
Proc. of the 3rd International Conference on Electrical, Communication and Computer Engineering (ICECCE)  

12-13 June 2021, Kuala Lumpur, Malaysia 

 

978-1-6654-3897-1/21/$31.00 ©2021 IEEE 

Exploring Neural Turing Machines Applicability in 
Neural-Symbolic Decision Support Systems 

Alexander Demidovskij 
Computer Science Department 
Higher School of Economics 

Nizhny Novgorod, Russia 
ORCID: 0000-0003-3605-6332

Abstract—The task of building hybrid decision support 

systems that combine symbolic and connectionist approaches is 

actual and challenging. In particular, decision support systems 

operate with symbolic structures that describe the problem 

situation, stakeholders, assessment criteria, etc. Integrating 

connectionist approaches into certain parts of the decision-making 

process bring robustness, fixed response speed and ability to 

generalize. This paper examines Neural Turing Machines – a 

special case of Memory-Augmented Neural Networks – and 

demonstrates that such an architecture can be integrated into the 

Decision Support Systems. It was also shown that Neural Turing 

Machine can solve arithmetic sum task for numbers represented 

as binary vectors of length 10. 
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I. INTRODUCTION 

One of the ways of building integrated neural-symbolic 
systems is ability to offload selected intellectual parts of these 
systems to neural networks by expressing symbolic algorithms 
as a neural network dynamic. A task of constructing neural-
symbolic decision support systems is an actual and challenging 
goal [1]. Based on the criteria of the dominant component of 
Decision Support Systems (DSS) there are several categories of 
DSS: communications-driven and group DSS, data and 
document-driven DSS, knowledge-driven DSS, model-driven 
DSS, web-based and interorganizational DSS [2]. There are 
numerous discussions on the place that Artificial Neural 
Networks (ANN) might play in DSS [3], [4], [5].  

ANN are often considered to play a role of universal 
processor or a quantitative model in model driven DSS. 
However, there are also works dedicated to teaching neural 
network to a specific problematic situation [6]. This model, 
though, includes training on a particular dataset, which is 
already difficult to come by in the field of decision-making. 
Aside from that, each task's neural network is unique, and each 
new Decision-Making situation needs retraining.  

This paper considers a special aspect of the DSS – 
aggregation of assessments. Every decision-making task is 
characterized by the problem, the alternatives, criteria, experts’ 
assessments etc. In order for the Decision Maker to choose the 
best alternative, all the assessments should be aggregated so that  

each alternative has a quantitative mark. Assessment’s 
aggregation is a complicated process due to multiple reasons: 
assessments incompleteness, fuzzy nature of these assessments, 
for example linguistic ones, huge number of alternatives, 
conflicting criteria, expertise difference, etc.  Assessment 
aggregation is a universal stage of numerous Decision-Making 
frameworks and methods: TOPSIS [7], ELECTRE [8], ML-
LDM [9], etc. Therefore, construction of the neural-symbolic 
DSS could be started from expression of the fuzzy assessments’ 
aggregation on the neural level. It is important to highlight that 
even when aggregation becomes fully represented by ANN, the 
overall DSS is still neural-symbolic, as problem description, the 
alternatives, criteria should be still described with symbols to 
keep the decision-making process interpretable and transparent 
for the Decision Maker and stakeholders. This paper examines 
Neural Turing Machines architecture capabilities to express 
arithmetic operations that are natural parts of the assessments 
aggregation process. 

This paper is organized as follows. Section II contains short 
introduction to linguistic assessments aggregation mechanics. 
Section III reveals important details of Neural Turing Machines 
architecture. Section IV demonstrates application of Neural 
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Fig. 1. Overall design of Neural Turing Machines 
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Turing Machines to the arithmetic task. Conclusions are drawn 
in the final part of the paper. 

II. LINGUISTIC ASSESSMENTS AGGREGATION 

Modern methods of multi-attribute multi-level decision 
making use a traditional 2-tuple model as a basic building block 
[zhang]. An important feature of this model is ability to express 
both qualitative and quantitative assessments. The 2-tuple model 
is based on the concept of symbolic translation [10]. 

Definition 1. A 2-tuple structure includes a pair ��� , �� 

where �� ∈ � 	 
��, … , �� – is a linguistic term (concept), � – 

a numeric value or a symbolic translation that shows a result of 
execution of membership function. It shows the distance to the 

closest concept �� ∈ � 	 
��, … , �� if a membership function 

does not result in an exact value ����. 

