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Highlights
Nucleus segmentation is one of the first
steps of many microscopy image
analysis pipelines.

Several large-scale competitions have
yielded annotated datasets that are
available for training and testing specific
methods.

The 2D segmentation strategies cover a
diverse range of image modalities;
some of these are also available for 3D
Single nucleus segmentation is a frequent challenge of microscopy image pro-
cessing, since it is the first step of many quantitative data analysis pipelines.
The quality of tracking single cells, extracting features or classifying cellular phe-
notypes strongly depends on segmentation accuracy. Worldwide competitions
have been held, aiming to improve segmentation, and recent years have defi-
nitely brought significant improvements: large annotated datasets are now freely
available, several 2D segmentation strategies have been extended to 3D, and
deep learning approaches have increased accuracy. However, even today, no
generally accepted solution and benchmarking platform exist. We review the
most recent single-cell segmentation tools, and provide an interactive method
browser to select the most appropriate solution.
datasets.

Simple cases of segmentation, especially
for 2D, are straightforward, while in more
challenging cases improved accuracy
has been achieved recently.

Deep learning has established a
new level of image analysis, but the
lack of uniform evaluation strategies
makes quantitative comparison and
relative performance determination
highly challenging.
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Towards robust and automated methods for nucleus segmentation
The history [1] of detecting and segmenting single cells goes along with the first digitized
microscopy images. Many research fields utilizing microscopy, such as developmental biology
[2], drug discovery [3], functional genomics [4] and pathology [5] are dependent on accurate
cell and nucleus segmentation as a vital part of image analysis workflows. Since image analysis
has moved from a methodological research area towards data science as a result of the recent
machine learning revolution, annotated datasets have become essential regarding the perfor-
mance of nuclear segmentation methods. Especially, modality-independent, generalizable,
and robust machine learning-based nucleus segmentation models need heterogeneous and
large collections of expert-annotated images [6,7].

The level of difficulty of single-cell detection in an image, let alone precise outlining, widely varies
(see Figure 1). In most simple cases nuclei have high contrast and are separated by proper ex-
perimental conditions (referred to as ‘easy’ cases), hence their segmentation is not difficult,
e.g., large short-interfering RNA (siRNA) (see Glossary) [8]. In other cases, segmentation
is highly ‘challenging’, for instance in 3D, label-free or thick tissue sections where cells
touch, overlap, or have non-conventional morphology, intensity, or patterns. International com-
petitions [6,9] have promoted the potential to overcome these issues, yet a genuinely general
solution is still awaited. However, due to major advancements in this field in recent years, our
community has reached an unprecedented improvement in detecting single nuclei [10]. Easy
cases of segmentation, especially in 2D are not problematic anymore [11,12], while accuracy
has also improved in challenging cases [6]. In addition, 3D data analysis methods have
progressed with extended 2D segmentation solutions [13] or with native 3D ones [14,15].
The community has accumulated large amounts of annotated data either by experts [6] or
crowdsourcing [16] for training machine learning segmentation models, and to evaluate the
methods in public benchmarking platforms [6,17]. This review describes the specific tech-
niques biologists can exploit for single-cell analysis. However, we emphasize that no
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Figure 1. Diversity of optical microscopy images representing nuclei. The inner circle shows standard examples of
each type (e.g., widefield, confocal, light-sheet, differential interference contrast (DIC), phase contrast (PC) images), while the
outer circle presents more difficult cases. Finally, common challenging cases (e.g., multinucleated cells, irregular morphology,
elongated shape, heterogeneous samples) regarding nucleus segmentation are reported in the corners. (C, D, L, F, G, O, T)
Images from our laboratories/collaborators; (A, S, J) from the Broad Bioimage Benchmark Collection (BBBC); (E, N) from The
Cancer Genome Atlas (TGCA) collection; (R) from the LIVECell dataset; the remaining images are from the internet (see
Supplementary Table 1 for the sources).
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standardized approach has been developed to date to properly compare different solutions
before deciding which tool to use for a specific application.

First, the variety and extent of datasets currently available to test and train methods are pre-
sented. Next, a selection of annotation tools available for creation of training datasets for machine
learning methods is introduced. Then the issues related to pre- and post-processing of images to
reduce challenges inherent to complex data are briefly discussed (see Supplementary Material 1
for details on different techniques), followed by insights into 2D nuclear segmentation methods.
Classical approaches that provide task-specific and general solutions for a wide variety of acqui-
sition techniques are presented. However, most recent methods usually rely on deep neural
networks (DNNs), and since the target objective is related to image processing, convolutional
296 Trends in Cell Biology, April 2022, Vol. 32, No. 4
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Glossary
2D: the term typically used to indicate
the standard format in which images
are acquired by a standard camera.
3D: the term typically used to indicate a
z-stack of 2D images referring to differ-
ent optical sections.
Application programming interface:
a set of functions and procedures
allowing the development of applications
that access the features or data of an
operating system, application, or other

Trends in Cell Biology
neural networks (CNNs) are most commonly applied to segment nuclei. As processing 3D
data is one of the major challenges in single nucleus segmentation, a set of promising and suc-
cessful methods appropriate to solve specific 3D segmentation tasks is discussed.

