow retrieval of a filler on a 
particular position that is a key criterion for defining whether 
the sentence is in Active Voice or not. 

VI. CONCLUSION 
A novel method of generating the neural network for 

solving the symbolic task was proposed in the paper. The 
elaborated approach demonstrates the viability of building 
sub-symbolic systems capable of performing various 
symbolic algorithms.  As for the directions of further research, 
neural architecture of the classification network can be used 
for further implementation of the Active-Passive network. It 
represents the integrated approach starting with the distributed 
tensor representation of the given structure and producing 

distributed representation of the structure that stands for the 
predicate-calculus expression. In overall the paper contributes 
to the development of monolithic neural-symbolic systems. 
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