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Abstract. Construction of integrated neural-symbolic systems is an actual and
challenging task. Such hybrid systems combine advantages of connectionist and
symbolic approaches. In particular, neural-symbolic systems are characterized by
robust learning and distributed neural computations. At the same time, they can
be interpreted, described and analyzed in logical terms. Especially high inter-
pretability is important for Decision Support Systems that operate with symbolic
structures describing the problem situation, stakeholders, assessment criteria and
where the reasoning process should be transparent for the Decision Maker. Such
requirements bring the task of designing integrated neural-symbolicDecision Sup-
port Systems to the higher level of complexity. This paper examines underlying
algorithms of a specific part of Decision Support Systems that is aggregation of
experts’ assessments to make the choice among alternative solutions of the given
problem. Such fuzzy and uncertain assessments are often represented as 2-tuple
model or its derivatives and algorithms that aggregate them are often called oper-
ator. We demonstrate that the simple aggregation operator can be expressed in
a fully connectionist form with the help of Neural Turing Machine architecture.
This result sheds new light on the way principles of symbolic computation can be
implemented by connectionist mechanisms.

Keywords: Neural Turing Machines · Artificial Neural Networks ·
Sub-symbolic computations · Intelligent systems

1 Introduction

For a long period of time, the fields of Artificial Intelligence (AI) and Decision Analysis
(DA) evolved concurrently, despite the fact that both fields research formal models of
human knowledge and expertise [1]. Decision Support Systems (DSS) were developed
as a tool for automating the compilation and review of expert and stakeholder opinions
in order to assist the Decision Maker (DM) in making the decision. Thus, DSS should
be viewed as a utility structure that contains certain rules and algorithms for advis-
ing the DM. Simultaneously, Expert Systems were proposed in the field of Artificial
Intelligence to collect large volumes of domain data from a large number of domain
experts, encode this information, and apply this knowledge to any instance of a domain
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problem that occurs [2]. Both methods, however, suffer from an inability to deal with
knowledge complexity and expert confusion. Numerous factors should be considered,
including the collection of ambiguous expert assessments of alternative options, the use
of incomplete data, and so on. Such complexities have established a common ground
for inter-disciplinary communication, and various approaches have been developed to
resolve the aforementioned issues. However, one of the central issues is how to represent
knowledge in a way that is computationally efficient.

It is clear that human cognition is capable of dealing with knowledge ambiguity and
incompleteness and performs admirably when confronted with extremely challenging
puzzles. This fact casts new light on the fields of Decision Analysis and Artificial Intel-
ligence. Numerous researchers are motivated by the fact that human cognition makes
use of an incredibly large neural network as a computational engine and propose that the
human cognitive system makes use of a distributed representation of information and
processes it in a dynamic and meaningful manner. This neural-based approach to infor-
mation representation and processing is referred to as the sub-symbolic or connectionist
approach. Simultaneously, another school of thought advocates for seeing human cog-
nition as a symbolic manipulation method [3], interpreted as “a species of computation
carried out in a specific type of biological system” [4]. Within this approach symbols
appear as inputs to such systems and then they are converted into other symbols using
predefined rules and instruction sets. This approach is referred to as a symbolic approach.

As can be shown, the problems confronting the area of human cognition research
and decision-making are strikingly similar in terms of information representation and
processing. Although there are distinct methods, symbolic and sub-symbolic, there is
a clear preference for integrated solutions. The primary reason for this is that each of
these methods has distinct advantages and disadvantages that prevent any of them from
being the magic bullet.

Sub-symbolic approaches are distributed by nature and have high efficiency and
robustness.Additionally, they incorporate a critical component of learning, allowing sub-
symbolic methods to be “trained” for a specific task and continuously modified as new
information becomes available. At the same time, such approaches are difficult to under-
stand, although an emerging field called Explainable AI (xAI) [5] is devoted to devel-
oping methods for deriving meaning from complex computational models. Another dis-
advantage of sub-symbolic methods is their inability to articulate complex relationships
due to the limitations of current methods for distributed information representation [3,
4]. Recent advancements in the field have enabled the resolution of several representa-
tional issues associatedwith sub-symbolic architectures: the introduction ofTensor Prod-
uct Representations [6] capable of representing recursion in symbolic structures; further
distributed representation size enhancements throughHolographic ReducedRepresenta-
tions (HRR) [7] and other methods of expressing symbolic computations. Typically, this
class of methods is referred to as Vector Symbolic Architectures (VSA) [8, 9].