Figure 2 supports a better understanding of the definitions of detection and segmentation tasks.
When identifying single cells (objects) in microscopy images automatically, that is, using computer
algorithms, the results may be either (i) ‘detections’ corresponding to the localization of the ob-
jects or (ii) ‘segmentations’ which separate independent image regions. The former is typically
represented as bounding boxes, whereas the latter may be realized by either assigning a binary
label to each pixel while dividing the image into not necessarily connected regions (semantic
TrendsTrends inin Cell BiologyCell Biology

Figure 2. A sample-driven guide to select an appropriate method for single nucleus segmentation. Firstly, based
on the images of the given experiment the user can determine the category [e.g., widefield, confocal, light-sheet, differential
interference contrast (DIC), phase contrast (PC) images] and select the corresponding node in the interactive online tool
unbiasi according to the sample, label, and microscopy type. Then, a list of segmentation methods is shown in the table
on the right, including the method description and implementation if available alongside pre-trained models. The list may
be filtered with the buttons above the table by dimension (2D/3D) and challenging segmentation issues (e.g., elongated
nucleus in smooth muscle tissue). Finally, the goal of the experiment (e.g., object-aware segmentation or additional
phenotyping, i.e., classification) guides the user to select the appropriate segmentation method.

service.
Broad Bioimage Benchmark
Collection (BBBC): an open micros-
copy image collection for scientific pur-
poses.
Convolutional neural network
(CNN): a class of deep neural networks
including convolutional layers based on
blocks responsible for appropriate
image feature retrieval (via convolutions)
and scaling (with pooling blocks).
DAPI: a widely used fluorescent stain
that binds to adenine–thymine-rich
regions of the DNA, thus labels the
nucleus.
Data Science Bowl 2018 (DSB2018):
the data science competition held in
2018 with a task to segment nuclei in
microscopy images. The official, open
dataset of the competition is also
referred to as such, and is often used to
benchmark nucleus segmentation
methods.
Deep neural network (DNN): is an
artificial neural network machine learning
architecture that includes several hidden
layers, and can be trained to solve more
complex tasks on more complex data
compared to shallow neural networks.
Differential interference contrast: a
microscopy technique that introduces
contrast to images of specimenwith little
or no contrast upon brightfield micros-
copy.
General public license (GPL): a series
ofwidely used open-source licenses that
guarantee end users the freedom to run,
study, share, and modify the software.
Graphics processing unit (GPU): a
specialized electronic circuit designed to
rapidlymanipulatememory to accelerate
computations related primarily to
graphics.
Hematoxylin and eosin (H&E): a
combination of two histological stains:
hematoxylin and eosin. Hematoxylin
stains cell nuclei to purplish blue, and
eosin stains the extracellular matrix and
cytoplasm to pink.
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Immunofluorescence: a staining
which utilizes fluorescent-labeled anti-
bodies to detect specific target antigens
International Symposium on
Biomedical Imaging (ISBI): a scien-
tific conference series dedicated to
mathematical, algorithmic, and compu-
tational aspects of biological and bio-
medical imaging.
Iterative thresholding: an algorithm
used to define the background and
foreground in an image.
Line-of-sight (LoS): the straight line
between the object and the target.
Mean average precision: a popular
metric related to measuring the accu-
racy of object detectors.
Medical Imaging Interaction Toolkit
(MITK): a software suite designed for
medical image analysis.
Network of European BioImage
Analysts (NEUBIAS): a network of
experts in life sciences for image data
analysis.
Phase contrast: an optical microscopy
technique that converts phase shifts in
light passing through a transparent
specimen to brightness changes in the
image.
Region proposal network (RPN): a
fully convolutional network that simulta-
neously predicts object bounds and
objectness scores at each position.
Short-interfering RNA (siRNA): a
class of double-stranded, non-coding
RNA molecules, similar to miRNA,
operating within the RNA interference
(RNAi) pathway.
Test-time augmentation: the aggre-
gation of predictions across transformed
versions of a test input.
TheCancerGenomeAtlas (TCGA): a
huge cancer genomic program which
covers many cancer types with a
patient-based, open dataset including
genomic, proteomic, imaging, etc. data.
Whole slide image (WSI): scanned
image of an entire histopathology tissue
section, usually of gigapixel size, result-
ing in file size of gigabytes, which is diffi-
cult to handle by an image processing
software.
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segmentation) or by separating individual objects (instance segmentation). Onemay choose from
a plethora of methods and software tools to perform nuclear segmentation (see section Segmen-
tation methods and toolkits). Major challenges are discussed (see Outstanding questions). As
many of the segmentation methods considered in this review utilize ‘deep learning’ approaches,
this subset of machine learning is also introduced. Deep learning involves the training of DNNs for
complex yet arbitrary tasks, such as detection, segmentation, and classification (not strictly in our
domain of cellular image analysis, but also in natural image-, video- or audio-processing). Deep
learning-based approaches are proven to perform excellently on the trained domain, with the po-
tential of extension to unseen domains [18]. Their translation is limited by the lack of publicly avail-
able datasets related to less common modalities (see section Annotated nucleus datasets).

A portali was developed to offer a graphical aid to select the most appropriate method for non-
image analysis experts (see Figure 2). This portal has several advantages: (i) the imaging commu-
nity can select the methods applicable/appropriate for their images of interest, and (ii) developers
can submit the description and best practices for their methods. Currently, themost common op-
tical microscopy categories are considered. Notably, the web portal is declared to be maintained
by the authors, yet the community is encouraged to actively contribute and eventually propose
extensions to it. For benchmarking the segmentation methods, users can exploit BIAFLOWSii

[17], a freely available web-based platform developed by the Network of European BioImage
Analysts (NEUBIAS). The assessment of new proposals has been commonly performed with
limited datasets and arbitrary metrics (see Supplementary Materials 2); in contrast, NEUBIAS is
a step forward to prevent such a biased evaluation. However, an unbiased quantitative method
comparison is still impossible due to the lack of a comprehensive annotated dataset for training
and testing the methods using a globally accepted benchmark platform and unified metrics
(see section Segmentation methods and toolkits).