Definition 2. Translation rule. Let � 	 ���, … , ���  be a 
linguistic scale, where � 	 � � 1 denotes granularity level of  �. 
If  � ∈ �0, 1� is a result of symbolic aggregation, then there is a 
way to recover a corresponding 2-tuple element: ∆	 �0, 1� → � �  ��0.5, 0.5� 

∆��� 	 ��� , ��
	  ! �� , " 	 #$%&'����� 	  �� � ", � ∈  ��0.5, 0.5�  (1) 

 Definition 3. Reverse translation rule. Let � 	 ���, … , ��� 
be a linguistic scale, where  � 	 � � 1 denotes granularity level 
of  �. Let ��� , �� be a 2-tuple element on a linguistic scale �,  
where � ∈  ��0.5, 0.5�. Then there is a way to transform 2-
tuple element to a numeric form of � ∈ �0, 1�: 

∆()	 � �  ��0.5, 0.5�  → �0, 1� 
∆()��� , �� 	 " � � �   (2) 

There are multiple ways of aggregating assessments 
expressed in a form of 2-tuple, they are usually referred to as 
operators: MTWA (Multigranularity 2-tuple Weighted 
Averaging), MHTWA (Multigranularity Hesitant 2-tuple 
Weighted Averaging) [11], P2TLWA (Pythagorean 2-tuple 
Linguistic Weighted Averaging) [12] etc. One of them, MTWA, 
performs calculation of weighted average across a set of 2-tuple 
elements. 

Definition 4. MTWA operator. Let �*� , ���  be a 2-tuple 
element on a linguistic scale �+ , " 	 1, 2, … , & . Let - 	�-), -., … , -/� be a given weighting vector where -�  denotes a 
weight for �*� , ���, " 	 1, 2, … , &. Then the MTWA operator is 
defined by: 01234567 ��*), �)�, �*., �.�, … , �*/, �/��

	 ∆6 89 -:∆;()<*: , �:=/
:>) ?  (3) 

 

However, the 2-tuple model is a basic model, in recent years 
various methods that extend the original ideas of aggregating 
quantitative data were put forward: Hesitant Fuzzy Linguistic 
Term Sets (HFLTS) [13], Institutional 2-tuple [14], [15], hybrid 
models [16], etc. In general, each operator is associated with a 
number of arithmetic operations. In the discourse of current 
research, one of the directions towards building neural-symbolic 
DSS is expressing arithmetic operations in neural networks 
dynamic. This work continues series of works dedicated to 
elaborating neural-symbolic systems based on neural networks 
that do not require training [17]. Such neural networks operate 
on top of linguistic assessments encoded with Tensor 
Representations [18]. Current research aims at analyzing how 
capable are Neural Turing Machines to solve arithmetic 

 

 

Fig. 2. Overall design of Neural Turing Machines 

 

 

Fig. 3. Example encoding of arithmetic expression 14+9=23 
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operations over 10-bit numbers expressed as a sequence of 
vectors. 

III. NEURAL TURING MACHINES 

Neural Turing Machines were first introduced in 2014 [19], 
[20] and since that time gained huge popularity and adoption in 
the variety of tasks from simple algorithmic tasks to 
reinforcement learning [21], sequential recommendations [22], 
natural language transduction [23] etc. 

Neural Turing Machines (NTM) are example of a Memory 
Augmented Neural Networks (MANN). The critical component 
of such an architecture is an additional memory, that is external 
to internal state of the neural network. In order to write to that 
memory and read from it, there are special abstractions called 
Heads. Finally, the Controller component performs the 
coordination of these heads in order to obtain the result. As NTM 
is a fully differentiable entity, NTMs can be successfully trained 
end-to-end. The theoretical architecture of NTMs is 
demonstrated in Fig. 1. 

Implementation aspects of NTM are well described [24], 
[25] and mostly cover various approaches to making the training 
more stable by introducing gradient clipping mechanism. One 
important note is the error function that we use as a criterion to 
evaluate model training quality (2). 

 @�A�.B 	  !1, " ≥ 0.50, " < 0.5 (1) 

 

 EFGH_JGKLG/MG 	  9 9 9 |@OP,Q,RA�.B � ST,/,U|V
U>)

WX)
/>)

Y
T>)  (2) 

, where B denotes the batch size of the training data fed into 
the network, N is the number of bits per individual number and 
M is the length of vector containing single bit of the expression. 