On the other hand, although symbolic approaches are extremely interpretable, they
are by definition sequential. Significantly, symbolic approaches presuppose the creation
of processing rules and instruction sets, which has two implications. Firstly, the infor-
mation encoded in a symbolic system by a programmer represents their own expertise
and worldview, making the system biased. This issue has been identified as a symbol
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grounding issue [10]. Secondly, the information stored in the symbolic DSS degrades
rapidly.

As a result, we can see how an integrated symbolic and sub-symbolic approach forms
the basis for systems such as ACT-R [11], CLARION [12], and SS-RICS [13, 14]. Psy-
chophysiological plausibility was established by demonstrating the presence of intercon-
nected architectures in the human nervous system and various biological architectures.
Specifically, “onemay consider the twomethods as two ends of a single continuum:<…
> sub-symbolic systems accept input and move it along to more symbolic systems.” [3,
p. 850]. Construction of neural-symbolic integrated systems is a current challenge in the
area of Decision Analysis [15, 16]. Such systems will combine sub-symbolic reason-
ing and computation at the connectionist or neural level with symbolic reasoning and
computation at the symbolic level.

However, ongoing controversies exist aboutwhat it means forDSS to become neural-
symbolic or integrated [1, 16, 17]. In particular, what DSS components can be delegated
to the sub-symbolic level and what function Artificial Neural Networks (ANN) can play
in DSS. There are several types of DSS based on the criteria for the dominant com-
ponent: DSSs that are communication- and group-driven, data- and document-driven,
knowledge-driven, model-driven, web-based, and interorganizational [18]. According
to [16], ANN can be used effectively for forecasting using historical data and can also
be called quantitative models. In other words, ANNs can be used in both data-driven and
model-driven DSS. However, applying ANN to data-driven DSS often requires teaching
the neural network to solve a particular problem [19]. This requires training on a specific
dataset, which is already scarce in the decision-making sector. Apart from that, each job
requires a specific neural network, and each new Decision-Making scenario requires
retraining.

Simultaneously, seeing ANN as a quantitative model with learning capabilities
enables a DSS architect to articulate such low-level operations and symbolic transforma-
tions at the sub-symbolic level. As a consequence of the ANN’s architecture peculiari-
ties, these transformations are performedwithmarginal information losswhile becoming
more performant and robust.

This article focuses on a special aspect of the DSS: assessment aggregation. Any
decision-making task is described by the problem, the solutions, the requirements, and
expert evaluations, among other things. To assist the Decision Maker in selecting the
best alternative, all evaluations should be aggregated into a quantitative mark for each
alternative. Aggregating evaluations is a challenging task for a variety of reasons, includ-
ing the assessments’ incompleteness, the fuzzy nature of certain assessments, such as
linguistic assessments, the vast number of alternatives, conflicting standards, and gaps
in expert’s competence. Aggregation of assessments is a common stage in a variety
of decision-making methods, including TOPSIS [20], ELECTRE [21], and ML-LDM
[22]. Thus, construction of the neural-symbolic DSS may begin with the expression
of the aggregation of fuzzy assessments at the neural level. Additionally, when aggre-
gation is fully articulated using ANN, the overall DSS remains neural-symbolic, as
problem descriptions, alternatives, and parameters should all be described using sym-
bols to keep the DM and stakeholders informed and involved in the decision-making
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process. This article explores the capabilities of Neural Turing Machines’ architecture
to express linguistic assessments aggregation operator.

This article is organized as follows. Section 2 includes a brief introduction to the
mechanics of linguistic assessments aggregation. Section 3 delves into the design of
Neural Turing Machines. Section 4 illustrates the use of Neural Turing Machines to
express the assessments aggregation operator. The final part of the paper contains the
conclusions.