Annotated nucleus datasets
Annotated datasets are used in computer science to validate the accuracy of developed algo-
rithms. In addition, nowadays annotated datasets are also used for training machine learning
models for various tasks. One of the key factors influencing the performance of segmentation
models is the composition of annotated data. Ideally, a trainable model yields optimal results
on a test set sampled from the same domain as training data are collected from, hence
domain-specific annotated datasets serve as a valuable asset, especially when they are expert-
curated. Highly specific domain datasets are usually complemented with proper metadata
[19,20], such as the experimental set-up, sample preparation or microscope device, and are
expert-curated when it comes to annotations. However, they typically cover a narrow diversity,
and are small in size. Open datasets may contain a varying number of images (Table 1). An impor-
tant aspect for the user to consider when either training a new model or evaluating segmentation
performance on publicly available datasets is that the corresponding annotations occasionally
contain such segmentations yielded by automatic methods [19] that might not be refined by an
expert, thus the results might be biased. Annotated nucleus datasets displayed in Table 1
show diversity in size (not only regarding the number of images, but also that of the objects)
and content, focusing on those widely used as benchmarks or training data. Annotations may
be realized as objects (instance aware) or binary masks (semantic), are primarily 2D, and the
twomost common imaging modalities cover fluorescence stained cell cultures and hematoxylin
and eosin (H&E)-stained tissue sections.

International challenges, such as the annual International Symposium onBiomedical Imaging
(ISBI) or competitions hosted by for example, Kaggle with industry partners, inspire those in the
field of research and development to propose new technologies and methods or combine existing
298 Trends in Cell Biology, April 2022, Vol. 32, No. 4
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Table 1. Open datasets of annotated nucleus for single-cell analysis purposes

Name Individual
objects
(O) or
binary
masks
(BM)

2D/3D Microscopy Staining Sample No. of
images

No. of
objects

Refs

BBBC032 O 3D Confocal Fluo Mouse embryo
blastocyst cells

1
(172a)

1220 [21]

BBBC033 O 3D Confocal Fluo Mouse trophoblast
stem cells

1 (32a) 585 [21]

BBBC034 O 3D Brightfield/fluorescent x/3 fluob hiPSC 3D 1 (52a) 790 [19]

Scaffold-A549
dataset

O 3D Fluorescent Hoechst+DiL Lung cancer tissue 21 800
(+10 000
w/o labels)

[22]

BBBC039 O 2D Fluorescent Hoechst U2OS cells 200 23 615 [10]

CoNSeP O 2D Brightfield H&E Colon tissue 41 24 319 [23]

CryoNuSeg
(TCGAiii )

O 2D Brightfield H&E Various tissues 30 7596 [24]

DSB2018 O 2D Various Various Various tissues and
cells

841 37 530 [6]

Janowczyk
et al.vi

BM 2D Brightfield H&E Breast tissue 141 ~12 000 [25]

LIVECell O 2D Phase contrast Label-free Cell cultures 5239 1 686
352

[26]

Lizard O 2D Brightfield H&E Colon tissue 291 495 179 [27]

MoNuSeg2018 O 2D Brightfield H&E Various tissues 44 28 846 [28]

NuCLS Oc 2D Brightfield H&E Breast tissue N/A 222 396 [16]

NucMM O 3D Electron
microscopy/micro-CT

Label-free Brain tissue 2 ~170 000
+ ~7000

[29]

PanNuke O 2D Brightfield H&E Various tissues 481 205 343 [30]

S-BSST265 O 2D Fluorescent/ confocal Immunofluorescence/DAPI Various tissues and
cells

79 7813 [20]

TCGAiii images
processed by
Irshad et al.

N/A 2D Brightfield H&E Kidney clear cell
renal carcinoma
tissue

63 N/A [31]

TCGAiii images
processed by
Kumar et al.

O 2D Brightfield H&E Various tissues 30 21 623 [28]

TNBC O 2D Brightfield H&E Breast tissue 50 4022 [32]

Wienert et al. O 2D Brightfield H&E Various tissues 36 7931 [33]

TissueNet
Version v1.0

O 2D Fluorescent Various stainings Various tissues 6990 ~1200
000

[7]

aThe number of slices is presented; one image is available.
bCellMask Deep Red plasma membrane, EGFP beta-actin, Hoechst DNA.
cObject contours or bounding boxes with class label.

Trends in Cell Biology
ones for a new purpose. One of the most successful and widely used segmentation methods,
U-Net [34] (see Supplementary Material 4) arose from the 2015 ISBI Cell Tracking Challenge
[35], and has been the basis for several novel CNN architectures ever since (see section
Segmentation methods and toolkits). Similar competitions contribute to the development of
this field with invaluable collections of microscopy images, on which developers may
Trends in Cell Biology, April 2022, Vol. 32, No. 4 299
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benchmark their novel approaches according to standard evaluation metrics (typically mean
average precision) in a fairly comparable way. In recent years the Data Science Bowl
2018 (DSB2018) [6] dataset has been applied as such, since its image set comprises various
types of microscopy modalities, magnifications, labels, sources, etc. This might also provide in-
sight into the expected model performance. Generally, datasets originating from challenges are
carefully validated by field-expert annotators [6,15] (usually biologists and pathologists), pro-
moting their further applicability to train new models. Notably, annotations of the training set
are usually released instantly, while test set annotations may remain private even after the chal-
lenge is concluded [35]. Dataset size strongly depends on the task, for example, a competition
in 2D instance segmentation (like DSB2018) generally has a larger number of annotated images
than a tracking [35] or a 3D segmentation task [19,21].

