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Abstract
This paper studies the exponential stability of random matrix products driven by a general (possibly
unbounded) state space Markov chain. It is a cornerstone in the analysis of stochastic algorithms in
machine learning (e.g. for parameter tracking in online-learning or reinforcement learning). The ex-
isting results impose strong conditions such as uniform boundedness of the matrix-valued functions
and uniform ergodicity of the Markov chains. Our main contribution is an exponential stability re-
sult for the p-th moment of random matrix product, provided that (i) the underlying Markov chain
satisfies a super-Lyapunov drift condition, (ii) the growth of the matrix-valued functions is con-
trolled by an appropriately defined function (related to the drift condition). Using this result, we
give finite-time p-th moment bounds for constant and decreasing stepsize linear stochastic approxi-
mation schemes with Markovian noise on general state space. We illustrate these findings for linear
value-function estimation in reinforcement learning. We provide finite-time p-th moment bound
for various members of temporal difference (TD) family of algorithms.
Keywords: stability of random matrix product, linear stochastic approximation, Markov chains,
TD-learning

1. Introduction

Consider the following linear stochastic approximation (LSA) recursion: for n ∈ N,

θn+1 = θn + αn+1{−Ā(Zn+1)θn + b̄(Zn+1)} , (1)

where (αi)i∈N∗ is a sequence of positive step sizes, Ā : Z → Rd×d, b̄ : Z → Rd are measurable
functions on the state space Z, and (Zi)i∈N∗ is a sequence of random variables on Z. The LSA re-
cursion (1) encompasses a wide range of algorithms. LSA is central to the analysis of identification
algorithms and control of linear systems. Early results have focused on these two applications and
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studied both the asymptotic behaviour of the sequence (θn)n∈N and the tracking error; see Eweda
and Macchi (1983); Guo (1994); Guo and Ljung (1995b); Ljung (2002) and the references therein.

LSA is also a cornerstone in the analysis of linear value-function estimation (LVE) that are pop-
ular in reinforcement learning (Sutton, 1988; Bertsekas and Tsitsiklis, 1996). Seminal works on
this topic (Bertsekas and Tsitsiklis, 1996; Tsitsiklis and Van Roy, 1997; Benveniste et al., 1990)
established conditions for asymptotic convergence. Finite-time bound for LVE (and more generally
LSA) has attracted a renewed interest. In the case when (Zi)i∈N∗ is an i.i.d. sequence, (Lakshmi-
narayanan and Szepesvari, 2018; Dalal et al., 2018) have investigated mean-squared error bounds
for LSA. Recent developments (Bhandari et al., 2018; Srikant and Ying, 2019; Chen et al., 2020)
have considered the setting that (Zi)i∈N∗ is a Markov chain, and provided finite-time analysis. On
a related subject, (Gupta et al., 2019; Xu et al., 2019; Doan, 2019; Kaledin et al., 2020) considered
linear two-timescale stochastic approximation that involves coupled LSA recursions.

Most of the existing results on LSA are limited by strong conditions such as (i) uniform geomet-
ric ergodicity (UGE) on the Markov chain and/or (ii) uniformly bounded Ā, b̄, i.e. supz∈Z{‖Ā(z)‖+
‖b̄(z)‖} < +∞. These conditions are restrictive since the UGE condition typically requires the
state space to be finite or compact and do not extend to general (unbounded) state space. This is
of course a limitation because many applications involve general unbounded state space; see e.g.
Ljung (2002) and (Bertsekas and Tsitsiklis, 1996, p. 305).

In this paper, we aim to provide high-order moment bounds on the LSA with Markovian noise.
Our results are applicable under the relaxed conditions: (i) (Zi)i∈N∗ is a Markov chain on a gen-
eral (possibly unbounded) state-space satisfying a super-Lyapunov drift condition, and (ii) for some
constant C ≥ 0, for any z ∈ Z, ‖Ā(z)‖ ≤ CW1(z), ‖b̄(z)‖ ≤ CW2(z), with W1,W2 : R+ →
[1,+∞) deduced from the drift condition in (i). They are strictly weaker than the conditions re-
quired in previously reported works. In particular, Ā, b̄ can be potentially unbounded.

For m,n ∈ N, m < n and zm+1:n = (zm+1, . . . , zn) ∈ Zn−m, we define

Γm+1:n(zm+1:n) =
∏n
i=m+1{Id − αiĀ(zi)} .

A key property used for deriving our bounds is an exponential stability result on the matrix prod-
uct above, Γm+1:n(Zm+1:n), for m,n ∈ N, m < n. To motivate why this is relevant to LSA,
suppose that the Markov chain (Zn)n∈N∗ is ergodic so that, for all z ∈ Z, the following limits
A = limn→∞ Ez[Ā(Zn)], b = limn→∞ Ez[b̄(Zn)] exist. Assume in addition that the limiting ma-
trix −A is Hurwitz, i.e. the real parts of its eigenvalues are strictly negative, and denote by θ? the
unique solution of the linear systemAθ? = b. The n-th error vector θ̃n = θn−θ? may be expressed,
for all n ∈ N, by

θ̃n =
∑n

j=1 αjΓj+1:n(Zj+1:n)ε̄(Zj) + Γ1:n(Z1:n)θ̃0 , (2)

where ε̄(Zj) = b̄(Zj)− b− {Ā(Zj)− A}θ?. Obtaining a bound on p-th moments for {‖θ̃n‖}n∈N
naturally requires that the sequence of random matrices {Ā(Zi)}i∈N∗ to be (V, q)-exponentially
stable. Recall that for q ≥ 1 and a function V : Z → [1,∞), {Ā(Zi)}i∈N∗ is said to be (V, q)-
exponentially stable if there exists aq,Cq > 0 and α∞,q <∞ such that, for any sequence of positive
step sizes (αi)i∈N∗ satisfying supi∈N∗ αi ≤ α∞,q, z ∈ Z, m,n ∈ N, m < n,

Ez[‖Γm+1:n(Zm+1:n)‖q] ≤ Cq exp
(
−aq

∑n
i=m+1 αi

)
V(z) . (3)

Intuitively, (V, q)-exponential stability means that the q-th moment of the product of random matri-
ces Γm+1:n(Zm+1:n) behaves similarly to that of the product of deterministic matrices Gm+1:n =∏n
i=m+1(Id − αiA), under the assumption that −A is Hurwitz.
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Fix p, q, r ∈ N∗ such that p−1 = q−1 + r−1. Assume that the sequence {Ā(Zi)}i∈N∗ is (V, q)-
exponentially stable for some q > 1, the r-th moments of the noise term ‖ε̄(Zn)‖ and initialization
error θ̃0 are bounded. Using (2), we can readily derive bounds for the p-th moment, E1/p

z [‖θ̃n‖p] by
applying the Hölder’s inequality. Note that the r-th moment bound for the ”noise” terms may follow
from classical Lyapunov drift conditions, which is implied by super-Lyapunov drift conditions.

Contributions and Organization The contributions of this paper are three-fold:

• We establish (V, q)-exponential stability of the sequence of matrices {Ā(Zk)}k∈N∗ , and provide
explicit expression for constants appearing in (3); see Theorem 1. Compared to the prior works,
our result can be applied to the settings where the function Ā(·) is unbounded, not symmetric
and (Zk)k∈N∗ is a Markov chain on a general (unbounded) state-space not constrained to be
uniformly geometrically ergodic. A discussion of how our results relax the restrictive conditions
in previously reported works is given after the statement of Theorem 1.

• We provide finite-time bound and first-order expansion for the p-th moment of the error (θ̃n)n∈N∗

for LSA recursion (2). More precisely, we show that E1/p
z [‖θ̃n‖p] = O(α

1/2
n ) Vp(z) both for

constant αn ≡ α (where α is sufficiently small) or nonincreasing stepsizes under weak additional
conditions including αn = C/(n + n0)t, for any t ∈ (0, 1]; see Theorem 3. From our analysis
on the LSA error θ̃n, we identify a leading term, denoted J (0)

n , which is a weighted additive
linear functional of the error process (ε̄(Zn))n∈N∗ . Furthermore, the leading term J

(0)
n and its

remainderH(0)
n = θ̃n−J (0)

n admit a separation of scales. For example, when αn = C/(n+n0),
the leading term has a p-th moment bound of O(n−1/2) Vp(z), and the remainder has a p-th
moment bound of O(n−1 log(n)) Vp(z); see Theorem 4.

• Finally, we apply our results to TD-learning for LVE. We give sufficient conditions for a Markov
Reward Process on general unbounded state space with unbounded reward and feature functions
to satisfy the assumptions of Theorem 3 and Theorem 4. Therefore, the convergence bounds we
derive hold for these algorithms.

The rest of this paper is organized as follows. Section 2 introduces the formal conditions required for
(V, q)-exponential stability on {Ā(Zk)}k∈N∗ and states our main theorem. Section 2.1 outlines the
major steps in the proof. We use this result in Section 3 to obtain upper bound on the p-th moments
for the error vector (2); finally, we illustrate our results for LVE in TD learning framework.

Notations Denote N∗ = N\{0}. Let d ∈ N∗ andQ be a symmetric positive definite d×dmatrix.
Denote by Id the d-dimensional identity matrix. For x ∈ Rd, we denote ‖x‖Q = {x>Qx}1/2. For
brevity, we set ‖x‖ = ‖x‖Id . We denote ‖A‖Q = max‖x‖Q=1 ‖Ax‖Q, and the subscriptless norm
‖A‖ = ‖A‖I is the standard spectral norm. Let A1, . . . , AN be d-dimensional matrices. We denote∏j
`=iA` = Aj . . . Ai if i ≤ j and with the convention

∏j
`=iA` = Id if i > j.

Throughout this paper, we let Z be a Polish space equipped with sigma-algebra Z and fix a
measurable function V : Z → [1,∞). For a measurable function g : Z → R, we define its V -
norm as ‖g‖V = supz∈Z |g(z)|/V (z). Furthermore, LV∞ denotes the set of all measurable functions
g : Z → R satisfying ‖g‖V < ∞. Let P : Z × Z → R+ be a Markov kernel and V : Z → R+ be
a measurable function, the function PV : Z → R+ is defined as PV (z) =

∫
Z V (z′)P(z,dz′). For

a measure µ on (Z,Z) and a function V : Z → R+ we define ‖µ‖V = supf :‖f‖V ≤1

∫
Z f(z)µ(dz).

Let m ∈ N∗, ν a probability on Z and ε. A set C ∈ Z is said to be (m, εν)-small for P if for all
z ∈ C and A ∈ Z , Pm(z,A) ≥ εν(A). A set A ∈ Z is said to be accessible if for all z ∈ Z, there
exists m ∈ N∗ such that P(z,A) > 0.
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2. Main Results

Consider a Markov chain (Zk)k∈N with Markov kernel P. We assume without loss of generality that
(Zk)k∈N is the canonical process corresponding to P on (ZN,Z⊗N). We denote by Pµ and Eµ the
corresponding probability distribution and expectation with initial distribution µ. By construction,
for any A ∈ Z , Pµ (Zk ∈ A |Zk−1) = P(Zk−1,A), Pµ-a.s. In the case µ = δz , z ∈ Z, Pµ and Eµ
are denoted by Pz and Ez . In addition, throughout this paper, we assume

UE1 The Markov kernel P : Z × Z → R+ is irreducible and aperiodic. There exist c > 0, b >
0, δ ∈ (1/2, 1], R0 ≥ 0, and V : Z → [e,∞) such that by setting W = log V , C0 = {z : W (z) ≤
R0}, C{

0 = {z : W (z) > R0}, we have

PV (z) ≤ exp[−cW δ(z)]V (z)1C{
0
(z) + b1C0(z) . (4)

In addition, for any R ≥ 1, the level sets {z : W (z) ≤ R} are (mR, εRν)-small for P, with
mR ∈ N∗, εR ∈ (0, 1] and ν being a probability measure on (Z,Z).

Since (Z,Z) is a general state-space, irreducibility here means that the Markov kernel P admits
an accessible small set; see (Douc et al., 2018, Chapter 9). The drift condition (4) in UE 1 is
referred to as a multiplicative or super-Lyapunov drift condition and plays a key role in studying the
large deviations of additive functionals of Markov chains; see Varadhan (1984). Eq. (4) implies the
classical Foster-Lyapunov drift condition, PV (z) ≤ λV (z) + b1C0(z) with

λ = exp(−c infC{
0
W δ) ≤ exp(−c) < 1 . (5)

It follows from (Douc et al., 2018, Theorem 15.2.4) that under UE 1 the Markov kernel P is V -
uniformly geometrically ergodic and admits a unique stationary distribution π, i.e. there exists
ρ ∈ (0, 1) and BV <∞ such that for each z ∈ Z and n ∈ N,

‖Pn(z, ·)− π‖V ≤ BV ρ
nV (z) . (6)

UE 1 is a special case of condition (DV3) in Kontoyiannis and Meyn (2003, 2005) which plays a
key role in multiplicative regularity of Markov chains. A key consequence of UE 1 is a bound for
products (see Lemma 10 and (Kontoyiannis and Meyn, 2005, Theorem 1.2)): for any z ∈ Z, n ∈ N,
and non-increasing sequence (αi)i∈N∗ ⊂ [0, 1], we get

Ez[exp{c
∑n−1

k=0 αkW
δ(Zk)}] ≤ exp {b̃

∑n−1
k=0 αk} exp {α1W (z)} ,

where b̃ = log b+supr≥e{crδ−r} and c is defined in (4). UE1 is satisfied with δ = 1 for Gaussian
linear vector auto-regressive process and also non-linear auto-regressive process under exponential
moment condition for innovation process, see e.g. Priouret and Veretenikov (1998).