IV. EVALUATION OF THE NEURAL TURING MACHINE SOLVING 

BINARY SUM TASK FOR 10-BIT NUMBERS 

However, from the practical implementation standpoint, 
NTM architecture is wrapped into the additional abstraction 
called NTM Cell that has a Controller network, access to 
external memory and necessary heads to operate with that 
memory. More importantly, there is a known ability of NTMs to 
generalize for the task they are designed for. In particular, NTM 
might be trained on fixed-length sequences of vectors and once 
it is trained, the network can demonstrate the task being solved 
for sequences of bigger length. A network designer might want 
to use this generalization ability of the network and for that the 
NTM Cell abstraction is required as it allows to stack as many 
instances of NTMs as needed or design the most generic solution 
that would be a dynamic Recurrent Neural Network (d-RNN) 
that dynamically unrolls input sequence. 

NTM is trained in a supervised manner. During the training 
phase NTM expects a batch of vector sequences as the input and 
the batch of labels that is another sequence of vectors that stand 
for the expected network output. During the inference phase 
NTM expects a batch of vector sequences that means that NTM 
can perform the same task over multiple sequences 
simultaneously. There are numerous tasks that the NTM was 
proved to solve, such as Copy, Repeat, Associative Recall, 
Binary Addition, Binary Multiplication, N-Gram of the 
Dynamic N-Grams Task, Priority Sort Task. In this work, we 
consider Binary Addition task for numbers with an adequate bit 
length, as 4-bits in the original paper is not enough for industrial 
tasks. Overall scheme of feeding data into the neural network is 
demonstrated in Fig. 2. 

In this paper, we try to solve the arithmetic task of making a 
sum of two numbers. The whole arithmetic expression is 
encoded as a matrix of a certain format. In particular, each 
number is represented as a matrix with N rows and M columns, 

 

 

Fig. 4. Error per sequence, the task of binary sum of 4-bit numbers 

 

 

Fig. 5. Loss, the task of binary sum of 4-bit numbers 

 

 

Fig. 6. Error per sequence, the task of binary sum of 10-bit numbers 
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where N stand for the number of bits we are using to encode the 
number. For number encoding we are using the Little-endian 
format. In order to help the network distinguish between bits 
encoding the number and bits that encode arithmetic operation 
of sum and marker that means end of number, we use several 
“channels” in the data. In particular, the first column in matrix 
contains bits of numbers, the second contains bits for arithmetic 
operations, marker of the expression end is represented as a 

vector of ones of length M. Example arithmetic expression is 
demonstrated in Fig. 3.  

As we can see from the Fig. 3, only 4 bits are used to 
represent input numbers. However, 5 bits are used to store the 
results of the sum in order to keep the potential overflow. Using 
4 bits in such arithmetic expressions allows us to express 
numbers in the range from 0 to 15. From our point of view, it is 
important to try using NTM to learn to make sum of numbers of 
bigger precision, for example 10 bits.  Obviously, that might 
dramatically increase the range of numbers we can sum, namely 
from 0 to 1023. 

 We have conducted experiments with bit strings of length 4 
and 10. In particular, we trained an NTM on generated dataset, 
where each entity was represented according to the certain 
format (Fig. 3) and packed into batches of size 32. 

In case of 4-bit numbers, NTM was able to show zero error 
(Fig. 4) and significantly minimize loss (Fig. 5) after 7000 steps. 
In case of 10-bit numbers, NTM was also able to show zero error 
(Fig. 6) and significantly minimize loss (Fig. 7) after 112000 
steps. 

All experiments were made on the following configuration: 
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz (frequency was 
not fixed) with 8152 Mb RAM. All results can be reproduced 
with an open-source project 
(https://github.com/demid5111/NeuralTuringMachine). The 
project is based on top of existing TensorFlow implementation 
of Neural Turing Machine [24].  

V. CONCLUSION 

This work is dedicated to exploring building hybrid decision 
support systems by combining symbolic and connectionist 
approaches. We examined Neural Turing Machines – a special 

case of Memory-Augmented Neural Networks – and 
demonstrated that such an architecture can be integrated into the 
Decision Support Systems. It was also shown that Neural Turing 
Machine can solve arithmetic sum task for numbers represented 
as binary vectors of length 10. It is suggested to analyze Neural 
Turing Machine capability to learn and generalize the algorithm 
of aggregation operators, such as MTWA. 
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