Conclusively, a key contribution of the bioimage analysis community to this field is the release of
open datasets of annotated images, in as many varying imaging modalities as possible. Data
sharing is highly encouraged, especially in case of intrinsically challenging microscopy types,
such as label-free imaging (notably, LIVECell [26] is a promising step in this direction) or generally
in 3D. Provided in an open way, these annotated datasets could inspire method developers to
increase their focus on less frequent modalities, and release pre-trained models for those as
well. Also, they enable users to benchmark (evaluate the performance of) available methods on
this data. Additionally, experiment-specific unlabeled image sets [e.g., The Cancer Genome
Atlas (TCGA)iii] may also promote progress in case an annotated subset is shared later indepen-
dently [24,28,31]. Finally, as annotated datasets require an appropriate software tool that the ex-
perts (or generally, annotators) can use to create the labels, various annotation software solutions
are collected in the following section.

Tools for annotation
Countless software tools are available to create annotations for single-cell segmentation training
or validation, with a widely varying spectrum of functionality. These tools are designed either for
specialists, such as biologists and pathologists, or for method developers. Options for annotation
typically include freehand drawing, point, ellipse or polygon labeling, all of which may be exported
to formats suitable for different applications. The finer the representation (annotation) of the object
is, the more information it provides for a model when used as training data. While object location
marked simply by a center point or bounding box coordinates is sufficient for detection or even
classification training, contours (boundaries) labeled either semantically (binary) or in an
instance-aware way are usually used to train segmentation. Equivalently, the same types of anno-
tated data may be utilized to assess the accuracy of different methods.

Even though labeling several images tends to be time-consuming for a single expert, even stu-
dents [16] can learn how to create accurate annotations when curated by experts, yielding
large annotated datasets via joint and shared efforts. Semi-automatic annotation achieved by ini-
tial segmentation methods offers a convenient solution to speed up the annotation process for
experts, and is often preferred by the community. Such annotation methods also help to increase
[36,37] the agreement between experts, which is a common problem source in annotation. Alter-
natively, a consensus of multiple annotators may be used [6,31] at the object- or pixel level;
crowdsourced annotations [16] are easier to combine this way. Commercial solutions and free-
to-use software, including but not limited to those applied in cell biology, are described in detail
in Supplementary Materials 3 and Supplementary Table 2.

Plugins or extensions to existing open-source software, such as ImageJ/Fiji [38,39] or Medical
Imaging Interaction Toolkit (MITK) [40] are popular choices preferred by bioimage analysts
300 Trends in Cell Biology, April 2022, Vol. 32, No. 4
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already experienced with the given software. The Fiji plugins Trainable Weka Segmentation [41]
and LabKitiv use machine learning to train pixel classification similarly to ilastik [42] (see
Supplmentary Materials 3 and 4), while AnnotatorJ [36] applies a U-Net to assist contour anno-
tation. Assistance in the MITK plugin 3D-Cell-Annotator [43] exploits active surfaces with shape
descriptors in 3D, while NuClick [18] uses its own CNN for histopathology images.

Larger image analysis projects not primarily intended for annotation, but for a rather more com-
prehensive evaluation of the sample images (Cytomine [44,45], ilastik [42], DeepCell [46],QuPath
[47]), including, for example, the segmentation or classification of cells, may also provide conve-
nient solutions for annotation. Still, each has its target application: for example,QuPath is a desk-
top tool suitable forwhole slide image (WSI) analysis, whileCytomine processesWSIs online in
a collaborative way, and DeepCell improves its segmentation DNN with annotation collaboration.

Standalone software packages (Diffgram, LabelImg, Segmentor [37]) offer a lightweight, specific
solution for annotation: Segmentor [37] is intended for 3D annotation, Make Sense and Diffgram
have additional online interfaces, and the latter also supports deep learning. Online tools (VGG
Image Annotator, Kaibu, supervise.ly, Piximi annotator) require no installation and have no spe-
cific hardware requirements. However, it is worth noting that online service-based platforms
(Lionbridge.AI or Hive) require that raw data are sent out of the laboratory, which might be unde-
sirable in case of sensitive (e.g., patient-related) images.

Nonetheless, genuinely general-purpose image editing applications, such as GIMP [general
public licence (GPL), free] or Photoshop (Adobe, commercial) may also be used to create
annotations at the expense of more cumbersome export, for example, in the case of instance
annotation labels.

Conclusively, several options are available, depending on the specific requirements of a project or
experiment. Tools that provide multiple implementations (e.g., both local and online) might be
ideal for more users.

Segmentation methods and toolkits
Single nucleus segmentation methods may work with raw images, but in more challenging cases
(e.g., Figure 1 J–V) the quality of the analysis (and specifically that of single nucleus segmentation)
benefits from additional pre- and post-processing steps (e.g. illumination correction [48,49] or
denoising [50] prior to the analysis, mask refinement or test time augmentation [51] applied
as post-processing). Application of these methods depends on the task and the desired quality
of the result; some of themost commonly used processing steps are described in Supplementary
Materials 1.