We also impose some constraints on Ā. For ε ∈ (0, 1) consider the following assumptions

A1 (ε) There exists CA > 0 such that for any 1 ≤ i, j ≤ d, the (i, j)-th element of Ā satisfies∥∥[Ā]i,j
∥∥
Wβ ≤ CA, where β < min(2δ − 1, δ/(1 + ε)) and δ is given in UE 1.

To simplify notations the dependence of constants CA and β in ε is implicit. Whenever there is no
ambiguity, we drop the dependence on ε in A1.

A2 The square matrix −A = −Eπ[Ā(Z0)] is Hurwitz.
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A1, A2 are standard conditions on the parameter matrices in LSA. Under A2, there exists a positive
definite matrix Q satisfying the Lyapunov equation [cf. Lemma 17]

A>Q+QA = Id, and we define κQ = λ−1
min(Q)λmax(Q), a = ‖Q‖−1/2. (7)

Consequently, we have ‖I− αA‖Q ≤ 1− aα/2 for α ∈ [0, ‖Q‖−1‖A‖−2
Q /2] [cf. Lemma 18].

Our aim is to establish (V, q)-exponential stability of the sequence {Ā(Zk)}k∈N∗ ; see Equa-
tion (3). The following example illustrates that, even if the function Ā(·) is bounded, for the matrix
product to be exponentially stable, it is necessary for the Markov chain (Zk)k∈N to be geometrically
ergodic.

Example 1 Set Z = N? and consider the forward recurrence time chain on Z starting from Z0 = 1
and defined based on an i.i.d. sequence (Yi)i∈N, Yi ∈ Z by Zk+1 = Zk − 1, if Zk > 1 and
Zk+1 = Yk+1, if Zk = 1. Douc et al. (2018, Proposition 8.1.5) shows that if P(Y1 = z) > 0 for
z ∈ Z and m =

∑
z∈Z zP(Y1 = z) < +∞, then (Zk)k∈N admits a unique stationary distribution

π. For any ε > 0, set Āε(1) = 1, and Āε(z) = −ε for z ∈ Z \ {1}. If ε ∈ (0, π(1)) then∑
z∈Z π(z)Aε(z) = π(1)− ε{1− π(1)} > 0, so that both conditions A1, A2 are satisfied.
Consider the sequence defined recursively as θεn+1 = {1−αĀε(Zn+1)}θεn with θε0 > 0. Assume

that the distribution of Y1 does not have exponential moments (i.e. , for all η > 0, E[(1 + η)Y1 ] =
∞). We show in Appendix A that (i) (Zk)k∈N is not geometrically ergodic for any ε ∈ (0, π(1)) and
α ∈ (0, 1) and (ii) the sequence un = E[|θεn|] = θ0E[

∏n−1
k=0{1− αĀε(Zk+1)}] is not bounded.

The following theorem establishes the (V, p)-exponential stability of the sequence {Ā(Zk)}k∈N∗ .
For ease of notation, we simply denote Γm+1:n = Γm+1:n(Zm+1:n).

Theorem 1 For ε ∈ (0, 1) assume UE 1, A1(ε) and A2. Then for any p ≥ 1, there exists α∞,p > 0,
given in (90), such that for any non-increasing sequence (αk)k∈N∗ satisfying α1 ∈ (0, α∞,p), z0 ∈ Z
and m,n ∈ N, m < n, it holds

E1/p
z0 [‖Γm+1:n‖p] ≤ Cst,p e−(a/4)

∑n
`=m+1 α`V 1/2p(z0) , (8)

where a, Cst,p, and h are defined in (7), (92), and (89), respectively.

The theorem shows that provided (αk)k∈N∗ satisfies
∑

k∈N∗ αk = +∞, E1/p
z [‖Γm+1:n‖p] → 0 as

(n −m) → ∞ for any p ≥ 1. Specifically, it has a similar convergence rate as the deterministic
matrix product ‖Gm+1:n‖ = ‖

∏n
i=m+1(Id − αiA)‖ . e−a

∑n
`=m+1 α` .

Theorem 1 generalizes previously reported works. Guo (1994); Guo and Ljung (1995a) used a
slightly different definitions allowing to consider non-Markovian processes satisfying more general
mixing conditions (like φ- or β-mixing). As we will see later, when specialized to Markov chains,
the results we obtain significantly improve those reported in these works. Priouret and Veretenikov
(1998) established (V, q)-exponential stability for general state-space Markov chain under a super-
Lyapunov drift condition (similar to UE 1). However, the results in Priouret and Veretenikov (1998)
assume constant stepsize and Ā(z) being symmetric and non-negative definite for any z ∈ Z. Non-
negative definiteness plays a key role in the arguments: in such case, for any z ∈ Z, the spectral
norm ‖Id−αĀ(z)‖ ≤ 1 provided that ‖Ā(z)‖ ≤ α−1 for α > 0 which is no longer true for general
matrix-valued function Ā(z). Similar results, also under the condition that Ā(z) is symmetric
for any z ∈ Z, were obtained by Delyon and Juditsky (1999) based on perturbation theory for
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linear operators in Banach space and spectral theory. However, the bounds provided in Delyon and
Juditsky (1999) are only qualitative and it is difficult to make these results quantitative because they
are based on perturbation arguments of linear operators in Banach spaces. The restrictions imposed
on these prior works have limited their applications to more general algorithms, in particular to most
RL algorithms. As we will see below, the application to linear value-function estimation in temporal
difference learning involve non-symmetric matrix function Ā. In contrast, our result (cf. Theorem 1)
can be applied to the setting where for some z ∈ Z, Ā(z) is not necessary non-negative symmetric
but only Hurwitz.

Notice that the case of uniformly geometric ergodic Markov chain is covered by UE 1. In this
case the whole state-space Z is small and the drift function V can be chosen to be constant (Douc
et al., 2018, Theorem 15.3.1). Together with the assumption of bounded Ā(·), the exponential
stability of product of random matrices has been implicitly established in (Srikant and Ying, 2019;
Doan, 2019; Kaledin et al., 2020; Chen et al., 2020). In particular, their results on LSA can be
applied on the recursion y0 = y, yn+1 = {Id − αn+1Ā(Zn+1)}yn, n ∈ N. Through studying the
decomposition:

yn+1 = {Id − αn+1A}yn − αn+1(Ā(Zn+1)−A)yn, ∀ n ∈ N, (9)

they derived bounds on Ez0 [‖yn+1‖p] = Ez0 [‖Γ1:n+1y‖p]. However, generalizing this approach for
other classes of Markov chains (e.g., UE 1) or unbounded function appears to be impossible.

2.1. Proof of Theorem 1

First note that for any z0 ∈ Z, by the Markov property,

Ez0 [‖Γm+1:n‖p] = Ez0 [‖Γm+1:n(Zm+1:n)‖p] = Ez0 [EZm [‖Γm+1:n(Z1:n−m)‖p] . (10)

The first step is to fix some valueZm = zm ∈ Z and to derive a bound on Ezm [‖Γm+1:n(Z1:n−m)‖p].
We denote by κ = κ

1/2
Q where κQ is defined in (7).

Step 1: Extracting the deterministic matrix product and a block decomposition Consider a
block length h ∈ N [to be defined in (90)] and define the sequence j0 = m, j`+1 = min(j` + h, n)
such that j`+1− j` ≤ h. LetN = d(n−m)/he, where d·e is the ceiling function so that j` = jN =
n for any ` ≥ N . Then, we introduce the decomposition

Γm+1:n(Z1:n−m) =
N∏
`=1

B` where B` :=

j∏̀
i=j`−1+1

(Id − αiĀ(Zi−m)), ` ∈ {0, . . . , N} . (11)

Using that (Zk)k∈N satisfies UE 1, it can be shown that if m is sufficiently large, then B` is close in
Lp to the deterministic matrix B` =

∏j`
i=j`−1+1(Id−αiA). However, it is not sufficient to conclude

because we need to deal with the product of these terms in (11). Therefore, we consider

‖Γm+1:n(Z1:n−m)‖ ≤ κ‖Γm+1:n(Z1:n−m)‖Q ≤ κ
∏N
`=1{‖B`‖Q + ‖B` −B`‖Q}, (12)

where the last inequality follows from B` = B` + (B` −B`). Using A2, we have

‖Γm+1:n(Z1:n−m)‖
(a)

≤ κ
∏N
`=1{

∏j`
i=j`−1+1(1− αia/2) + ‖B` −B`‖Q}

(b)

≤ κ{1 + κ‖BN −BN‖}
∏N−1
`=1 {(1− αj`a/2)h + κ‖B` −B`‖} ,

6
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where (a) is due to Lemma 18 and we assumed that supi∈N∗ αi ≤ α∞,p ≤ (1/2)‖A‖−2
Q ‖Q‖−1,

and (b) is due to the assumption αi+1 ≤ αi. Assuming aα∞,p ≤ 1 and hα∞,p ≤ 1, we get
(1− aαj`/2)−h ≤ ea since for any t ∈ [0, 1/2], (1− t)−1 ≤ 1 + 2t ≤ e2t, therefore, we obtain

‖Γm+1:n(Z1:n−m)‖ ≤ κ
N−1∏
`=1

(1− aαj`/2)h
N∏
`′=1

{1 + κea‖B`′ −B`′‖} .

Taking expectation leads to

E1/p
zm [‖Γm+1:n(Z1:n−m)‖p] ≤ κ

N−1∏
`=1

(1− aαj`/2)h E1/p
zm

[ N∏
`′=1

{1 + κea‖B`′ −B`′‖}p
]

≤ κeaα∞,ph exp

(
−a

2

n∑
i=m+1

αi

)
E1/p
zm

[
N∏
`′=1

{1 + κea‖B`′ −B`′‖}p
]
, (13)

since
∏N−1
`=1 (1 − aαj`/2)h ≤ Ce−(a/2)

∑n
i=m+1 αi , with C = eaα∞,ph, using supi∈N∗ αi ≤ α∞,p

and (αi)i∈N∗ is non-increasing. In order to complete the proof, our next step is to show that the last
term in (13) grows in the order O(e(a/4)

∑n
i=m+1 αi).

Step 2: Bounding the product of differences We now tackle the last term in (13). Note that for
any sequence of square matrices {Ci}Ni=1,

∏n
i=1{I + Ci} =

∑N
r=0

∑
(i1,...,ir)∈Jr

∏r
k=1Cik , where

Jr = {(i1, . . . , ir) ∈ {1, . . . , N}r : i1 < · · · < ir}, with the convention
∏
∅ = 1. Using this

expansion, we may therefore decompose the difference B` −B` as:

B` −B` = S` +R` − R̄` , (14)

where S` =
∑j`

k=j`−1+1 αk
{
Ā(Zk−m)−A

}
is linear (r = 1) and the remainders collect the higher-

order terms (r ≥ 2) in the products

R̄` =

h∑
r=2

(−1)r
∑

(i1,...,ir)∈I`r

r∏
u=1

αiuĀ(Ziu−m), R` =

h∑
r=2

(−1)r
∑

(i1,...,ir)∈I`r

r∏
u=1

αiuA
r, (15)

where we have set I`r = {(i1, . . . , ir) ∈ {j`−1 + 1, . . . , j`}r : i1 < · · · < ir}. Since for {ai}Ni=1 ⊂
R+, (1 +

∑N
i=1 ai) ≤

∏N
i=1(1 + ai), the Hölder’s inequality implies

E1/p
zm

[ N∏
`=1

{1 + κea‖B` −B`‖}p
]

(16)

≤
N∏
`=1

(1 + κea‖R`‖)

{
Ezm

[ N∏
`=1

(1 + κea‖R̄`‖)2p
]}1/(2p){

Ezm
[ N∏
`=1

(1 + κea‖S`‖)2p
]}1/(2p)

.

