
Proc. of the 3rd International Conference on Electrical, Communication and Computer Engineering (ICECCE)

12-13 June 2021, Kuala Lumpur, Malaysia

978-1-6654-3897-1/21/$31.00 ©2021 IEEE

Exploring Neural Turing Machines Applicability in
Neural-Symbolic Decision Support Systems

Alexander Demidovskij
Computer Science Department
Higher School of Economics

Nizhny Novgorod, Russia
ORCID: 0000-0003-3605-6332

Abstract—The task of building hybrid decision support

systems that combine symbolic and connectionist approaches is

actual and challenging. In particular, decision support systems

operate with symbolic structures that describe the problem

situation, stakeholders, assessment criteria, etc. Integrating

connectionist approaches into certain parts of the decision-making

process bring robustness, fixed response speed and ability to

generalize. This paper examines Neural Turing Machines – a

special case of Memory-Augmented Neural Networks – and

demonstrates that such an architecture can be integrated into the

Decision Support Systems. It was also shown that Neural Turing

Machine can solve arithmetic sum task for numbers represented

as binary vectors of length 10.

Keywords—Neural Turing Machines, artificial neural networks,

sub-symbolic computations, intelligent systems

I. INTRODUCTION

One of the ways of building integrated neural-symbolic
systems is ability to offload selected intellectual parts of these
systems to neural networks by expressing symbolic algorithms
as a neural network dynamic. A task of constructing neural-
symbolic decision support systems is an actual and challenging
goal [1]. Based on the criteria of the dominant component of
Decision Support Systems (DSS) there are several categories of
DSS: communications-driven and group DSS, data and
document-driven DSS, knowledge-driven DSS, model-driven
DSS, web-based and interorganizational DSS [2]. There are
numerous discussions on the place that Artificial Neural
Networks (ANN) might play in DSS [3], [4], [5].

ANN are often considered to play a role of universal
processor or a quantitative model in model driven DSS.
However, there are also works dedicated to teaching neural
network to a specific problematic situation [6]. This model,
though, includes training on a particular dataset, which is
already difficult to come by in the field of decision-making.
Aside from that, each task's neural network is unique, and each
new Decision-Making situation needs retraining.

This paper considers a special aspect of the DSS –
aggregation of assessments. Every decision-making task is
characterized by the problem, the alternatives, criteria, experts’
assessments etc. In order for the Decision Maker to choose the
best alternative, all the assessments should be aggregated so that

each alternative has a quantitative mark. Assessment’s
aggregation is a complicated process due to multiple reasons:
assessments incompleteness, fuzzy nature of these assessments,
for example linguistic ones, huge number of alternatives,
conflicting criteria, expertise difference, etc. Assessment
aggregation is a universal stage of numerous Decision-Making
frameworks and methods: TOPSIS [7], ELECTRE [8], ML-
LDM [9], etc. Therefore, construction of the neural-symbolic
DSS could be started from expression of the fuzzy assessments’
aggregation on the neural level. It is important to highlight that
even when aggregation becomes fully represented by ANN, the
overall DSS is still neural-symbolic, as problem description, the
alternatives, criteria should be still described with symbols to
keep the decision-making process interpretable and transparent
for the Decision Maker and stakeholders. This paper examines
Neural Turing Machines architecture capabilities to express
arithmetic operations that are natural parts of the assessments
aggregation process.

This paper is organized as follows. Section II contains short
introduction to linguistic assessments aggregation mechanics.
Section III reveals important details of Neural Turing Machines
architecture. Section IV demonstrates application of Neural

The reported study was funded by RFBR, project number 19-37-90058.

Fig. 1. Overall design of Neural Turing Machines

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ric
al

, C
om

m
un

ic
at

io
n,

 a
nd

 C
om

pu
te

r E
ng

in
ee

rin
g

(IC
EC

CE
) |

 9
78

-1
-6

65
4-

38
97

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

EC
CE

52
05

6.
20

21
.9

51
41

38

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on September 04,2021 at 11:36:01 UTC from IEEE Xplore. Restrictions apply.

Turing Machines to the arithmetic task. Conclusions are drawn
in the final part of the paper.

II. LINGUISTIC ASSESSMENTS AGGREGATION

Modern methods of multi-attribute multi-level decision
making use a traditional 2-tuple model as a basic building block
[zhang]. An important feature of this model is ability to express
both qualitative and quantitative assessments. The 2-tuple model
is based on the concept of symbolic translation [10].

Definition 1. A 2-tuple structure includes a pair ��� , ��

where �� ∈ � 	
��, … , �� – is a linguistic term (concept), � –

a numeric value or a symbolic translation that shows a result of
execution of membership function. It shows the distance to the

closest concept �� ∈ � 	
��, … , �� if a membership function

does not result in an exact value ����.