Nucleus segmentation is traditionally performed using a data-specific workflow that contains var-
ious filtering and thresholding methods, followed by morphological operations and processing
steps (ImageJ/Fiji [38,39], QuPath [47], CellProfiler [52]). Segmentation using pixel classification,
based on classical machine learning methods has been used for challenging data for a decade,
with early versions of tools including, for example, DeepMIB [53] and ilastik [42]. The fundamental
difference between classical image processing-based nucleus segmentation and that with clas-
sical machine learning is the input required from the user: in the former case, manual parameter
setting and fine-tuning is expected in different processingmodules in the pipeline, which is still ca-
pable of yielding very high accuracy at the expense of time-consuming re-parameterization for
each new experiment. The latter enables users to rely on automated feature extraction and learn-
ing by still providing examples manually, which most likely also need to be repeated in
Trends in Cell Biology, April 2022, Vol. 32, No. 4 301
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experiments. Notably, appropriate pre-processing of input images (e.g., intensity scaling) can
help to unify the range of optimal parameters in both cases. The nuclear segmentation task has
moved towards robust and automated approaches with U-Net [34] (see in Supplementary
Materials 4), which was a breakthrough for deep learning-based nucleus segmentation (and in
the field of deep learning-based segmentation in general). In contrast to image processing and
classical machine learning, deep learning-based methods require fewer input parameters from
the user, and are generally more straightforward to apply between experiments than in the
case of classical approaches. Nonetheless, pre-processing also increases the accuracy of
CNNs in most cases. U-Net still serves as a baseline for semantic segmentation tasks, and is
(i) used as part of recent general nucleus/cell segmentation pipelines, such as Cellpose [12]
and StarDist [54], and (ii) utilized or further developed in nnU-Net [55] and UNet++ [56]. Even
though U-Net is a semantic segmentation framework, it can be extended to instance segmenta-
tion with post-processing. One typical solution is to classify pixels into three classes where one
class represents nuclear edges, and as such, it can aid instance segmentation [10]. Computa-
tionally U-Net is relatively simple, thus it is possible to train a basic U-Net on workstations or
even laptops with a graphics processing unit (GPU).

Another breakthrough in deep learning-based instance segmentation was Mask R-CNN [57].
This network was designed for the segmentation of natural images; however, it has been adapted
for nucleus segmentation in methods such as nucleAIzer [11]. Mask R-CNN is built over a CNN
feature extraction backbone and regional proposal network (RPN) [58] to suggest possible
object regions. These proposals are classified and used for binary mask prediction. Mask R-
CNN outputs a list of masks allowing overlaps, whereas the output of U-Net is an image with
no overlaps. However, two recent extensions to U-Net-based StarDist, MultiStar [59] and
SplineDist [60], enable segmentation of overlapping objects. NuSeT [61] combines RPN, U-Net
and watershed post-processing to optimize segmentation of crowded cells. Mask R-CNN re-
quires more computational resources than U-Net; still it can be trained on a modern workstation
or laptop.

Even though many segmentation methods are not deep learning-based (MINS [62,63], XPIWIT
[64], etc.), the field has recently tended to shift towards approaches based on deep learning
(e.g., ilastik [42] now offers DNNs). This includes bundles of specific deep learning methods for
segmentation and pre-processing which could be used on Google Colab [ZeroCostDL4Mic
[65], Segmentation of stochastic optical reconstruction microscopy (STORM) images [66]], or
other client-server architecture (ImJoy [67], DeepCell Kiosk [46,68], HistomicsML2 [69]) with pro-
vided separate pre-trained models (CDeep3M [70], nucleAIzer [11], Cellpose [12]). ImageJ users
can also utilize deep learning-based segmentation with plugins and pre-trained models
(DeepImageJ [71]). The majority of the methods discussed here are deep learning-based (see
Table 2), which require hardware resources due to the parallelizable and heavy computational
costs of DNNs, hence GPU acceleration is advised, especially for training. Cloud-based solutions
often meet this requirement.

Several methods mentioned in the preceding text could be used for 3D datasets (see Table 2).
Segmentation of 3D nuclear images with deep learning is not straightforward. Themajor limitation
is that the annotated data in the field are less abundant compared with the planar case. There are
several deep learning-based methods developed by the medical image analysis community fac-
ing a similar challenge. However, in the case of medical images, usually only one or a few objects
need to be segmented. This task is different from and less difficult than nucleus segmentation,
where hundreds of instances should be segmented even when they touch. For example,
segmenting a medical image by combining the segmentations of 2D images may provide
302 Trends in Cell Biology, April 2022, Vol. 32, No. 4
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Table 2. Relevant tools for nucleus segmentationa

2D/3D/Both Tool name Pipeline/algorithm/
platform

Code
availability

Year Reference GUI/Tutorial/Biaflows/
GPU/Cloud

2D U-Net Algorithm Yes 2015 Ronneberger et al.
[34]

N/N/Y/Y/N

2D SegNet Algorithm Yes 2015 Badrinarayanan
et al. [87]

N/N/?/Y/N

2D Mask R-CNN Algorithm Yes 2017 He et al. [57] N/Y/Y/Y/N

2D QuPath Platform Yes 2017 Bankhead et al. [47] Y/Y/N/Y/N

2D UNet++ Algorithm Yes 2018 Zhou et al. [56] N/N/N/Y/N

2D Segmentation of nuclei in histopathology
images by deep regression of the distance map