Consider first the two terms involving {R`, R̄` : ` ∈ {1, . . . , N}}. From (15), we observe that
the order of terms in R`, R̄` is at least quadratic in the step size. As such, a crude estimate suffices
to establish that the relevant terms in (16) grow slowly with N as shown in Lemmas 21 and 22
(postponed to the appendix):

N∏
`=1

(1 + κea‖R`‖)p ≤ exp

{
pC(0)h2

N∑
`=1

α2
j`−1+1

}
, (17)

7
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Ezm
[ N∏
`=1

(1 + κea‖R̄`‖)2p
]
≤ Ezm

exp
{

2pC(1)2h
N∑
`=1

α1+ε
j`−1+1

j∑̀
k=j`−1+1

W δ(Zk−m)
} , (18)

where C(0), C(1) are defined in (81), (82), respectively. The exponents in (17), (18) are of the order
O(
∑N

`=1 α
2
j`−1+1), O(

∑N
`=1 α

1+ε
j`−1+1), respectively, which are desirable for us.

However, similar crude estimates are not sufficient for controlling the last term of (16) which
involves the linear term S`. We first apply the following useful bound (of independent interest):

Lemma 2 (Lemma 20) Let (F`)`≥0 be some filtration and a sequence of non-negative random
variables (ξ`)`≥0 which is (F`)`≥0-adapted. For any P ∈ N, it holds

E
[∏P

`=1 ξ`
]
≤
{
E
[∏P

`=1 E[ξ2
` |F`−1]

]}1/2
. (19)

By the Markov property, the previous Lemma allow us to write:

E1/(2p)
zm

[∏N
`=1

(
1 + κea‖S`‖

)2p] ≤ E1/(4p)
zm

[∏N
`=1 EZj`−1

[(1 + κea‖S`‖)4p]
]
. (20)

Each of the conditional expectation on the r.h.s. can be controlled through studying the p-th moment
of the linear statistics EZj`−1

[‖S`‖4p]. A tight bound can be obtained through applying the Rosen-
thal’s inequalities derived in Appendix C. Formally, this is done by Corollary 24 in the appendix.
Namely, for any ` = 1, ..., N , it holds

EZj`−1
[(1 + κea‖S`‖)4p] ≤ exp

{
4pC(2)

p h
1/2αj`−1+1W

δ(Zj`−1
)
}
, (21)

where C(2)
p is defined in (88). Note that the exponent on the r.h.s. has a sublinear growth rate with

respect to the block size h. Combining (17)-(18)-(20)-(21) lead to the upper bound:

E1/(2p)
zm

[
N∏
`=1

EZj`−1
[(1 + κea‖B` −B`‖)2p]

]
≤ exp

{
C(0)h2

N∑
`=1

α2
j`−1+1

}
· T1 · T2 , (22)

where T1, T2 are defined as

T1 = E1/(2p)
zm [exp{2pC(1)2h

∑N
`=1 α

1+ε
j`−1+1

∑j`
k=j`−1+1W

δ(Zk−m)}] ,

T2 = E1/(4p)
zm [exp{4pC(2)

p h1/2
∑N

`=1 αj`−1+1W
δ(Zj`−1−m)}] .

Constructing an appropriately defined supermartingale (that we deduce from the super-Lyapunov
drift condition) and assuming that 2h+1pC(1)α1+ε

∞,p ≤ c, 4pC
(2)
p h1/2α∞,p ≤ c, in Lemmas 10 and 11

we show that T1, T2 can be bounded by

T1 ≤ exp{C(1)2h(α1+ε
∞,pW (zm) + b̃h

∑N
`=1 α

1+ε
j`−1+1)} ,

T2 ≤ exp{C(2)
p h1/2(α∞,pW (zm) + (b̃− log(1− λ))

∑N
`=1 αj`−1+1)} ,

(23)

where b̃ = log b + supr>0{crδ − r}.

Step 3: Collecting Terms The proof is concluded by adjusting the block size and combining
upper bounds on α∞,p. The technical details are given in Appendix D.3.
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3. Application to Linear Stochastic Approximation

This section illustrates how to apply Theorem 1 to analyze LSA schemes with Markovian noise.
First, we state the assumptions on b̄(·) and step sizes which can be either constant or diminishing.
For K ∈ N∗, consider the following assumption:

A3 (K) There exists Cb,K > 0 such that max1≤`≤d
∥∥b̄`∥∥V 1/K ≤ Cb,K, where b̄` is the `-th compo-

nent of b̄.

A4 There exists a constant 0 < cα ≤ a/16 such that for k ∈ N, αk/αk+1 ≤ 1 + αk+1 cα.

It is easy to check that A4 is satisfied by diminishing step sizes αn = Ca(n+ n0)− t, t ∈ (0, 1] and
constant step sizes.

Theorem 3 Let K ≥ 8 and ε ∈ (0, 1). Assume UE 1, A1(ε), A2 and A3(K). For any 2 ≤ p ≤ K/4,
there exists α(0)

∞,p defined in (25) such that for any non-increasing sequence (αk)k∈N∗ satisfying
α1 ∈ (0, α

(0)
∞,p) and A4, z ∈ Z, and n ∈ N, it holds

E1/p
z [‖θ̃n‖p] ≤ M0 Cst,2p e−(a/4)

∑n
`=1 α`V 1/(4p)(z) + (C

(0)
J,p + C

(0)
H,p)
√
αnV

2/K+1/(4p)(z), (24)

where M0 = E1/(2p)
z [‖θ̃0‖2p] and C

(0)
J,p,C

(0)
H,p are defined in (33), (36), respectively.

Most often, the distribution of the initial value θ̃0 does not depend on the initial value of the Markov
chain z. In this case E1/(2p)

z [‖θ̃0‖2p] is a constant. With a sufficiently small step size, Theorem 3
shows that the Lp norm of error vector converges under UE 1 for the Markov chain. Compared
to (Srikant and Ying, 2019), we consider relaxed conditions on the Markov chain and allow for
diminishing step sizes in the LSA.

Finite-time Lp error bound of LSA [Proof of Theorem 3] Define the following constraint on
the step size

α(0)
∞,p := α∞,2p ∧ ρ ∧ e−1, (25)

where α∞,2p and ρ are defined in (90) and (6) respectively. Below, we show that the finite-time Lp
error bound can be derived through applying the stability of random matrix product (see Theorem 1).
We recall that the error vector θ̃n+1 = θn+1 − θ? may be expressed as

θ̃n+1 = Γ1:n+1θ̃0 +
∑n+1

j=1 αjΓj+1:n+1ε̄(Zj) ≡ θ̃(tr)
n+1 + θ̃

(fl)
n+1 . (26)

Using the Hölder’s inequality and Theorem 1, the transient term θ̃
(tr)
n+1 can be bounded as follows

E1/p
z [‖θ̃(tr)

n+1‖p] ≤ E1/(2p)
z [‖Γ1:n+1‖2p]E1/(2p)

z [‖θ̃0‖2p] ≤ M0 Cst,2p e−(a/4)
∑n+1

`=1 α`V 1/(4p)(z). (27)

As for the fluctuation term θ̃
(fl)
n+1, it can be verified that θ̃(fl)

n+1 = J
(0)
n+1 +H

(0)
n+1, where the latter terms

are defined by the following pair of recursions:

J
(0)
n+1 = (Id − αn+1A) J

(0)
n + αn+1ε̄(Zn+1), J

(0)
0 = 0,

H
(0)
n+1 =

(
Id − αn+1Ā(Zn+1)

)
H

(0)
n − αn+1Ã(Zn+1)J

(0)
n , H

(0)
0 = 0,

(28)

9
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and Ã(z) = Ā(z)−A. Furthermore, we observe that

J
(0)
n+1 =

∑n+1
j=1 αjGj+1:n+1ε̄(Zj), H

(0)
n+1 = −

∑n+1
j=1 αjΓj+1:n+1Ã(Zj)J

(0)
j−1 . (29)

From (29), we observe that J (0)
n+1 is an additive functional of {ε̄(Zj)}n+1

j=1 whose Lp norm can be
bounded using a Rosenthal-type inequality for Markov chains (see Proposition 12). We obtain the
following estimate for the function ε̄(·) and the coefficients αkGk+1:n+1. By A1, A3(K), we have

max`∈{1,...,d} ‖ε̄`‖V 1/K ≤ Cε̄ :=
√
dCb,K +2d(βK/e)β CA ‖θ?‖. (30)

From A2, we recall that ‖Gk+1:n+1‖ ≤ κ
∏n+1
`=k+1

√
1− aα` [cf. Lemma 18]. Together with A4,

this implies that
‖αkGk+1:n+1 − αk+1Gk+2:n+1‖ ≤ κ(cα +2‖A‖)α2

k+1

∏n+1
`=k+1

√
1− aα` , (31)

By A4, we also have α1‖G2:n+1‖ ≤ καn+1
∏n+1
j=2 (1 + cα αj)(1− aαj/2) ≤ καn+1. We can now

apply the Rosenthal inequality (see Proposition 12) to obtain the following estimate:

E1/p
z [‖J (0)

n+1‖p] ≤ dCε̄ C
1/p
Ros,pV

1/K(z)
{[
κ+ 1

]
αn+1

+
(
κ2

n+1∑
k=1

α2
k

n+1∏
`=k+1

(1− α`a)
)1/2

+ κ(cα +2‖A‖)
n+1∑
k=1

α2
k+1

n+1∏
`=k+1

√
1− aα`

}
.

Using the inequality
∑n+1

k=1 α
2
k+1

∏n+1
`=k+1

√
1− aα` ≤ (4/a)αn+1 [cf. Lemma 26] yields that

E1/p
z [‖J (0)

n+1‖
p] ≤ C

(0)
J,p

√
αn+1V

1/K(z) , (32)

where
C

(0)
J,p = dκCε̄(2 + 4(cα +2‖A‖)/a+ 2/

√
a))C

1/p
Ros,p ; (33)

Finally, to analyze H(0)
n+1, from (29) we apply the Hölder’s inequality twice to get

E1/p
z [‖H(0)

n+1‖p] ≤
∑n+1

j=1 αjE
1/(2p)
z [‖Γj+1:n+1‖2p]E1/(4p)

z [‖Ã(Zj)‖4p]E1/(4p)
z [‖J (0)

j−1‖4p]. (34)

Notice that E1/(4p)
z [‖Ã(Zj)‖4p] ≤ C̄AV

1/K(z) where C̄A is defined in (78) [cf. Lemma 16]. Using
Theorem 1 and (32), we obtain

E1/p
z [‖H(0)

n+1‖p] ≤ Cst,2p C
(0)
J,4p C̄A

∑n+1
j=1 αj

√
αj−1e−(a/4)

∑n+1
`=j+1 α`V 2/K+1/(4p)(z)

(a)

≤
√

1 + α
(1)
∞,p cα Cst,2p C

(0)
J,4p C̄A

∑n+1
j=1 α

3/2
j

∏n+1
`=j+1

(
1− α`a/8

)
V 2/K+1/(4p)(z)

(b)

≤ C
(0)
H,p

√
αn+1V

2/K+1/(4p)(z),

(35)

where

C
(0)
H,p = 16

√
1 + α

(1)
∞,p cα Cst,2p C

(0)
J,4p C̄A/a . (36)

In the above, (a) is due to A4 and the inequality e−αja/4 ≤ 1− αja/8 since αja/4 ≤ 1, (b) is due
to the inequality

∑n+1
j=1 α

3/2
j

∏n+1
`=j+1

(
1− α`a/8) ≤ (16/a)

√
αn+1 [cf. Lemma 26]. By observing

that
θ̃n+1 = θ̃

(tr)
n+1 + θ̃

(fl)
n+1 = θ̃

(tr)
n+1 + J

(0)
n+1 +H

(0)
n+1 , (37)

applying Minkowski’s inequality yields the bound in (24).
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Refining the error bound E1/p
z [‖θ̃(fl)

n ‖p] It is possible to obtain a bound on E1/p
z [‖H(0)

n ‖p] tighter
than O(

√
αn) obtained in (35). This establishes in particular that J (0)

n is the leading term in the
decomposition of the fluctuation term θ̃

(fl)
n+1 = J

(0)
n+1 + H

(0)
n+1. To this end, we rely on an extra

decomposition step similar to (28). We may further decompose the error term H
(0)
n as H(0)

n =

J
(1)
n +H

(1)
n such that

J
(1)
n+1 = (Id − αn+1A)J

(1)
n − αn+1Ã(Zn+1)J

(0)
n , J

(1)
0 = 0,

H
(1)
n+1 = (Id − αn+1Ā(Zn+1))H

(1)
n − αn+1Ã(Zn+1)J

(1)
n , H

(1)
0 = 0,

(38)

where J (0)
n is defined in (28). For diminishing step sizes, here we should strengthen the previous

assumption A4 as:

A5 We have A0 < ∞, where An =
∑∞

`=n α
2
` . There exists a constant 0 < cα ≤ a/32 such that

for k ∈ N, αk/αk+1 ≤ 1 + αk+1 cα and αk/Ak+1 ≤ (2/3) cα.

It is easy to check that A5 is satisfied by diminishing step sizes αn = Ca(n+ n0)− t, t ∈ (1
2 , 1].