Definition 2. Translation rule. Let � 	 ���, … , ��� be a
linguistic scale, where � 	 � � 1 denotes granularity level of �.
If � ∈ �0, 1� is a result of symbolic aggregation, then there is a
way to recover a corresponding 2-tuple element: ∆	 �0, 1� → � � ��0.5, 0.5�

∆��� 	 ��� , ��
	 ! �� , " 	 #$%&'����� 	 �� � ", � ∈ ��0.5, 0.5� (1)

 Definition 3. Reverse translation rule. Let � 	 ���, … , ���
be a linguistic scale, where � 	 � � 1 denotes granularity level
of �. Let ��� , �� be a 2-tuple element on a linguistic scale �,
where � ∈ ��0.5, 0.5�. Then there is a way to transform 2-
tuple element to a numeric form of � ∈ �0, 1�:

∆()	 � � ��0.5, 0.5� → �0, 1�
∆()��� , �� 	 " � � � (2)

There are multiple ways of aggregating assessments
expressed in a form of 2-tuple, they are usually referred to as
operators: MTWA (Multigranularity 2-tuple Weighted
Averaging), MHTWA (Multigranularity Hesitant 2-tuple
Weighted Averaging) [11], P2TLWA (Pythagorean 2-tuple
Linguistic Weighted Averaging) [12] etc. One of them, MTWA,
performs calculation of weighted average across a set of 2-tuple
elements.

Definition 4. MTWA operator. Let �*� , ��� be a 2-tuple
element on a linguistic scale �+ , " 	 1, 2, … , & . Let - 	�-), -., … , -/� be a given weighting vector where -� denotes a
weight for �*� , ���, " 	 1, 2, … , &. Then the MTWA operator is
defined by: 01234567 ��*), �)�, �*., �.�, … , �*/, �/��

	 ∆6 89 -:∆;()<*: , �:=/
:>) ? (3)

However, the 2-tuple model is a basic model, in recent years
various methods that extend the original ideas of aggregating
quantitative data were put forward: Hesitant Fuzzy Linguistic
Term Sets (HFLTS) [13], Institutional 2-tuple [14], [15], hybrid
models [16], etc. In general, each operator is associated with a
number of arithmetic operations. In the discourse of current
research, one of the directions towards building neural-symbolic
DSS is expressing arithmetic operations in neural networks
dynamic. This work continues series of works dedicated to
elaborating neural-symbolic systems based on neural networks
that do not require training [17]. Such neural networks operate
on top of linguistic assessments encoded with Tensor
Representations [18]. Current research aims at analyzing how
capable are Neural Turing Machines to solve arithmetic

Fig. 2. Overall design of Neural Turing Machines

Fig. 3. Example encoding of arithmetic expression 14+9=23

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on September 04,2021 at 11:36:01 UTC from IEEE Xplore. Restrictions apply.

operations over 10-bit numbers expressed as a sequence of
vectors.

III. NEURAL TURING MACHINES

Neural Turing Machines were first introduced in 2014 [19],
[20] and since that time gained huge popularity and adoption in
the variety of tasks from simple algorithmic tasks to
reinforcement learning [21], sequential recommendations [22],
natural language transduction [23] etc.

Neural Turing Machines (NTM) are example of a Memory
Augmented Neural Networks (MANN). The critical component
of such an architecture is an additional memory, that is external
to internal state of the neural network. In order to write to that
memory and read from it, there are special abstractions called
Heads. Finally, the Controller component performs the
coordination of these heads in order to obtain the result. As NTM
is a fully differentiable entity, NTMs can be successfully trained
end-to-end. The theoretical architecture of NTMs is
demonstrated in Fig. 1.

Implementation aspects of NTM are well described [24],
[25] and mostly cover various approaches to making the training
more stable by introducing gradient clipping mechanism. One
important note is the error function that we use as a criterion to
evaluate model training quality (2).

 @�A�.B 	 !1, " ≥ 0.50, " < 0.5 (1)

 EFGH_JGKLG/MG 	 9 9 9 |@OP,Q,RA�.B � ST,/,U|V
U>)

WX)
/>)

Y
T>) (2)

, where B denotes the batch size of the training data fed into
the network, N is the number of bits per individual number and
M is the length of vector containing single bit of the expression.