2 Linguistic Assessments Aggregation with Multigranular 2-tuple
Averaging Operator

Modern methods of multi-attribute multilevel decision making use a traditional 2-tuple
model as a basic building block [23]. An important feature of this model is ability to
express both qualitative and quantitative assessments. The 2-tuple model is based on the
concept of symbolic translation [24].

Definition 1. A 2-tuple structure includes a pair (si, α) where si ∈ S = {
s0, . . . , sg

}

– is a linguistic term (concept), α – a numeric value or a symbolic translation that shows
a result of execution of membership function. It shows the distance to the closest concept
si ∈ S = {

s0, . . . , sg
}
if a membership function does not result in an exact value (si).

Definition 2. Translation rule. Let S = {
s0, . . . , sg

}
be a linguistic scale, where g =

τ + 1 denotes granularity level of S. If β ∈ [0, 1] is a result of symbolic aggregation,
then there is a way to recover a corresponding 2-tuple element:

�g = [0, 1] → S × [−0.5, 0.5)

�g(β) = (si, α) =
{

si, i = round(βτ)

α = βτ − i, α ∈ [−0.5, 0.5)
(1)

Definition 3. Reverse translation rule. Let S = {s0, . . . , sτ } be a linguistic scale, where
g = τ + 1 denotes granularity level of S. Let (si, α) be a 2-tuple element on a linguistic
scale S, where α ∈ [−0.5, 0.5). Then there is a way to transform 2-tuple element to a
numeric form of β ∈ [0, 1]:

�−1
g = S × [−0.5, 0.5) → [0, 1]

�−1
g (si, α) = i+α

τ

(2)

There are multiple ways of aggregating assessments expressed in a form of 2-tuple,
they are usually referred to as operators: MTWA (Multigranularity 2-tuple Weighted
Averaging), MHTWA (Multigranularity Hesitant 2-tuple Weighted Averaging) [25],
P2TLWA (Pythagorean 2-tuple Linguistic Weighted Averaging) [26] etc. One of them,
MTA (Multigranularity 2-tuple Averaging), performs calculation of weighted average
across a set of 2-tuple elements.

Definition 4. MTA operator. Let (bi, αi) be a 2-tuple element on a linguistic scale Sgi ,
i = 1, 2, . . . , n. Then the MTA operator is defined by:

MTA((b1, α1), (b2, α2), . . . , (bn, αn)) = �gk

⎛

⎝
n∑

j=1

1

n
�−1

gj

(
bj, αj

)
⎞

⎠ (3)
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Although the 2-tuple model is a fundamental model, numerous methods for aggre-
gating fuzzy assessments have been proposed in recent years: Hesitant Fuzzy Linguistic
Term Sets (HFLTS) [27], Institutional 2-tuple [28, 29], hybrid models [30], and so on.
Each operator is typically associated with a set of arithmetic operations.

According to current research, one method for constructing neural-symbolic DSS
is to express arithmetic operations dynamically in neural networks. This article is part
of a series on neural-symbolic architecture of DSS [31]. However, this paper takes a
different approach to DSS design than [31], which in turn focused on proposing such
neural network architectures that do not require training and that run on top of linguistic
assessments encoded with Tensor Representations [32]. The current research examines
how capable Neural Turing Machines to express an MTA operator.

3 Neural Turing Machines

3.1 Architecture

Neural Turing Machines were first introduced in 2014 [33, 34] and since that time
gained huge popularity and adoption in the variety of tasks from simple algorithmic
tasks to reinforcement learning [35], sequential recommendations [36], natural language
transduction [37] etc.

Neural Turing Machines (NTM) are example of a Memory Augmented Neural Net-
works (MANN). The critical component of such an architecture is an additional memory,
that is external to internal state of the neural network. In order to write to that mem-
ory and read from it, there are special abstractions called Heads. Finally, the Controller
component performs the coordination of these heads in order to obtain the result. As
NTM is a fully differentiable entity, NTMs can be successfully trained end-to-end. The
theoretical architecture of NTMs is demonstrated in Fig. 1.