Using the decomposition in (38), we obtain the the following result:

Theorem 4 (Theorem 31) Let K ≥ 32, ε ∈ (0, 1) and assume UE 1, A1(ε), A2, and A3(K). For
any 2 ≤ p ≤ K/16 and any non-increasing sequence (αk)k∈N satisfying α0 ∈ (0, α

(1)
∞,p) such that

αk ≡ α or A5 holds. For any z ∈ Z, n ∈ N, it holds

E1/p
z [‖H(0)

n ‖p] ≤ V 3/K+9/(16p)(z)

{
C

(f)
p α

√
log(1/α), if αn ≡ α,

C
(d)
p

√
αnAn log(1/αn), if under A5,

(39)

where α(1)
∞,p, C

(f)
p ,C

(d)
p are given in (95), (97), respectively.

The theorem shows that the previous bound of E1/p
z [‖H(0)

n ‖p] = O(
√
αn) can be improved to

O(
√
αnAn log(1/αn)). Take for example a diminishing step size as αn = Ca(n + n0)−1, our

result shows that the fluctuation term admits a clear separation of scales as

θ̃(fl)
n = J (0)

n +H(0)
n with E1/p

z [‖J (0)
n ‖p] = O(n−1/2), E1/p

z [‖H(0)
n ‖p] = O(n−1

√
log n).

Proof Sketch We study J (1)
n+1 first. By (38) and the definition of J (0)

n in (28), we obtain

J
(1)
n+1 =

∑n
j=1 αjSj+1:n+1ε̄(Zj), with Sj+1:n+1 =

∑n+1
k=j+1 αkGk+1:nÃ(Zk)Gj+1:k−1 . (40)

For illustrative purpose, in this proof sketch we will only consider the case when {Zi}i≥1 are i.i.d..
Here, we have E[Sj+1:n+1ε̄(Zj)|Zj+1, . . . Zn+1] = 0 and therefore J (1)

n+1 is a Martingale. It follows:

E1/p[‖J (1)
n+1‖p]

(a)

.

√√√√ n∑
j=1

α2
jE2/p[‖Sj+1:n+1‖p]

(b)

.

√√√√n+1∑
j=1

α2
jAj

n+1∏
`=j+1

(1− aα`) .
√
αn+1An+1, (41)

where (a) applied the Burkholder inequality (Hall and Heyde, 1980, Theorem 2.10) for Martingales,
and (b) can be obtained by applying the Rosenthal inequality for i.i.d. random variables to the
expectation E1/p[‖Sj+1:n+1‖p] (Hall and Heyde, 1980, Theorem 2.12).
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Furthermore, we observe that H(1)
n+1 =

∑n+1
j=1 αjΓj+1:n+1Ã(Zj)J

(1)
j−1. Similar to (34), we can

apply (41) and the Hölder inequality to obtain E1/p[‖H(1)
n+1‖p] = O(

√
αn+1An+1). Combining

both bounds yields the conclusion of the theorem.
Unfortunately, in the Markovian case we cannot apply the same arguments directly since J (1)

n+1

is no longer a martingale. Instead, we first decouple the dependent random variables ε̄(Zj) and
Sj+1:n+1. This is done in Lemma 32 in the appendix by using the Berbee’s coupling construction
exploiting the fact that V -uniformly ergodic Markov chains are special cases of β-mixing processes
(Rio, 2017). We leave the detailed derivations in the appendix for interested readers.

3.1. Temporal Difference Learning Algorithms

Following the notation from (Sutton and Barto, 2018, Chapter 12), we consider a discounted Markov
Reward Process (MRP) denoted by the tuple (X,Q,R, γ), where Q is the state transition kernel
defined on a general state space (X,X ). We do not assume that X is finite and countable, the
only requirement being that X is countably generated: we may assume for example that X =
Rd. For any state x, x′ ∈ X2, the scalar R(x, x′) represents the instantaneous reward for go-
ing from state x to x′. The reward function is possibly unbounded. Finally, γ ∈ (0, 1) is the
discount factor. The value function V ? : X → R is defined as the expected discounted reward
V ?(x) = Ex[

∑∞
k=0 γ

kR(Xk, Xk+1)]. The function V ∗ satisfies the Bellman equation V ∗(x) =∫
Q(x,dx′)R(x, x′) + γQV ∗(x).

We approximate V ?(x) using the linear value function estimation (LVE). Let d ∈ N∗, we as-
sociate with every state x ∈ X a feature vector ψ(x) ∈ Rd and approximate V ?(x) by a linear
combination Vθ(x) = ψ(x)>θ (see Tsitsiklis and Van Roy (1997); Sutton and Barto (2018)). Tem-
poral difference learning algorithms may be expressed as

θk+1 = θk + αk+1ϕk{R(Xk, Xk+1) + γψ(Xk+1)>θk − ψ(Xk)
>θk}, (42)

where {ϕk}k∈N is a sequence of eligibility vectors. For the TD(0) algorithm, ϕk = ψ(Xk). For
the TD(λ) algorithm, ϕk = (λγ)ϕk−1 + ψ(Xk). Note that for TD(λ), (42) corresponds to (1) with
the extended Markov chain Zk = (Xk, Xk+1, ϕk) and Ā(Zk) = −ϕk(ψ(Xk)

> − γψ(Xk+1)>),
b(Zk) = ϕkR(Xk, Xk+1). Srikant and Ying (2019) were able to study TD(λ) while that (Zk)k∈N∗

is not necessary uniformly ergodic. Indeed, a core argument in their application is the use of (Bert-
sekas and Tsitsiklis, 1996, Lemma 6.7) which implies that if Z is a finite state space and (Xk)k∈N
is uniformly ergodic, then ‖Ez[Ā(Zk)] − A‖ ≤ Cρk and ‖Ez[b(Zk)] − b‖ ≤ Cρk, for any z ∈ Z,
k ∈ N∗ and for some C ≥ 0, ρ ∈ (0, 1). This is precisely the condition considered by Srikant and
Ying (2019) to derive their bounds. (Bertsekas and Tsitsiklis, 1996, Lemma 6.7) does not extend to
general (unbounded) state space.

As a replacement, to verify our assumption UE 1, we consider here a τ -truncated version of the
eligibility trace

ϕk = φτ (Xk−τ+1:k) where φτ (x0:τ−1) =
∑τ−1

s=0(λγ)sψ(xτ−1−s) . (43)

TD(0) algorithm is a special case of (43) with τ = 1 and we recover the TD(λ) algorithm by letting
τ → ∞. The recursion (42) with eligibility vector defined in (43) is a special case of (1). To see
this, we define Zk = [Xk−τ , . . . , Xk]

> and observe that (42) can be obtained by using in (1) the
following matrix/vector, for z = [x0, . . . , xτ ]> = x0:τ ∈ Xτ+1,

Ā(z) = φτ (x0:τ−1){ψ(xτ−1)− γψ(xτ )}>, b̄(z) = φτ (x0:τ−1)R(xτ−1, xτ ) . (44)
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Note that compared to (Srikant and Ying, 2019), we do not consider TD(λ) but (43). Consider the
following assumptions.

M1 The Markov kernel Q : X × X → R+ is irreducible and strongly aperiodic. There exist
cQ > 0, bQ > 0, δQ ∈ (1/2, 1], RQ ≥ 0, and Ṽ : X → [e,∞) such that by setting W̃ = log Ṽ ,
CQ = {x : W̃ (x) ≤ RQ}, C{

Q = {x : W̃ (x) > RQ}, we have

QṼ (x) ≤ exp[−cQW̃
δQ(x)]Ṽ (x)1C{

Q
(x) + bQ 1CQ

(x) . (45)

In addition, for any R ≥ 1, the level sets {x : W̃ (x) ≤ R} are (1, εQ,Rν)-small for Q, with
εQ,R ∈ (0, 1] and ν being a probability measure on (X,X ).

It follows from (Douc et al., 2018, Theorem 15.2.4) that the Markov kernel Q admits a unique
stationary distribution π0. Set the state-space as Z = Xτ+1 and the Markov kernel P is given by

P(x0:τ ; dx′0:τ ) =
∏τ
`=1 δx`(dx

′
`−1)Q(xτ ,dx

′
τ ) , (46)

for any z = x0:τ ∈ Xτ+1, where δx denotes the Dirac measure at x ∈ X. Define

V (x0:τ ) = exp
(
ι0
∑τ−1

i=0 (i+ 1)W̃ δQ(xi) + W̃ (xτ )
)
, (47)

where
ι0 = c

δQ
Q /(1 + τc

δQ
Q ) . (48)

Lemma 5 Assume M 1. Then the Markov kernel P has a unique invariant distribution given by
π(dx0:τ ) = π0(dx0)

∏τ
`=1 Q(x`−1,dx`). In addition, UE 1 is satisfied with V given by (47), where

the constants c,b, and R are defined in (126).

Proof Follows from Lemma 36 and Lemma 37.

Consider the following assumptions on ψ and R. Fix ε ∈ (0, 1).

M2 π0(ψψ>) is positive definite.

M3 (ε,K) There exist Cψ,CR,K > 0 such that ‖ψ(x)‖ ≤ Cψ W̃
βδQ/2(x) and

|R(x, x′)| ≤ CR,K eι0(W̃
δQ (x)+W̃

δQ (x′))/(2K) ,

where β < min(2δQ − 1, δQ/(1 + ε)) and δQ is given in M 1.

In the following, we show that under M 1–M 3, the TD(λ) algorithm with truncated eligibility trace
(42) satisfies the assumptions in Section 3. In this case,

Theorem 6 (Finite-time bound for TD(λ) (42)–(43)) Let K ≥ 8 and ε ∈ (0, 1). Assume M 1– M
3(ε,K). For any 2 ≤ p ≤ K/4, there exists α(0)

∞,p defined in (25) such that for any non-increasing
sequence (αk)k∈N∗ satisfying α1 ∈ (0, α

(0)
∞,p) and A4, z = x0:τ ∈ Xτ+1, and n ∈ N, it holds

E1/p
z [‖θn − θ?‖p] ≤ M0 Cst,2p e−(a/4)

∑n
`=1 α`V 1/(4p)(z) + (C

(0)
J,p + C

(0)
H,p)
√
αnV

2/K+1/(4p)(z),

where M0 = E1/(2p)
z [‖θ0 − θ?‖2p], C

(0)
J,p,C

(0)
H,p are defined in (33), (36), respectively, with

CA = (1 + γ) C2
ψ

(
ι−β0 ∨ 1

)
(1− λγ)−1, Cb,K =

1

2(1− λγ)

(
C2
ψ

{
βK

eι0

}β
+ C2

R,K

)
. (49)

13
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Additionally, we remark that the bound can be tightened through applying Theorem 4 if we
strengthen the stepsize condition A4 to A5.

Proof We apply Theorem 3. Lemma 5 shows that UE 1 is satisfied. Using definition (44) it is
straightforward to check that A 1(ε) and A 3(K) hold with CA and Cb,K given in (49). Detailed
calculations may be found in Lemma 38 and Lemma 39, respectively. Finally, A 2 follows from
Lemma 35 in the appendix.

Conclusions We have established the (V, q)-exponential stability of the sequence of random ma-
trices {Ā(Zk)}k∈N∗ under relaxed conditions on the Markov chain and the matrix functions. The
results are applied to obtain finite-time p-th moment bounds of LSA error, and a family of TD
learning algorithms.

14
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Appendix A. Formal statement and Proof for Example 1

The proof is by contradiction. Assume that (Zk)k∈N is not geometrically ergodic and let α > 0.
First for any ε > 0,

∫
Z Aε̄(x)dπ(x) = −ε[1 − π({1})] + π({1}). Then for any ε ∈ (0, ε̄), setting

ε̄ = π({1}), we get that
∫

Z Aε̄(z)dπ(z) > 0. In addition, we have by definition of (θε̄n)n∈N,

E
[
|θε̄n|
]
≥ θ0(1 + αε̄)nP(Y1 > n+ 1) . (50)

By (Douc et al., 2018, Theorem 15.1.5), (Zk)k∈N is not geometrically ergodic and for any η > 0,
E
[
(1 + η)Y1

]
= +∞. Therefore, lim supn→+∞[(1 + αε̄)nP(Y1 ≥ n)] = +∞, otherwise we

would obtain that for any ε ∈ (0, αε̄), E
[
(1 + ε)Y1

]
≤ supn∈N[(1 + αε̄)nP(Y1 ≥ n)]

∑+∞
k=1[(1 +

ε)/(1 + αε̄)]k < +∞, which is absurd. Applying this result to (50) completes the proof.