IV. EVALUATION OF THE NEURAL TURING MACHINE SOLVING

BINARY SUM TASK FOR 10-BIT NUMBERS

However, from the practical implementation standpoint,
NTM architecture is wrapped into the additional abstraction
called NTM Cell that has a Controller network, access to
external memory and necessary heads to operate with that
memory. More importantly, there is a known ability of NTMs to
generalize for the task they are designed for. In particular, NTM
might be trained on fixed-length sequences of vectors and once
it is trained, the network can demonstrate the task being solved
for sequences of bigger length. A network designer might want
to use this generalization ability of the network and for that the
NTM Cell abstraction is required as it allows to stack as many
instances of NTMs as needed or design the most generic solution
that would be a dynamic Recurrent Neural Network (d-RNN)
that dynamically unrolls input sequence.

NTM is trained in a supervised manner. During the training
phase NTM expects a batch of vector sequences as the input and
the batch of labels that is another sequence of vectors that stand
for the expected network output. During the inference phase
NTM expects a batch of vector sequences that means that NTM
can perform the same task over multiple sequences
simultaneously. There are numerous tasks that the NTM was
proved to solve, such as Copy, Repeat, Associative Recall,
Binary Addition, Binary Multiplication, N-Gram of the
Dynamic N-Grams Task, Priority Sort Task. In this work, we
consider Binary Addition task for numbers with an adequate bit
length, as 4-bits in the original paper is not enough for industrial
tasks. Overall scheme of feeding data into the neural network is
demonstrated in Fig. 2.

In this paper, we try to solve the arithmetic task of making a
sum of two numbers. The whole arithmetic expression is
encoded as a matrix of a certain format. In particular, each
number is represented as a matrix with N rows and M columns,

Fig. 4. Error per sequence, the task of binary sum of 4-bit numbers

Fig. 5. Loss, the task of binary sum of 4-bit numbers

Fig. 6. Error per sequence, the task of binary sum of 10-bit numbers

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on September 04,2021 at 11:36:01 UTC from IEEE Xplore. Restrictions apply.

where N stand for the number of bits we are using to encode the
number. For number encoding we are using the Little-endian
format. In order to help the network distinguish between bits
encoding the number and bits that encode arithmetic operation
of sum and marker that means end of number, we use several
“channels” in the data. In particular, the first column in matrix
contains bits of numbers, the second contains bits for arithmetic
operations, marker of the expression end is represented as a

vector of ones of length M. Example arithmetic expression is
demonstrated in Fig. 3.

As we can see from the Fig. 3, only 4 bits are used to
represent input numbers. However, 5 bits are used to store the
results of the sum in order to keep the potential overflow. Using
4 bits in such arithmetic expressions allows us to express
numbers in the range from 0 to 15. From our point of view, it is
important to try using NTM to learn to make sum of numbers of
bigger precision, for example 10 bits. Obviously, that might
dramatically increase the range of numbers we can sum, namely
from 0 to 1023.

 We have conducted experiments with bit strings of length 4
and 10. In particular, we trained an NTM on generated dataset,
where each entity was represented according to the certain
format (Fig. 3) and packed into batches of size 32.

In case of 4-bit numbers, NTM was able to show zero error
(Fig. 4) and significantly minimize loss (Fig. 5) after 7000 steps.
In case of 10-bit numbers, NTM was also able to show zero error
(Fig. 6) and significantly minimize loss (Fig. 7) after 112000
steps.

All experiments were made on the following configuration:
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (frequency was
not fixed) with 8152 Mb RAM. All results can be reproduced
with an open-source project
(https://github.com/demid5111/NeuralTuringMachine). The
project is based on top of existing TensorFlow implementation
of Neural Turing Machine [24].

V. CONCLUSION

This work is dedicated to exploring building hybrid decision
support systems by combining symbolic and connectionist
approaches. We examined Neural Turing Machines – a special

case of Memory-Augmented Neural Networks – and
demonstrated that such an architecture can be integrated into the
Decision Support Systems. It was also shown that Neural Turing
Machine can solve arithmetic sum task for numbers represented
as binary vectors of length 10. It is suggested to analyze Neural
Turing Machine capability to learn and generalize the algorithm
of aggregation operators, such as MTWA.

REFERENCES

[1] Kasabov, Nikola. "Evolving connectionist-based decision support

systems." In Applied Decision Support with Soft Computing, pp. 86-98.
Springer, Berlin, Heidelberg, 2003.

[2] Power, Daniel J. Decision support systems: concepts and resources for
managers. Greenwood Publishing Group, 2002.

[3] Delen, Dursun, and Ramesh Sharda. "Artificial neural networks in
decision support systems." In Handbook on Decision Support Systems 1,
pp. 557-580. Springer, Berlin, Heidelberg, 2008.