Algorithm Yes 2018 Naylor et al. [88] N/Y/N/Y/N

2D Multi-scale cell instance segmentation with
keypoint graph-based bounding boxes

Algorithm Yes 2019 Yi et al. [89] N/N/?/Y/N

2D HoVer-Net Algorithm Yes 2019 Graham et al. [23] N/Y/N/Y/N

2D CIA-Net Algorithm No 2019 Zhou et al. [90] N/N/N/Y/N

2D Bend-Net Algorithm No 2020 Wang et al. [91] N/N/N/Y/N

2D nucleAIzer Algorithm, Pipeline Yes 2020 Hollandi et al. [11] Y/Y/N/Y/Y

2D MultiStar Algorithm Yes 2020 Walter et al. [59] N/N/N/Y/N

2D Instance-aware self-supervised learning for
nuclei segmentation

Algorithm No 2020 Xie et al. [85] N/N/N/Y/N

2D Self-supervised nuclei segmentation in
histopathological images using attention

Algorithm Yes 2020 Sahasrabudhe et al.
[84,85]

N/N/N/Y/N

2D Triple U-Net Algorithm Yes 2020 Zhao et al. [92] N/N/N/Y/N

2D High-resolution deep transferred ASPPU-Net
for nuclei segmentation of histopathology
images

Algorithm No 2021 Chanchal et al. [93] N/N/N/Y/N

2D NucleiSegNet Algorithm Yes 2021 Lal et al. [94] N/Y/N/Y/N

2D SplineDist Algorithm Yes 2021 Mandal et al. [60] N/N/N/Y/N

2D Contour proposal network Algorithm Yes 2021 Upschulte et al. [95] N/N/N/Y/N

2D HistomicsML2 Pipeline, Platform Yes 2021 Lee et al. [69] Y/Y/N/Y/Y

2D STORM Pipeline Yes 2021 Mela et al. [66] N/N/N/Y/Y

2D MSRF-Net Algorithm Yes 2021
Srivastava et al. [96]

N/N/N/Y/N

3D 3D cell nuclei segmentation based on gradient
flow tracking

Algorithm No 2007 Li et al. [97] N/N/N/N/N

3D Vaa3D Platform Yes 2010 Peng et al. [79] Y/Y/Y/Y/N

3D IT3DImageJSuite Platform Yes 2013 Ollion et al. [98] Y/Y/N/N/N

3D LoS Algorithm Yes 2013 Asafi et al. [74] N/Y/N/N/N

3D Automated cell segmentation with 3D
fluorescence microscopy images

Algorithm No 2015 Kong et al. [99] N/N/N/N/N

3D OpenSegSPIM Platform Yes 2016 Gole et al. [75] Y/Y/N/N/N

3D RACE Platform Yes 2016 Stegmaier et al. [76] Y/Y/N/Y/N

3D U-Net (3D) Algorithm Yes 2016 Cicek et al. [100] N/N/N/Y/N

3D Segmentation of fluorescence microscopy
images using 3D active contours with
inhomogeneity correction

Algorithm No 2017 Lee et al. [14] N/N/N/N/N

3D DeepSynth Algorithm No 2019 Dunn et al. [101] N/N/N/Y/N

(continued on next page)
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Table 2. (continued)

2D/3D/Both Tool name Pipeline/algorithm/
platform

Code
availability

Year Reference GUI/Tutorial/Biaflows/
GPU/Cloud

3D 3D segmentation and reconstruction of
neuronal nuclei in confocal microscopic images

Algorithm Yes 2019 Ruszczycki et al. [15] N/N/N/N/N

3D Semi supervised segmentation and
graph-based tracking of 3D nuclei in time-lapse
microscopy

Algorithm Yes 2020 Shailja et al. [102] N/N/N/Y/N

3D A deep learning pipeline for nucleus
segmentation

Pipeline No 2020 Zaki et al. [103] N/N/N/Y/N

3D Combined detection and segmentation of cell
nuclei in microscopy images using deep
learning

Algorithm No 2020 Ram et al. [104] N/N/N/Y/N

3D QCANet Algorithm Yes 2020 Tokuoka et al. [81] N/Y/N/Y/N

3D Allen cell and structure segmenter Platform Yes 2020 Chen et al. [105] Y/Y/N/Y/N

3D 3D-Cell-Annotator Platform Yes 2020 Tasnadi et al. [43] Y/Y/N/Y/N

3D Nuclei detection for 3D microscopy with a
fully convolutional regression network”

Algorithm No 2021 Lapierre-Landry et
al. [83]

N/N/N/Y/N

3D 3DeeCellTracker Platform Yes 2021 Wen et al. [82] N/Y/N/Y/N

Both MINS Platform Yes 2014 Lou et al. [62,63] Y/Y/N/N/N

Both XPIWIT Algorithm Yes 2016 Bartschat et al. [64] Y/Y/N/Y/N

Both ilastik Platform Yes 2018 Berg et al. [42] Y/Y/Y/Y/N

Both DeepImageJ Platform Yes 2019 Gómez-de-Mariscal
et al. [71]

Y/Y/N/Y/N

Both ImJoy Platform Yes 2019 Ouyang et al. [67] Y/Y/N/Y/Y

Both A coarse-to-fine data generation method for
2D and 3D cell nucleus segmentation