Appendix B. Super-Lyapunov drift conditions UE 1

We gather the technical results needed for the proof of our main theorems. Define

CR = {z ∈ Z , : W (z) ≥ R} , for any R ≥ 0 , (51)

ϕδ : z 7→ cW δ(z) . (52)

Lemma 7 Assume UE 1. Then for any n ∈ N, we have

PnV (z) ≤ λnV (z) + b /(1− λ) , PnV (z) ≤ e−ϕδ(z)V (z) + [b /(1− λ)]1CR1
(z) , (53)

where λ is defined in (5), CR in (51) and

R1 = inf{R ≥ R0 : exp(R− cRδ) > [b /(1− λ)2]} . (54)

Proof We first show the left-hand side inequality in (53). First, UE 1 and (5) shows that PV ≤
λV + b which implies by a straightforward induction that for any n ∈ N,

PnV (z) ≤ λnV (z) + b
n−1∑
k=0

λk . (55)

Using
∑n−1

k=0 λ
k ≤ (1− λ)−1 completes the proof.

17
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We now show the right-hand side inequality of (53). (55) applied for n− 1 ∈ N and (4) implies
that

PnV (z) ≤ λn−1PV (z) + b

n−2∑
k=0

λk

≤ e−ϕδ(z)λn−1V (z) + b
n−1∑
k=0

λk

≤ e−ϕδ(z)V (z)− e−ϕδ(z)(1− λ)V (z) + b[1− λ]−1 .

Then, using by definition of R1 that for any z ∈ C{
R1

, e−ϕδ(z)V (z) ≥ b[1 − λ]−2 completes the
proof.

Lemma 8 Assume UE 1. Then, for any γ > 0,

PW γ+1−δ(z) ≤W γ+1−δ(z)− cγW γ(z) + bγ 1CRγ
(z) , (56)

where the constants cγ, Rγ and bγ are given by: if γ ≤ δ,

Rγ = R0 , cγ = 1 ∧ [(γ+ 1− δ)c] , bγ = logγ+1−δ b , (57)

and if γ > δ,

Rγ = R0 ∨ (2(γ+ 1− δ)/c)1/δ ∨ c1/(δ−1) , bγ = logγ+1−δ
[
(b +eγ−δ) ∨ (exp(Rγ + eγ−δ))

]
cγ = 1 ∧ [(γ+ 1− δ)(1− cRδ−1

γ /2)γ−δ(c/2)] .
(58)

Proof We consider separately the cases γ ≤ δ and γ > δ.
If γ ≤ δ, the function z 7→ logγ+1−δ z is concave. Using Jensen’s inequality and UE 1, we get

that

PW γ+1−δ(z) ≤ (PW (z))γ+1−δ ≤ (W (z)− cW δ(z))γ+1−δ
1C{

0
(z) + logγ+1−δ(b)1C0(z)

= W γ+1−δ(z)(1− cW δ−1(z))γ+1−δ
1C{

0
(z) + logγ+1−δ(b)1C0(z) .

Note that UE1 implies that for any z ∈ C{
0, 1 ≤ PV (z) ≤ V (z)e−cW

δ(z) and therefore, cW δ−1(z) ≤
1 since δ ≤ 1. Then, Using that (1−x)γ+1−δ < 1−(γ+1−δ)x for all x ∈ [0, 1] since γ+1−δ ≤ 1
and cW δ−1(z) ≤ 1 on C{

0, we get that

W γ+1−δ(z)(1− cW δ−1(z))γ+1−δ
1C{

0
(z) ≤W γ+1−δ(z)− (γ+ 1− δ)cW γ(z) ,

which completes the proof for γ ≤ δ.
Consider now the case γ > δ and note that the function z 7→ logγ+1−δ z is concave on

[exp (γ− δ) ,+∞) and therefore ψγ : z 7→ logγ+1−δ(z + eγ−δ) is concave on R+. Using Jensen’s
inequality, we obtain

PW γ+1−δ(z) = P logγ+1−δ(V (z)) ≤ Pψγ ◦ V (z) ≤ ψγ [PV (z)] . (59)

18
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Now by UE 1 and a+ b ≤ a(b+ 1) for a, b ≥ 1, ec + 1 ≤ ec+1, we get

PV (z) + eγ−δ ≤ (exp(W (z)− cW δ(z)) + eγ−δ)1C{
0
(z) + (b +eγ−δ)1C0(z)

exp(W (z)− cW δ(z) + γ+ 1− δ)1C{
0
(z) + (b +eγ−δ)1C0(z)

≤ exp(W (z)− (c/2)W δ(z))1C{
Rγ

(z) + (b +eγ−δ) ∨ (exp(Rγ + eγ−δ))1CRγ
(z) ,

where we used for the last inequality that for any z 6∈ CRγ and the definitions (51), (58), W δ(z) ≥
2eγ−δ/c and Rγ ≥ R0. Using the previous result in (59), we get that

PW γ+1−δ(z) ≤
(
W (z)− (c/2)W δ(z)

)γ+1−δ
+ bγ 1CRγ

(z) , (60)

where bγ is given in (58). Note that (1 − x)γ+1−δ ≤ 1 − (γ + 1 − δ)(1 − cRδ−1
γ /2)γ−δx for all

x ∈ [0, cRδ−1
γ /2] since cRδ−1

γ /2 ≤ 1/2 by definition of Rγ (58). Therefore, using that on CRγ ,

we have 0 < cW δ−1(z)/2 ≤ cRδ−1
γ /2, we get

(
W (z)− (c/2)W δ(z)

)γ+1−δ
= W γ+1−δ(z){1 −

(c/2)W δ−1}γ+1−δ ≤ W γ+1−δ(z) − cγW γ(z). Plugging this result in (60) concludes the proof of
(56) for γ > δ.

Corollary 9 Assume UE 1. Then, for any γ > 0, it holds that π(W γ) ≤ bγ /cγ and π(V ) ≤
b/(1− λ). where bγ, cγ are given in Theorem 8.

Proof As mentioned previously (see (6)), P has a unique stationary distribution satisfying π(V ) <
+∞. Therefore, since ‖W‖V < +∞, we can take the integral in (56) and (53) with respect to π.
Rearranging terms completes the proof.

Note that UE 1 implies for any z ∈ Z,

PV (z) ≤ exp
(
W (z)− cW δ(z) + b̃1C0(z)

)
, (61)

where b̃ = log b + supr≥e{crδ − r}. Similarly, (53) implies for any h ∈ N and z ∈ Z,

PhV (z) ≤ exp
(
W (z)− cW δ(z) + b′ 1CR1

(z)
)
, (62)

where
b′ = log {b /(1− λ)}+ sup

r>0
{crδ − r} . (63)

Lemma 10 Assume UE 1. Let (αi)i∈N∗ be a non-increasing sequence, such that 0 < αi ≤ 1 for
any i ≥ 1. Then, for any z ∈ Z and n ∈ N,

Ez[exp{c
∑n−1

k=0 αkW
δ(Zk)}] ≤ exp {b̃

∑n−1
k=0 αk} exp {α1W (z)} ,

where b̃ = log b + supr≥e{crδ − r} and c in UE 1.
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Proof Define, for n ≥ 0,

Mn = exp{αnW (Zn) +
∑n−1

k=0 αk(cW
δ(Zk)− b̃1C0(Zk))} , (64)

with the convention
∑−1

k=0 = 0. Consider (Fn)n∈N, the canonical filtration: Fn = σ(Z0, . . . , Zn).
Then, we have for n ≥ 1,

E[Mn|Fn−1] = Mn−1 exp{−αn−1W (Zn−1) + αn−1(cW δ(Zn−1)− b̃1C0(Zn−1))}E[eαnW (Zn)|Fn−1] .

Using the Markov property, αn ≤ αn−1 ≤ 1, V ≥ 1, (61) and Jensen’s inequality, for n ≥ 1,

E[eαnW (Zn)|Fn−1] = PV αn(Zn−1) ≤ PV αn−1(Zn−1) ≤ (PV (Zn−1))αn−1

≤ exp{αn−1(W (Zn−1)− cW δ(Zn−1) + b̃1C0(Zn−1))} .

Therefore, (Mn)n≥0 is (Fn)n≥0-supermartingale, and Ez[Mn] ≤ Ez[M0] ≤ eα1W (z). We conclude
the proof upon noting that Ez[exp{c

∑n−1
k=0 αkW

δ(Zk)}] ≤ exp {b̃
∑n−1

k=0 αk}Ez[Mn].

Lemma 11 Assume UE 1. Let (αi)i∈N∗ be a non-increasing sequence, such that 0 < αi ≤ 1 for
any i ≥ 1. Then, for any z ∈ Z and n ∈ N, h ∈ N,

Ez[exp{c
∑n−1

k=0 αkW
δ(Zhk)}] ≤ exp{b′

∑n−1
k=0 αk} exp{α1W (z)} ,

where b′ is given in (63) and c in UE 1.

Proof The proof follows the same lines as Lemma 10, using (62) in place of (61).

Appendix C. Rosenthal inequality for Markov chains

In this section, we state a general weighted Rosenthal inequality for f -ergodic Markov chain. This
result is a simple adaptation of (Fort and Moulines, 2003, Proposition 12). In addition, we apply
this result to obtain bounds which will be useful in the proof of our main results.

In all this section, (Zk)k∈N is the canonical Markov chain corresponding to the Markov kernel
P on the filtered canonical space (ZN,Z⊗N, (Fn)n∈N), where Fn = σ(Z0, . . . , Zn) for n ∈ N.
We still denote by Pµ and Eµ the corresponding probability distribution and expectation with initial
distribution µ. In the case µ = δz , z ∈ Z, Pµ and Eµ are denoted by Pz and Ez .

Proposition 12 (Rosenthal’s inequality) Let p ≥ 2 and f,W ,V : Z → [1,+∞] such that
‖f‖W ≤ 1 and ‖W p‖V ≤ 1. Let (βk)k∈N be a real sequence. Assume that P has a unique
stationary distribution π and satisfies for any z ∈ Z,∑

n∈N
‖δzPn − π‖f ≤ CfW (z) ,

∑
n∈N
‖δzPn − π‖W p ≤ CW V (z) , (65)

for some constants Cf , CW < +∞. Then, for any g ∈ Lf∞, it holds that for any z ∈ Z,

Ez
[∣∣∣∣∑n

k=1
βk{g(Zk)− π(g)}

∣∣∣∣p]
≤ ‖g‖pf CRos,p

[{∑n

k=1
β2
k

}p/2
+

{∑n−1

k=1
|βk − βk+1|

}p
+ βp1 + βpn

]
V (z) ,

(66)
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where
CRos,p = 6pCpf{CW + π(W p)}(pp + 2) . (67)

Proof Let g ∈ Lf∞ and z ∈ Z. Without loss of generality, we assume that ‖g‖f ≤ 1. Denote
by Sn =

∑n
k=1 βk{g(Zk) − π(g)}. By (65), the function ĝ(x) =

∑
n∈N{Png(x) − π(g)} is well

defined, ĝ ∈ LW
∞,

‖ĝ‖W ≤ Cf (68)

and is a solution of the Poisson equation ĝ − Pĝ = g − π(g). Then, we have

Sn = Mn +R1,n +R2,n ,

Mn =
n−1∑
k=0

βk+1{ĝ(Zk+1)− Pĝ(Zk)}

R1,n =

n−1∑
k=1

(βk+1 − βk)Pĝ(Zk) , R2,n = β1Pĝ(Z0)− βnPĝ(Zn) .

Therefore, by Young inequality, we get that

Ez [|Sn|p] ≤ 3p−1{Ez [|Mn|p] + Ez [|R1,n|p] + Ez [|R1,n |p]} . (69)

We now bound each term on the right-hand side.
First, since ĝ ∈ LW

∞ and (65), note that (Mk)k∈N is a (Fn)n∈N-martingale with martingale
increment (∆Mk = βk+1{ĝ(Zk+1)−Pĝ(Zk)})k∈N. Therefore, using (Osekowski, 2012, Theorem
8.6) and Jensen inequality, we have

Ez[|Mn|p] ≤ ppEz[|
∑n−1

k=0 ∆M2
k |p/2]

≤ pp{
∑n−1

k=0 β
2
k+1}p/2−1

∑n−1
k=0 β

2
k+1Ez[|ĝ(Zk+1)− Pĝ(Zk)|p] .

Using (65) and Jensen inequality, we get

Ez[|Mn|p] ≤ 2p−1pp{
∑n−1

k=0 β
2
k+1}p/2−1

∑n−1
k=0 β

2
k+1Ez[|ĝ(Zk+1)|p + |Pĝ(Zk)|p]

≤ 2ppp{
∑n−1

k=0 β
2
k+1}p/2−1 ‖ĝ‖pW

∑n−1
k=0 β

2
k+1[|Ez[W (Zk+1)p]− π(W p)|+ π(W p)]

≤ 2ppp ‖ĝ‖pW {
∑n−1

k=0 β
2
k+1}p/2{CW V (z) + π(W p)} . (70)

Using (65) and Jensen inequality, we get that

Ez[|R1,n|p] ≤ {
∑n−1

k=1 |βk − βk+1|}p−1
∑n−1

k=1 |βk − βk+1|Ez [|Pĝ(Zk)|p]
≤ {
∑n−1

k=1 |βk − βk+1|}p ‖ĝ‖pW {CW V (z) + π(W p)} . (71)

Finally, by (65) and Young inequality, we get

Ez[|R2,n|p] ≤ 2p−1βp1 |Pĝ(z)|p + 2p−1βpnEz [|Pĝ(Zn)|p]
≤ 2p−1{βp1 + βpn} ‖ĝ‖

p
W {CW V (z) + π(W p)} .