Fig. 1. Overall design of Neural Turing Machines

NTM is trained in a supervised manner. During the training phase NTM expects a
batch of vector sequences as the input and the batch of labels that is another sequence
of vectors that stand for the expected network output. During the inference phase NTM
expects a batch of vector sequences that means that NTM can perform the same task
over multiple sequences simultaneously. There are numerous tasks that the NTM was
proved to solve, such as Copy, Repeat, Associative Recall, Binary Addition, Binary
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Multiplication, N-Gram of the Dynamic N-Grams Task, Priority Sort Task. In this work,
we consider expression of MTA operator for numbers expressed with 4, 6, 8, 10 bits.
Overall scheme of feeding data into the neural network is demonstrated in Fig. 2.

Fig. 2. Feeding NTM with an encoded data for MTA

3.2 Implementation Aspects

Implementation aspects of NTM are well described [38, 39] and mostly cover various
approaches to making the training more stable by introducing gradient clipping mech-
anism. One important note is the error function that we use as a criterion to evaluate
model training quality (5).

δi≥0.5 =
{
1, i ≥ 0.5
0, i < 0.5

(4)

eper_sequence =
B∑

b=1

N+1∑

n=1

M∑

m=1

|δXb,n,m≥0.5 − Yb,n,m|, (5)

where B denotes the batch size of the training data fed into the network, N is the
number of bits per individual number and M is the length of vector containing single bit
of the expression.

In practice, NTM architecture is wrapped in an additional abstraction called NTM
Cell, which includes a Controller network, access to external memory, and the required
heads to operate with that memory. More importantly, NTMs are able to generalize.
In particular, NTM can be trained on fixed-length vector sequences and once trained,
the network can show that the same task is solved for longer sequences. A network
designer may wish to leverage the network’s generalization capability, for which the
NTM Cell abstraction is necessary, as it enables the stacking of as many NTM instances
as required, or design the most generic solution possible, which is a dynamic Recurrent
Neural Network (d-RNN) that dynamically unrolls the input series. All of the findings
presented below are reproducible within an open-source project [40]. The project is built
on top of the current TensorFlow Neural Turing Machine implementation [24].
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4 Evaluating Neural Turing Machines as Neural MTA Operator

We express an MTA operator that aggregates assessments from three experts; each
assessment is converted to numeric form and represented as a binary string [39]. We
experimented with various binary string lengths: 4, 6, 8, 10 bits.

Fig. 3. Encoded expression for MTA

The entire arithmetic expression is encoded in the form of a matrix with a spe-
cific format. Each number is expressed mathematically as a matrix with N rows and
M columns, where N denotes the number of bits used to encode the number. We are
using the Little-Endian format for number encoding. We use many “channels” in the
data to assist the network in distinguishing between bits that encode the number and bits
that encode markers. The first column of the matrix contains bits of data, the second
column contains bits for markers, and the end marker is represented by a vector of ones
of length M. Figure 3 illustrates an arithmetic expression. For training purposes, we
created a dataset in which each entity was represented using a specific format (Fig. 3)
and compressed into batches with 32 arithmetic expressions in each.

Fig. 4. NTM training dynamics. Error per
sequence

Fig. 5. NTM trainings dynamics. Total loss
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NTMwas able to achieve zero error only in case of 4-bit numbers (Fig. 4). For other
bit length there is an error varying from 0.26 for 6 bits to 2.42 for 10-bit numbers. At
the same time, NTM was able to substantially minimize loss in all cases (Fig. 5). All
experiments were made on various configurations: Intel(R) Xeon(R) CPU E5–2650 v4
@ 2.20 GHz, AMDEPYC 7282 16-Core Processor@ 2.79 GHz, Intel(R) Xeon(R) Gold
6140 CPU @ 2.30 GHz with not fixed frequency and 60GB RAM.

5 Conclusions

The aim of this research is to investigate various options for integrating symbolic and
connectionist approaches in order to create hybrid DSS. We examined Neural Turing
Machines, a subtype of Memory-Augmented Neural Network, and demonstrated their
integration into Decision Support Systems. Additionally, it was shown that the MTA
operator can be entirely represented on a neural level using a trained Neural Turing
Machine. It is suggested to investigate the capabilities of Neural Turing Machines to
learn and generalize another aggregation algorithm, the MTWA operator, since it is the
simplest operator used in development of Linguistic DSS systems. Developing such
solutions, in our opinion, provides the fundamental building blocks for new hybrid
neural-symbolic Decision Support Systems.
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