Algorithm No 2020 Zhao et al. [106] N/N/N/Y/N

Both Cellpose Algorithm Yes 2020 Stringer et al. [12] Y/Y/Y/Y/Y

Both CDeep3M Platform Yes 2020 Haberl et al. [70] Y/Y/N/Y/Y

Both StarDist Algorithm Yes 2020 Shmidt et al. [13];
Weigert et al. [54]

N/Y/Y/Y/N

Both NuSeT Platform Yes 2020 Yang et al. [61] Y/Y/N/Y/N

Both nnU-Net Platform Yes 2021 Isensee et al. [55] N/Y/N/Y/N

Both DeepMIB Platform Yes 2021 Belevich et al. [53] Y/Y/N/Y/N

Both InstantDL Pipeline, Platform Yes 2021 Waibel et al. [107] N/Y/N/Y/N

Both ZeroCostDL4Mic Pipeline, Platform Yes 2021 von Chamier et al.
[65]

Y/Y/N/Y/Y

Both DeepCell Kiosk Pipeline, Platform Yes 2021;
2016

Bannon et al. [46,68];
Van Valen et al.
[46,68]

Y/Y/Y/Y/Y

Both AD-GAN Algorithm No 2021 Yao et al. [86] N/N/N/Y/N

Both Embedding-based instance segmentation in
microscopy

Algorithm Yes 2021 Lalit et al. [108] N/Y/?/Y/N

aAlgorithm: a complete method to segment nuclei. An algorithm can be shared as a source code for developers in e.g., a GitHub repository or can be implemented as a
user-accessible method in a platform. Pipeline: a workflow of image processing algorithms to segment nuclei, allowing the user to set parameters for each step of the
workflow or even change the included algorithms to optimize segmentation tailored to the specific data. Platform: a software package that includes multiple algorithms
or pipelines for nucleus segmentation, and often has a defined application programming interface to include additional methods as well.
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acceptable accuracy. In contrast, nucleus segmentation is an instance segmentation task where
this approach alone is less likely to work in crowded parts of the image, but the connected com-
ponents of the stacked 2D segmentations can be used as a seed image for the watershed
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transform to compute the final 3D instance segmentation [72]. Besides, 3D segmentation is more
demanding in terms of computational resources (especially GPU memory and file sizes) when a
dense 2D method is extended directly to process 3D images. Introduction of a further dimension
may lead to substantially growing complexity (e.g., in case of differential geometry-based ap-
proaches) andmore complex spatial dependencies in case of CNNs, however, this phenomenon
termed ‘the curse of dimensionality’ is especially problematic, thus more training data and more
computational resources are required. Still, several tools are specifically developed for the 3D
segmentation task [73], and some deep learning-basedmethods developed for 2D segmentation
are also extended to 3D. The IT3DImageJSuite is an ImageJ (Fiji) [38,39] plugin that involves sev-
eral algorithms (including iterative thresholding and watershed). Line of sight (LoS) [74] ap-
proximates the convex decomposition of the objects with spectral clustering. OpenSegSPIM
[75] is aMATLAB application which performs instance segmentation by applying a pipeline of fil-
ters in a semi-automatic manner. RACE [76] and Ruszczycki et al. [15] first compute the 2D seg-
mentation on the z-slices, and then combine them to 3D objects. Similarly to BioImageXD [77],
Fiji [38,39] and Icy [78], Vaa3D [79] uses a pipeline consisting of Gaussian filtering, adaptive
thresholding, distance transformation and 3D watershed [80], while the MITK plugin 3D-
Cell-Annotator [43] uses active contours for semi-automatic 3D segmentation. In contrast,
most recent methods apply deep learning techniques to segment nuclei. These include
QCANet [81], developed to analyze mouse embryos in 3D, 3DeeCellTracker [82], intended
for tracking after the segmentation of nucleus instances, and the algorithm proposed in
Lapierre-Landry et al. [83] which performs watershed segmentation on the probability map,
and supervoxel clustering to achieve the final instance segmentation.

Self-supervised and unsupervised learning approaches decrease or even eliminate the need of
annotated training data. A few of suchmethods for nuclear segmentation have appeared recently
[84–86]. These methods show competitive results, although their accuracy does not exceed that
of the supervised state-of-the-art methods. Self-supervised segmentation for histopathology im-
ages [85] uses ResUnet-101 and requires a minimum of annotated data for fine-tuning. Another
approach [84] uses an attention mechanism, and does not require annotated data. AD-GAN [86]
uses a sophisticated training approach based onGAN, does not require annotated data, and also
works for both 2D and 3D.

Table 2 and Supplementary Table 3 report the list of tools mentioned previously, whilst
Supplementary Materials 4 includes their short descriptions.

Most of the listed tools require some effort from the user to install, prepare the environment, do
the pre-processing of the input if needed, and finally to run it. The amount of time and effort pri-
marily depends on the computational background of the user, and on the tool itself. Cloud-
based tools [usually supplied with web graphical user interface (GUI)] could be the primary starter
choices for life scientists. However, there is a trade-off: cloud-based versions of tools have limited
customizability, while local versions are more flexible, and the user does not need to share the
data with third-party services. In the latter case the quality of the documentation also matters
to assure proper set-up. In Table 2 we provide information on whether the tool is documented
properly (only official documentation was taken into account). The algorithms quite often lack de-
tailed official documentation, though provide the most flexibility (usually are parts of the complex
pipelines), and for the most popular ones unofficial documentation or tutorials and third-party
implementations exist too. The potential performance of a tool is obviously an important concern
for the user, and it might be challenging to decide on choosing the appropriate tool. The user may
decide based on the community’s preferences. Alternatively, a reliable comparison of the perfor-
mance of the different tools can support decision-making. However, apart from BIAFLOWSii and
Trends in Cell Biology, April 2022, Vol. 32, No. 4 305
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Outstanding questions
Can existing tools reliably segment
touching/overlapping/cluttered or
morphologically challenging nuclei?
Do training datasets include such
examples of nuclei to enable learning
of the visual representation?