(72)

Combining (68), (70), (71) and (72) in (69) completes the proof.
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Proposition 13 (Proposition 13, Fort and Moulines (2003)) Assume that P is irreducible and
aperiodic and satisfies for W, f : Z→ [1,+∞), ‖f‖W ≤ 1, b ∈ R+ and C ∈ Z ,

PW ≤W − f + b1C .

Assume in addition that C ∪ {f ≤ 2b} ⊂ D, where D is a (m, ε)-small set and supD W < +∞.
Then, for any distribution λ, µ on Z, λ(f), µ(f) < +∞, we have∑

n∈N ‖λPn − µPn‖f ≤ 8ε−1{bm+ supD W}+ 2{λ(W) + µ(W)} ,

Proposition 14 Assume UE 1.

a) For any γ > 0, the inequality (65) holds with f ← W γ, W ← W γ+1−δ/cγ and V ←
W p(γ+1−δ)+1−δ/[cpγcp(γ+1−δ)] and

Cf (γ) = ψ(γ) , CW (γ) = ψ(p(γ+ 1− δ)) (73)

where for any γ̃ > 0, ψ(γ̃) = 8εR̃γ̃
{bγ̃ /cγ̃mR̃γ̃

+ R̃γ+1−δ
γ̃ } + 2[bγ̃+1−δ /cγ̃+1−δ + 1], R̃γ̃ =

{2 bγ̃ /cγ̃}1/γ̃ ∨Rγ̃, and Rγ̃,bγ̃, cγ̃ are given in Theorem 8.

b) For any γ > 0 and p ≥ 1, (66) holds with f ←W γ, V ←W p(γ+1−δ)+1−δ and

CRos,p = 6pCpf (γ){CW (γ) + bp(γ+1−δ) /[c
p
γcp(γ+1−δ)]}(pp + 2)/[cγcp(γ+1−δ)] . (74)

where Cf (γ), CW (γ) are defined in (73).

Proof First note that b) is an easy consequence of a), Proposition 12 and Theorem 9.
We now show a). Let γ̃ > 0. Theorem 8 shows that

c−1
γ̃ PW γ̃+1−δ ≤ c−1

γ̃ W γ̃+1−δ −W γ̃ + bγ̃ /cγ̃1CRγ̃
.

Then, using that for anyR ≥ 0, {W ≤ R} is an (εR,mR)-small set for P under UE1, CRγ̃
∩{W γ̃ ≤

2 bγ̃ /cγ̃} ⊂ CRγ̃
, Proposition 13 and Theorem 9, we get that for any z ∈ Z,∑

n∈N
‖δzPn − π‖W γ̃ ≤ ψ(γ)W γ̃+1−δ(z)/cγ̃ ,

where ψ is defined by (73). Applying this result for γ̃ ← γ and γ̃ ← p(γ + 1 − δ) completes the
proof.

Proposition 15 Assume UE 1.

a) For any τ ≥ 1, the inequality (65) holds with f ← V 1/τ, W ← V 1/τ/(1 − λ1/τ) and V ←
V/[(1− λ)(1− λ1/τ)] and

Cf (τ) = φ(τ) , CW (τ) = φ(1) (75)

with for any τ̃ > 0, φ(τ̃) = 8εRτ̃
{b1/τ̃ /(1−λ1/τ̃)mRτ̃

+2 b1/τ̃ /(1−λ1/τ̃)}+2[b /(1−λ)+1],
Rτ̃ = log(R0) ∨ log[2τ̃ b /(1− λ1/τ̃)τ̃] and λ is defined by (5).
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b) For any p ≥ 1, (66) holds with f ← V 1/p, V ← V and

DRos,p = 6pCpf (p){CW (p) + b/(1− λ)}(pp + 2)/[(1− λ)(1− λ1/p)] , (76)

where Cf (p), CW (p) are defined in (75).

Proof First note that b) is an easy consequence of a), Proposition 12 and Theorem 9.
Let τ̃ ≥ 1. First, Jensen inequality, the fact that t 7→ t1/τ̃ is sub-additive on R+ and UE1 and the

definition of λ in (5) imply that PV 1/τ̃ ≤ λ1/τ̃V 1/τ̃+b1/τ̃
1C0 = V 1/τ̃−(1−λ1/τ̃)V 1/τ̃+b1/τ̃

1C0 .
Therefore, since λ ∈ [0, 1), C0 ∪ {V 1/τ̃ ≤ 2 b1/τ̃ /(1 − λ1/τ̃)} ⊂ CRτ̃

, using Proposition 13
and by Theorem 9, π(V 1/τ̃) ≤ π(V ) ≤ b/(1 − λ) we obtain that

∑
n∈N ‖δzPn − π‖V 1/τ̃ ≤

φ(τ)V 1/τ̃(z)/(1− λ1/τ) for any z ∈ Z. Applying this result twice for τ̃← τ and τ̃← 1 completes
the proof.

Lemma 16 Under assumptions of Theorem 3 for any 1 ≤ q ≤ K, z ∈ Z and j ∈ N

E1/q
z [‖Ã(Zj)‖q] ≤ C̄AV

1/K(z),

E1/q
z [‖b̄(Zj)− b‖q] ≤ C̄bV

1/K(z) ,
(77)

where
C̄A := (‖A‖ + dCA(βK/e)β{1 + b/(1− λ)}1/K) (78)

and
C̄b := (‖b‖ + dCb{1 + b/(1− λ)}1/K). (79)

Proof We first note that using

E1/q
z [‖Ã(Zj)‖q] ≤ ‖A‖ + E1/q

z [‖Ā(Zj)‖q] ≤ ‖A‖ + dCA sup
x≥1

logβ x

x1/K
{PjV q/K(z)}1/q

≤ (‖A‖ + dCA(βK)βe−β{1 + b/(1− λ)}1/K)V 1/K(z).

Similarly, one may prove the second statement of the lemma.

Appendix D. Proofs for Theorem 1

In this section, we provide the core lemmas that are employed for the proof of Theorem 1 in Sec-
tion 2.1.

D.1. Technical and preliminary results

Lemma 17 (Lyapunov Lemma) A matrix A is Hurwitz if and only if for any positive symmetric
matrix P = P> � 0 there is Q = Q> � 0 that satisfies the Lyapunov equation

A>Q+QA = −P .

In addition, Q is unique.
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Proof See (Poznyak, 2008, Lemma 9.1, p. 140).

Lemma 18 Assume that −A is a Hurwitz matrix. Let Q be the unique solution of the Lyapunov
equationA>Q+QA = I. Then, for any α ∈ [0, (1/2)‖A‖−2

Q ‖Q‖−1], we get ‖I− αA‖2Q ≤ (1−aα)

with a = (1/2)‖Q‖−1. In particular, for any α ∈ [0, (1/2)‖A‖−2
Q ‖Q‖−1], ‖I− αA‖ ≤ √κQ(1 −

aα/2), where κQ = λ−1
min(Q)λmax(Q). If in addition α ≤ ‖Q‖2 then 1− aα ≥ 1/2.

Proof For any x ∈ Rd \ {0}, we get

x>(I− αA)>Q(I− αA)x

x>Qx
= 1− α ‖x‖

2

x>Qx
+ α2x

>A>QAx

x>Qx

Hence, we get that for all α ∈ [0, (1/2)‖A‖−2
Q ‖Q‖−1],

1− α ‖x‖
2

x>Qx
+ α2x

>A>QAx

x>Qx
≤ 1− α‖Q‖−1 + α2‖A‖2Q ≤ 1− (1/2)‖Q‖−1α .

The proof is completed using that for any t ∈ [0, 1], (1 − t)1/2 ≤ 1 − t/2 and that for any matrix
A ∈ Rd×d, ‖A‖Q ≤ κ1/2

Q ‖A‖.

Lemma 19 Let α > 0 and (ui)i≥1 be a sequence of non-negative numbers. Then, for any n ∈ N,
n ≥ 2, and any ε ∈ (0, 1),

1 + αn
∏n
i=1 ui ≤ exp {α1+ε(1 + ε)−1

∑n
i=1 u

1+ε
i } .

Proof First note that for any β ≥ 1 and t ≥ 0, 1 ≤ t1/β(t−1 + 1) which implies that 1 + t ≤
exp (βt1/β). Using this inequality for β = n/(1 + ε) and the inequality of arithmetic and geometric
means, we get

1 + αn
∏n
i=1 ui ≤ exp ( n

1+εα
1+ε(

∏n
i=1 ui)

(1+ε)/n}) ≤ exp( n
1+εα

1+ε( 1
n

∑n
i=1 ui)

1+ε)

≤ exp (α
1+ε

1+ε

∑n
i=1 u

1+ε
i ) ,

where the last inequality follows from Jensen’s inequality.

Lemma 20 Let (F`)`≥0 be some filtration and a sequence of non-negative random variables
(ξ`)`≥0 is adopted to this filtration. Then, for any N ∈ N, p ∈ N, it holds

E

[
N∏
`=1

ξp`

]
≤
{
E
[ N∏
`=1

E[ξ2p
` |F`−1]

]}1/2

. (80)

Proof Denote for any k ∈ N, p ∈ N,

Bk,p = (
k∏
`=1

E[ξp` |F`−1])−1, B0,p := 1, yk,p = ξpkyk−1, y0,p := 1 .
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It is straightforward to check that for any p ∈ N,

E[Bk+1,pyk+1,p] = E[Bk+1,pE[ξpk+1|Fk]yk,p] = E[Bk,pyk,p] = · · · = E[B0,py0,p] = 1 .

This fact implies that

E

[
N∏
`=1

ξ`

]
= E[yN ] = E[yN,pB

1/2
N,2pB

−1/2
N,2p ]

≤ {E[yN,2pBN,2p]}1/2{E[B−1
N,2p]}

1/2 =

{
E
[ N∏
`=1

E[ξ2p
` |F`−1]

]}1/2

.

Hence, (80) is proved.

D.2. Core Lemmas

Lemma 21 Assume that the conditions of Theorem 1 holds. Then, for any ` ∈ {1, . . . , N}, and
p ≥ 1, (

1 + κ
1/2
Q ea‖R`‖

)p ≤ exp{pC(0)h2α2
j`−1+1} ,

where R` is given in (15) and

C(0) = (1/2)κ
1/2
Q ‖A‖

2 exp(‖A‖ + a) . (81)

Proof Let ` ∈ {1, . . . , N}, and p ≥ 1. Using the definition of R` and since (αi)i∈N is non-
increasing, we get

‖R`‖ ≤
h∑
r=2

(
h

r

)
αrj`−1+1‖A‖r ≤ α2

j`−1+1‖A‖2
h−2∑
r=0

(
h

r + 2

)
αrj`−1+1‖A‖r

≤ 2−1α2
j`−1+1h

2‖A‖2(1 + αj`−1+1‖A‖)h−2 ≤ 2−1α2
j`−1+1h

2‖A‖2 exp{αj`−1+1h‖A‖} ,

where we have used for the last two inequalities, the upper bounds
(
h
r+2

)
≤
(
h−2
r

)
(h2/2) for any

r ∈ {0, . . . , h − 2} and (1 + t) ≤ et for any t ≥ 0. It yields using that α∞,ph ≤ 1 that ‖R`‖ ≤
2−1α2

j`−1+1h
2‖A‖2e‖A‖ . The proof is then completed using the bound (1 + t) ≤ et for any t ≥ 0

again.

Lemma 22 Assume that the conditions of Theorem 1 holds. Then, for any ` ∈ {1, . . . , N}, and
p ≥ 1, almost surely it holds(

1 + κ
1/2
Q ea‖R̄`‖

)2p ≤ exp {2h+1pC(1)α1+ε
j`−1+1

∑j`
k=j`−1+1W

δ(Zk−m)} ,

where R̄` is defined by (15) and

C(1) = (κ
1/2
Q dea CA)1+ε/(1 + ε) . (82)
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Proof Let ` ∈ {1, . . . , N}, and p ≥ 1. Using the definition of R̄`, we consider the following
decomposition

R̄` =
∑h

r=2 R̄
(r)
` , R̄

(r)
` = (−1)r

∑
(i1,...,ir)∈I`r

(
∏r
u=1 αiu)Ar .