[4] Power, Daniel J., and Ramesh Sharda. "Model-driven decision support
systems: Concepts and research directions." Decision support systems 43,
no. 3 (2007): 1044-1061.

[5] Matzkevich, Izhar, and Bruce Abramson. "Decision analytic networks in
artificial intelligence." Management Science 41, no. 1 (1995): 1-22.

[6] Golmohammadi D. Neural network application for fuzzy multi-criteria
decision making problems. International Journal of Production
Economics, vol. 131, i. 2, pp. 490-504.

[7] Yoon K., C.L. Hwang. TOPSIS (technique for order preference by
similarity to ideal solution)–a multiple attribute decision making. In
Multiple attribute decision making–methods and applications, 1981

[8] Figueira José, Vincent Mousseau, Bernard Roy. ELECTRE methods.
In Multiple criteria decision analysis: State of the art surveys, 2005, pp.
133-153.

[9] Demidovskij A.V., Babkin E.A. Developing a distributed linguistic
decision making system. Business-informatics, vol. 13, i. 1.

[10] Herrera F., Martínez L. A 2-tuple fuzzy linguistic representation model
for computing with words. IEEE Transactions on fuzzy systems, vol. 8, i.
6, pp. 746-752.

[11] Wei C., Liao H. A multigranularity linguistic group decision‐making
method based on hesitant 2‐tuple sets. International Journal of Intelligent
Systems, vol. 31, i. 6, pp. 612-634.

[12] Wei G., Lu M., Alsaadi F.E., Hayat T., Alsaedi A. Pythagorean 2-tuple
linguistic aggregation operators in multiple attribute decision making.
Journal of Intelligent & Fuzzy Systems, vol. 33, i. 2, pp. 1129-1142.

[13] Rodriguez R.M., Martinez L., Herrera F. Hesitant fuzzy linguistic term
sets for decision making. IEEE Transactions on fuzzy systems, vol. 20, i.
1, pp. 109-119.

[14] Liu P., Chen S. M. Multiattribute group decision making based on
intuitionistic 2-tuple linguistic information. Information Sciences, vol.
430, pp. 599-619.

[15] Wei G., Alsaadi F.E., Hayat, T., Alsaedi A. Picture 2-tuple linguistic
aggregation operators in multiple attribute decision making. Soft
Computing, vol. 22, i. 3, pp. 989-1002.

[16] Wang J. H., Hao J. A new version of 2-tuple fuzzy linguistic
representation model for computing with words. IEEE transactions on
fuzzy systems, vol. 14, i. 3, pp. 435-445.

[17] Demidovskij, Alexander, and Eduard Babkin. "Designing a Neural
Network Primitive for Conditional Structural Transformations."
In Russian Conference on Artificial Intelligence, pp. 117-133. Springer,
Cham, 2020.

[18] Demidovskij, A. and Babkin, E., 2020, December. Designing arithmetic
neural primitive for sub-symbolic aggregation of linguistic assessments.
In Journal of Physics: Conference Series (Vol. 1680, No. 1, p. 012007).
IOP Publishing.

[19] Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing
machines." arXiv preprint arXiv:1410.5401 (2014).

Fig. 7. Loss, the task of binary sum of 10-bit numbers

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on September 04,2021 at 11:36:01 UTC from IEEE Xplore. Restrictions apply.

[20] Graves, Alex, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo
Danihelka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo
et al. "Hybrid computing using a neural network with dynamic external
memory." Nature 538, no. 7626 (2016): 471-476.

[21] Zaremba, Wojciech, and Ilya Sutskever. "Reinforcement learning neural
turing machines-revised." arXiv preprint arXiv:1505.00521 (2015).

[22] Chen, Xu, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng
Qin, and Hongyuan Zha. "Sequential recommendation with user memory
networks." In Proceedings of the eleventh ACM international conference
on web search and data mining, pp. 108-116. 2018.

[23] Grefenstette, Edward, Karl Moritz Hermann, Mustafa Suleyman, and Phil
Blunsom. "Learning to transduce with unbounded memory." arXiv
preprint arXiv:1506.02516 (2015).

[24] Collier, Mark, and Joeran Beel. "Implementing neural turing machines."
In International Conference on Artificial Neural Networks, pp. 94-104.
Springer, Cham, 2018.

[25] Castellini, Jacopo. "Learning Numeracy: Binary Arithmetic with Neural
Turing Machines." arXiv preprint arXiv:1904.02478 (2019).

Authorized licensed use limited to: Intel Corporation via the Virtual Library. Downloaded on September 04,2021 at 11:36:01 UTC from IEEE Xplore. Restrictions apply.

		2021-08-26T07:50:38-0400
	Certified PDF 2 Signature