How to make general-purpose models
that work accurately for many different
imaging modalities?

How to define a standardized
approach to quantitatively compare
the existing solutions, and properly
assess new methods to overcome
current comparison challenges?

What are the future steps developers
should take towards a general
solution for nucleus segmentation?
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automatic challenge submission systems (e.g., Kaggle or ISBIv), the microscopy image analyst
community lacks (i) an evaluation platform for the objective comparison of nucleus segmentation
methods, using (ii) a standardized evaluation metric in a transparent way. Thus, a consensus on
utilizing a single, standardized platform is eagerly awaited. Since challenge portals only provide
this functionality for the datasets of given challenges, a more inclusive platform, such as
BIAFLOWS is suggested. Even though the relevance of newly published methods is usually sup-
ported by some quantitative segmentation results, it has several shortcomings from the user’s
point of view as follows. (i) The test dataset might not suggest relevant performance when the
dataset size is too small, or covers a single imaging modality only. However, approaches devel-
oped for specific microscopy images (such as H&E or fluorescence confocal images) or segmen-
tation scenarios (e.g., crowded cell culture) are intended to work in their given domain of images,
and should not be expected to perform just as well on more extensive or general datasets.
(ii) When comparison to prior methods is performed and reported, the number of tested methods
is usually low, and (iii) additional model- or data-specific modifications might have been applied to
the comparedmethods (or the test images as pre-processing), thusmerely literature-based com-
parisons of accuracy scores may confuse the user (see Supplementary Materials 2).

Concluding remarks
Recent years have brought significant improvements in nucleus segmentation, including large
annotated datasets, new high-accuracy 2D/3D strategies, deep learning approaches, and seg-
mentation benchmarking platforms, however, establishing a genuinely general solution for nu-
cleus segmentation is still an unmet need. In this review and the accompanying web-based
portali we aimed to cover the missing link between recent advancements and users’ needs by
providing a detailed overview on the available means for nucleus segmentation. The concluding
remarks are focused on crucial limitations and future goals.

The first crucial point is to cover more modalities of microscopy data for both 2D, and especially
3D, with open datasets of annotated images. Current methods are expected to work when
trained on additional microscopy data modalities [18,109]. Most datasets include H&E-stained
tissues or fluorescently labeled cell cultures (see Table 1) which are two of the most widely
used modalities in practice. However, further microscopy types (e.g., differential interference
contrast, light-sheet or phase contrast) lack such publicly available annotations, except a re-
cently published, large, label-free dataset [26]. Even though researchers can train existing deep
learning methods on their own nowadays, these models remain private (unless released on
e.g., GitHub, zenodo, Kaggle or in a Napari [110] plugin; on the first three platforms datasets may
also be deposited [32]) and the initial datasets are small, resulting in suboptimal model generalization.
For a givenmodality of interest, generalization is also a crucial point for medical applications: the data
should be as diverse as possible to promote robustmodels. Diversity from a computer vision point of
view would include various regions of tissue with the distinct visual appearance of both the target
objects and the surroundings, as well as covering several phenotypes of cells, different batches or
slightly different experimental set-ups. An extensive annotated dataset including most (if not all)
modalities occurring in single-cell analysis experiments with respect to the type of microscopy,
sample, and label could definitely improve existing trainable methods. Besides, it would offer the
possibility of releasing genuinely general pre-trained models, and would also serve as a standard
dataset, similarly to the widely used COCO dataset [111] in computer vision.

The second crucial point relates to solving common microscopy challenges for both 2D and 3D
data, such as: touching, overlapping, and irregularly shaped nuclei [54,59–61]. Either dataset de-
sign or model architecture can be beneficial for a solution. Current methods achieve various levels
of success in overcoming these issues, thus further developments are needed.
306 Trends in Cell Biology, April 2022, Vol. 32, No. 4

CellPress logo


Trends in Cell Biology
The third crucial point is the lack of (i) a globally accepted benchmark platform for comparison,
and (ii) a unified metric for tool evaluation. BIAFLOWS and Kaggle are available solutions to over-
come these issues. However, still most publications presenting novel methods or tools typically
provide limited comparisons (either in terms of the data used in evaluation or the number of
methods compared) and use non-standardized metrics. Accordingly, the results published by
different authors are often difficult to compare.

The ultimate goal is to develop an algorithm, and train it so that the resulting single model would
be able to accurately segment nuclei in a variety of microscopy modalities. Some of the available
algorithms and models are aimed to meet this requirement [11,12], and the field is moving
towards a generally applicable solution. While a quantitative comparison of the methods available
for each modality is beyond our intention, it is worth mentioning that deep learning tends to pro-
vide fine accuracy in segmenting nuclei in images obtained with different microscopy techniques,
as shown at the DSB2018 challenge [6,112].
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