Then, using that (1 + a+ b) ≤ (1 + a)(1 + b) for a, b ≥ 0 and (αi)i∈N is non-increasing yields

(1 + κ
1/2
Q ea‖R̄`‖)2p ≤

∏h
r=2(1 + κ

1/2
Q ea‖R̄(r)

` ‖)
2p

≤
∏h
r=2

∏
(i1,...,ir)∈I`r

(1 + κ
1/2
Q eaαrj`−1+1

∏r
k=1 ‖Ā(Zik−m)‖)2p

Using Theorem 19, r ≥ 2 and ε ∈ (0, 1) in A1,

(1 + κ
1/2
Q ea‖R̄`‖)2p ≤

∏h
r=2

∏
(i1,...,ir)∈I`r

exp

(
2p(κ

1/2
Q ea)1+εα1+ε

j`−1+1

1+ε

∑r
u=1 ‖Ā(Ziu−m)‖1+ε

)

≤ exp

(
2p(κ

1/2
Q ea)1+εα1+ε

j`−1+1

1+ε

∑j`
k=j`−1+1 ‖Ā(Zk−m)‖1+ε

∑h
r=2

∑
(i1,...,ir)∈I`r

)

≤ exp

2h+1p(κ
1/2
Q ea)1+εα1+ε

j`−1+1

1 + ε

j∑̀
k=j`−1+1

‖Ā(Zk−m)‖1+ε

 .

The proof follows from A1 which implies that ‖Ā(z)‖1+ε ≤
∥∥Ā(z)

∥∥1+ε

F
≤ d1+ε C1+ε

A W δ(z), for
any z ∈ Z.

Under A1, define for n ∈ N, n ≥ 1, (αi)i∈N a non-increasing positive sequence,

rA = min{s ≥ 0 : β ≤ 2δ − 1− (1− δ)/s} , S̃n =
n∑
k=1

αk(Ā(Zk)−A) . (83)

Lemma 23 Assume that the conditions of Theorem 1 holds. For any n ∈ N∗, p ≥ 1 ∨ (rA/4),

E1/4p
z [(1 + κ

1/2
Q ea‖S̃n‖)4p] ≤ exp{C(2)

p α1n
1/2W δ(z)} ,

where rA, S̃n are defined in (83), and

C(2)
p = κ

1/2
Q eadCA(4CRos,4p)

1/4p , (84)

with CRos,4p given in (74).

Proof First by Minkowski’s inequality, we get

E1/4p
z [(1 + κ

1/2
Q ea‖S̃n‖)4p] ≤ 1 + κ

1/2
Q eaE1/4p

z [‖S̃n‖4p] . (85)

In addition, note that denoting by [S̃n]i,j , the (i, j)-th component of S̃n, using the Jensen inequality,
we get

Ez[‖S̃n‖4p] ≤ Ez[(
∑d

i1,i2=1[S̃n]2i1,i2)4p/2] ≤ d4p−2Ez[
∑d

i1,i2=1|[S̃n]i1,i2 |4p]

≤ d4p maxi1,i2∈{1,··· ,d} Ez[|[S̃n]i1,i2 |4p] . (86)
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Using UE1 and applying Proposition 14-b) with γ← β and using that (αi)i∈N is non-increasing,
we obtain that for any i1, i2 ∈ {1, . . . , N},

Ez[|[S̃n]i1,i2 |4p] ≤ CRos,4pC
4p
A (α4p

1 n
4p/2+3α4p

1 )W 4p(β+1−δ)+1−δ ≤ 4CRos,4pC
4p
A α

4p
1 n

2pW 4pδ(z) ,
(87)

using for the last inequality that W (z) ≥ 1 and 4p(β + 1 − δ) + 1 − δ ≥ 4pδ since 4p ≥ rA,
β ≤ 2δ − 1− (1− δ)/rA by (83). Combining (85)-(86)-(87), we get

E1/4p
z [(1 + κ

1/2
Q ea‖S̃n‖)4p] ≤ 1 + κ

1/2
Q ea[4CRos,4p]

1/4pdCAα1n
1/2W δ(z) .

Using that 1 + t ≤ et completes the proof.

Corollary 24 Assume that the conditions of Theorem 1 holds. For any n ∈ N∗, p ≥ 1,

E1/4p
z [(1 + κ

1/2
Q ea‖S̃n‖)4p] ≤ exp{C(2)

p α1n
1/2W δ(z)} ,

where rA, S̃n are defined in (83), and

C(2)
p = κ

1/2
Q eadCA(4CRos,4p̃)

1/4p̃ , p̃ = max(p, rA/4) , (88)

with CRos,4p̃ given in (74).

Proof The proof is a simple consequence of Lemma 23 and Jensen’s inequality.

D.3. Proof of Theorem 1

Details on the Step 3. We have all the elements to conclude the proof of the theorem. It is
essentially a question of adjusting the constants and combining the different bounds obtained above.
To simplify notations, we first introduce the auxiliary quantities:

D(1)
p = C(1)2hα1+ε

∞,p + C(2)
p h

1/2α∞,p

D(2)
p = C(0)hα∞,p + C(1)2hαε∞,pb̃ + C(2)

p h−
1/2(b̃− log(1− λ)).

Substituting (22), (23) into (13) and using that supi∈N∗ αi ≤ α∞,p, we get

E1/p
zm [‖Γm+1:n(Z1:n−m)‖p]

≤ κ exp(aα∞,ph) exp
{
− (a/2)

∑n
i=m+1 αi +D

(2)
p h

∑N
`=1 αj`−1+1

}
exp[D

(1)
p W (zm)] .

We set the block size and the upper bound to the step sizes as

h =
⌈(

12C(2)
p (b̃− log(1− λ))/a

)2⌉
, (89)

α∞,p = min

[
1

a
,

1

h
,

1

2‖A‖2Q‖Q‖
,

a

12hC(0)
,
( a

12C(1)2h

) 1
ε

,

(
c ∧ 1/2

2pC(1)2h

) 1
1+ε

,
c ∧ 1

4pC
(2)
p h1/2

]
. (90)

This yields D(1)
p ≤ 1/(2p), D(2)

p ≤ a/4. Together with h
∑N

`=1 αj`−1+1 ≤ α∞,p +
∑n

i=m+1 αi,
we get

E1/p
zm [‖Γm+1:n(Z1:n−m)‖p] ≤ κe5aα∞,ph/4 exp{−(a/4)

∑n
i=m+1 αi}V 1/(2p)(zm) . (91)

Combining (91), (10), and Jensen’s inequality yields the statement of the theorem with the constant

Cst,p = κ
1/2
Q exp (5aα∞,ph/4)

(
λm/(2p) + [b /(1− λ)]1/(2p)

)
. (92)
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Appendix E. Proofs of Section 3

This section provides the missing lemmas and proofs that were required in Section 3.

E.1. Technical lemmas

Lemma 25 Let a > 0 and (αk)k≥0 be a non-increasing sequence such that α0 < 1/a. Then

n+1∑
j=0

αj

n+1∏
l=j+1

(1− αla) =
1

a

{
1−

n+1∏
l=1

(1− αla)

}

Proof Let us denote uj:n+1 =
∏n+1
l=j (1−αla). Then, for j ∈ {1, . . . , n+ 1}, uj+1:n+1−uj:n+1 =

aαjuj+1:n+1. Hence,

n+1∑
j=0

αj

n+1∏
l=j+1

(1− αla) =
1

a

n+1∑
j=1

(uj+1:n+1 − uj:n+1) = a−1(1− u1:n+1) .

Lemma 26 Let b > 0 and (αk)k≥0 be a non-increasing sequence such that α0 < 1/(2b).

• Assume αk − αk+1 ≤ cα α
2
k+1 with cα ≤ b/2. Then for p ∈ (1, 2],

n+1∑
k=1

αpk

n+1∏
j=k+1

(1− bαj) ≤ (2/b)αp−1
n+1.

• Assume αk−αk+1 ≤ cα α
2
k+1, αk/Ak+1 ≤ (2/3) cα with cα ≤ b/4. We additionally assume

that α0 ≤ (2 cα)−1. Then for any p ∈ (1, 2], q ∈ [0, 1]

n+1∑
k=1

αpkA
q
k

n+1∏
j=k+1

(1− b)αj) ≤ (2/b)αp−1
n+1A

q
n+1.

Proof For the first part

n+1∑
k=1

αpk

n+1∏
j=k+1

(1− bαj) = αp−1
n+1

n+1∑
k=1

αk

n+1∏
j=k+1

(
αj−1

αj

)p−1

(1− bαj)

≤ √αn+1

n+1∑
k=1

αk

n+1∏
j=k+1

(1 + cα αj)(1− bαj)

≤ αp−1
n+1

n+1∑
k=1

αk

n+1∏
j=k+1

(1− (b/2)αj) ≤ (2/b)αp−1
n+1,
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where on the last step we used Lemma 25. For the second part, we first note that

Aj−1

Aj
≤ 1 +

α2
j−1

Aj
≤ 1 + (2/3) cα αj−1 ≤ 1 + (2/3) cα αj + (2/3) c2

α α
2
j ≤ 1 + cα αj .

Similarly to the first part,
n+1∑
k=1

αpkA
q
k

n+1∏
j=k+1

(1− bαj) = αp−1
n+1A

q
n+1

n+1∑
k=1

αk

n+1∏
j=k+1

(
αj−1

αj

)p−1(Aj−1

Aj

)q
(1− bαj)

≤ αp−1
n+1A

q
n+1

n+1∑
k=1

αk

n+1∏
j=k+1

(1 + cα αj)
2(1− bαj)

≤ αp−1
n+1A

q
n+1

n+1∑
k=1

αk

n+1∏
j=k+1

(1− (b/2)αj) ≤ (2/b)αp−1
n+1A

q
n+1,

where we also used Lemma 25.

To estimate moments of ‖Sj+1:n+1‖p that was defined in (40), we first derive an alternative
expression for the term. For this aim we prove the following lemma. Define

Dj:k :=

k∑
`=j

α`Ã(Z`).

Here we also assume that Dj:k = 0 if j > k. Recall that Sj:k = 0 if j > k and Gj:k = 0 if
j > k + 1.

Lemma 27 For any 0 ≤ k ≤ n

Sk+1:n+1 = −
n+1∑
`=k+1

α`G`+1:n+1AD`:n+1Gk+1:`−2 +

n+1∑
`=k+1

α`−1G`+1:n+1D`:n+1AGk+1:`−2.

Proof By definition of Dk:n+1

Sk+1:n+1 = −
n+1∑
`=k+1

G`+1:n+1(D`:n+1 −D`+1:n+1)Gk+1:`−1.

Simple algebraic manipulations lead to

Sk+1:n+1 = −
n+1∑
`=k+1

G`+1:n+1D`:n+1Gk+1:`−1 +
n+1∑
`=k+1

G`:n+1D`:n+1Gk+1:`−2

= −
n+1∑
`=k+1

(G`+1:n+1 −G`:n+1)D`:n+1Gk+1:`−2

−
n+1∑
`=k+1

G`:n+1D`:n+1(Gk+1:`−1 −Gk+1:`−2).

Calculating the difference in the brackets we obtain the statement of this lemma.
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Lemma 28 Under assumptions of Theorem 3 for any 2 ≤ p ≤ K and z ∈ Z,

E1/p
z [‖D`:n+1‖p] ≤ 4dC

1/p
Ros,p(CA +‖A‖)V 1/K(z)A1/2

`:n+1.

Proof Proof follows from Proposition 12 with f = W = V 1/K,V = V p/K.

Lemma 29 Under assumptions of Theorem 3 for any 2 ≤ p ≤ K and z ∈ Z,

E1/p
z [‖Sk+1:n+1‖p] ≤ CS,p

n+1∑
`=k+1

α`A
1/2
`:n+1

n+1∏
j=k+1

(1− aαj)1/2V 1/K(z),

where
CS,p := 24κQdC

1/p
Ros,p(CA +‖A‖)‖A‖. (93)

Proof Recall that

Sk+1:n+1 = −
n+1∑
`=k+1

α`G`+1:n+1AD`:n+1Gk+1:`−2 +
n+1∑
`=k+1

α`−1G`+1:n+1D`:n+1AGk+1:`−2.

Applying Minkowski’s inequality and Lemma 28 we get

E1/p
z [‖Sk+1:n+1‖p] ≤ CS,p

n+1∑
`=k+1

α`

n+1∏
j=`+1

√
1− aαj

`−1∏
j=k+1

√
1− aαjA1/2

`:n+1V
1/K(z).

Lemma 30 Denote Fk := σ{Zs, s ≥ k}, k ≥ 0. Let Ak be a sequence of d × d random matrices
such that Ak is Fk-measurable. Assume that Z∗k is independent of Fk. Then

E
1
p
z

[∥∥ n∑
k=1

Akε̄(Z
∗
k)
∥∥p

2

]
≤ CB,p

( n∑
k=1

E
2
p [‖Ak‖p]

)1/2
V 1/K(z),

where

CB,p := d3/2

{
2BV Cε̄√

1− ρ
+ 2C̄ε̄(18

√
2p)

}
. (94)

Proof We first reduce the problem to univariate one. Applying Minkowski’s inequality we get

E1/p
z

[∥∥ n∑
k=1

Akε̄(Z
∗
k)
∥∥p

2

]
= E1/p

z

[∣∣ d∑
`1=1

{ d∑
`2=1

n∑
k=1

[Ak]`1`2 [ε̄(Z∗k)]`2
}2∣∣p/2]

≤
{ d∑
`1=1

E2/p
z

[∣∣ d∑
`2=1

n∑
k=1

[Ak]`1`2 [ε̄(Z∗k)]`2
∣∣p]}1/2

≤
{ d∑
`1=1

{ d∑
`2=1

E1/p
z

[∣∣ n∑
k=1

[Ak]`1`2 [ε̄(Z∗k)]`2
∣∣p]}2}1/2

.
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Consider

I := E1/p
z

[∣∣ n∑
k=1

[Ak]`1`2 [ε̄(Z∗k)]`2
∣∣p].

We decompose it into two parts, I ≤ I1 + I2,

I1 := E
1
p
z

[∣∣ n∑
k=1

[Ak]`1`2([ε̄(Z∗k)]`2 − Ez[[ε̄(Z∗k)]`2 ])
∣∣p],

I2 := E
1
p
z

[∣∣ n∑
k=1

[Ak]`1`2Ez[[ε̄(Z
∗
k)]`2 ]

∣∣p]
The term I2 may be estimated as follows

|I2| ≤ 2BV Cε̄ E
1
p
z

[∣∣ n∑
k=1

[Ak]`1`2ρ
k
∣∣p]V 1/K(z)

≤ 2BV Cε̄√
1− ρ

E
1
p
z

[∣∣ n∑
k=1

[Ak]
2
`1`2

∣∣p/2]V 1/K(z)

≤ 2BV Cε̄√
1− ρ

{ n∑
k=1

E
2
p
z [|[Ak]`1`2 |p]

}1/2

V 1/K(z)

Applying Burkholder’s inequality, see (Hall and Heyde, 1980, Theorem 2.10), Minkowski’s
inequality and lemma 16 we obtain

E
1
p
[∣∣ n∑
k=1

[Ak]`1`2 [ξk]`2
∣∣p] ≤ (18

√
2p)E

1
p

[{ n∑
k=1

|[Ak]`1`2 |2([ε̄(Z∗k)]`2 − Ez[[ε̄(Z∗k)]`2 ])2

}p/2]

≤ 2C̄ε̄(18
√

2p)

{ n∑
k=1

E
2
p [|[Ak]`1`2 |p]

}1/2

V 1/K(z)

Finally,

E
1
p
z

[∥∥ n∑
k=1

Akε̄(Z
∗
k)
∥∥p

2

]
≤ CB,p

( n∑
k=1

E
2
p [‖Ak‖p]

)1/2
V 1/K(z).

E.2. Proof of Theorem 4

Define the following constraint on the step size

α(1)
∞,p := α∞,2p ∧ ρ ∧ e−1 ∧ (2 cα)−1, (95)

where α∞,2p and ρ are defined in (90) and (6) respectively, and cα is from A 5. Let us re-state
Theorem 4 as follows.
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Theorem 31 Let K ≥ 32 and assume UE 1, A1, A2, and A3. For any 2 ≤ p ≤ K/16, any non-
increasing sequence (αk)k∈N satisfying α0 ∈ (0, α

(1)
∞,p) and such that αk ≡ α or A5 holds, z ∈ Z,

n ∈ N, it holds

E1/p
z [‖H(0)

n ‖p] ≤ V 3/K+9/(16p)(z)

{
C

(f)
p α

√
log(1/α) αn ≡ α,

C
(d)
p

√
αnAn log(1/αn) under A5,

(96)

where the constants C
(f)
p ,C

(d)
p are defined as

C(f)
p := C

(f)
H,p + C

(1,f)
J,p , C(d)

p := C
(d)
H,p + C

(1,d)
J,p . (97)

Lemma 32 Under conditions of Theorem 31:

1. If the step sizes are constant αk ≡ α, then

E
1
p
z [‖J (1)

n ‖p] ≤ C
(1,f)
J,p α

√
log(1/α)V

2
K

+ 1
4p (z), (98)

where C
(1,f)
J,p is defined in (111).

2. If the step sizes αk, k ∈ N, satisfy A5, then

E
1
p
z [‖J (1)

n ‖p] ≤ C
(1,d)
J,p

√
αnAn

√
log(1/αn)V

2
K

+ 1
4p (z), (99)

where C
(1,d)
J,p is defined in (113).

Lemma 33 Under conditions of Theorem 31:

1. If the step sizes are constant αk ≡ α, then

E
1
p
z [‖H(1)

n ‖p] ≤ C
(f)
H,p α

√
log(1/α)V

3
K

+ 9
16p (z), (100)

where C
(f)
H,p is defined in (115).

2. If the step sizes αk, k ∈ N, satisfy A5, then

E
1
p
z [‖H(1)

n ‖p] ≤ C
(d)
H,p

√
αnAn

√
log(1/αn)V

3
K

+ 9
16p (z), (101)

where C
(d)
H,p is defined in (117).

Proof [Proof of Lemma 32] For the second term J
(1)
n , solving the recursion in (38) yields the double

summation:

J
(1)
n+1 = −

n+1∑
k=1

αkGk+1:n+1Ã(Zk)J
(0)
k−1 = −

n+1∑
k=1

αk

k−1∑
j=1

αjGk+1:n+1Ã(Zk)Gj+1:k−1ε̄(Zj).

Changing the order of summation gives

J
(1)
n+1 = −

n∑
j=1

αj

{ n+1∑
k=j+1

αkGk+1:n+1Ã(Zk)Gj+1:k−1

}
ε̄(Zj) =

n∑
j=1

αjSj+1:n+1ε̄(Zj), (102)
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where for j ≤ n we have defined

Sj:n := −
n∑
k=j

αkGk+1:nÃ(Zk)Gj:k−1.

Fix a constant m ≥ 1 (to be determined later), we can further rewrite Sj+1:n+1 as

Sj+1:n+1 = −
j+m∑
k=j+1

αkGk+1:n+1Ã(Zk)Gj+1:k−1 −
n+1∑

k=j+m+1

αkGk+1:n+1Ã(Zk)Gj+1:k−1

= Gj+m+1:n+1Sj+1:j+m + Sj+m+1:n+1Gj+1:j+m.

Let N := bn/mc. In these notations, we can express J (1)
n+1 as the sum of three terms:

J
(1)
n+1 =

(m−1)N∑
j=1

αjGj+m+1:n+1Sj+1:j+mε̄(Zj)︸ ︷︷ ︸
=T1

+

(m−1)N∑
j=1

αjSj+m+1:n+1Gj+1:j+mε̄(Zj)︸ ︷︷ ︸
=T2

+

n∑
j=(m−1)N+1

αjSj+1:n+1ε̄(Zj)︸ ︷︷ ︸
=T3

.

Denote C̄ε̄ := C̄A‖θ?‖ + C̄b. By Lemma 16 for any 1 ≤ q ≤ K,

E
1
q
z [‖ε̄(Zj)‖q] ≤ C̄ε̄V

1/K(z). (103)

Let us consider the first term T1. By the Minkowski inequality, Lemma 16 and Lemma 29 (see the
definition for CS,p in (93))

E1/p
z [‖T1‖p] ≤

√
κQC̄ε̄ CS,p

(m−1)N∑
k=1

αk

k+m∑
`=k+1

α`A
1/2
`:k+m

n+1∏
j=k+1

√
1− aαjV 2/K(z)

≤ √κQmC̄ε̄ CS,p

(m−1)N∑
k=1

αk

k+m∑
`=k+1

α2
`

n+1∏
j=k+1

√
1− aαjV 2/K(z)

≤ √κQmC̄ε̄ CS,p

n+1∑
`=1

α2
`

n+1∏
j=`+1

√
1− aαj

∑̀
k=1

αk
∏̀

j=k+1

√
1− aαjV 2/K(z)

≤ C1

√
mαn+1V

2/K(z),

(104)

where we have defined
C1 := 8a−2C̄ε̄ CS,p

√
κQ.

Similar bound holds for T3,

E
1
p
z [‖T3‖p] ≤ C1

√
mαn+1V

2/K(z). (105)
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The second term T2 may be rewritten as T21 + T22, where

T21 :=
N−1∑
k=0

m∑
i=1

αkm+iS
(1)
(k+1)m+i+1:n+1Gkm+i+1:(k+1)m+iε̄(Z

∗
km+i),

T22 :=

N−1∑
k=0

m∑
i=1

αkm+iS
(1)
(k+1)m+i+1:n+1Gkm+i+1:(k+1)m+i(ε̄(Zkm+i)− ε̄(Z∗km+i)).

In the above, the set of r.v. Z∗km+i is constructed for each i ∈ [1,m], with {Z∗km+i}
N−1
k=0 and the

following properties

1. Z∗km+i is independent of Fn+1
(k+1)m+i := σ{Z(k+1)m+i, . . . , Zn+1};

2. Pz(Z∗km+i 6= Zkm+i) ≤ 2BV ρ
mV (z);

3. Z∗km+i and Zkm+i have the same distribution,

(106)

where BV , ρ are defined in (6). The existence of the r.v.s Z∗km+i is guaranteed by Berbee’s lemma,
see e.g (Rio, 2017, Lemma 5.1). We also exploit the fact the V -uniformly ergodic Markov chains
are a special instance of β-mixing processes. We control β-mixing coefficient via total variation
distance; see (Douc et al., 2018, Theorem F.3.3).

To analyze T21 we use Lemma 30

E1/p
z [‖T21‖p] ≤

m∑
i=1

E
1
p
z

[∥∥∥∥N−1∑
k=0

αkm+iS(k+1)m+i+1:n+1Gkm+i+1:(k+1)m+iε̄(Z
∗
km+i)

∥∥∥∥p]

≤ CB,p
√
κQ

m∑
i=1

(N−1∑
k=0

α2
km+iE

2
p [‖S(k+1)m+i+1:n+1‖p]

(k+1)m+i∏
`=km+i+1

(1− aα`)
)1/2

V 1/K(z)

≤ CB,p
√
κQm

( n+1∑
k=1

α2
kE

2
p [‖Sk+m+1:n+1‖p]

k+m∏
`=k+1

(1− aα`)
)1/2

V 1/K(z),

where CB is defined in (94). Applying Lemma 29 we may estimate the term in the brackets by

4(CS,p)
2

a2

n+1∑
k=1

α2
k

n+1∑
`=k+1

α`A`:n+1

n+1∏
j=`+1

√
1− aαj

∏̀
j=k+1

(1− aαj)V 2/K(z)

≤
4(CS,p)

2

a2

n+1∑
`=1

α`A`:n+1

n+1∏
j=`+1

√
1− aαj

∑̀
k=1

α2
k

n+1∏
j=`+1

(1− aαj)V 2/K(z)

≤
16(CS,p)

2

a2

n+1∑
`=1

α2
`A`:n+1

n+1∏
j=`+1

√
1− aα`V 2/K(z).

Finally

E1/p
z [‖T21‖p] ≤ C2

√
m

{ n+1∑
k=1

α2
kAk:n+1

∏̀
`=k+1

√
1− aα`

}1/2

V 2/K(z), (107)
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where
C2 := 4a−1 CB,p CS,p

√
κQ.

For the term T22 we use Minkowski’s inequality

E1/p
z [‖T22‖p] ≤

√
κQ

N−1∑
k=0

m∑
i=1

αkm+iE
1
2p [‖S(1)

(k+1)m+i+1:n+1‖
2p]

×
(k+1)m+i∏
`=km+i+1

√
1− aα`E

1
2p
z [‖ε̄(Zkm+i)− ε̄(Z∗km+i))‖2p].

Using definition of Z∗km+i and and the Cauchy-Schwartz inequality

E1/(2p)
z [‖ε̄(Zkm+i)− ε̄(Z∗km+i))‖2p]

= E1/(2p)
z [‖ε̄(Zkm+i)− ε̄(Z∗km+i))1{Z∗km+i 6= Zkm+i}‖2p]

≤ 2E1/(4p)
z [‖ε̄(Zkm+i)‖4pP1/(4p)

z (Z∗km+i 6= Zkm+i)

≤ 4C̄ε̄B
1/(4p)
V ρm/(4p)V 1/(4p)+1/K(z),

(108)

where we used (106). The last two inequalities, Lemma 29 and Lemma 25 imply

E1/p
z [‖T22‖p] ≤ 4C̄ε̄B

1/(4p)
V ρ̄m

n+1∑
k=1

αk

n+1∑
`=k+1

α`A
1/2
`:n+1

n+1∏
`=k+1

√
1− aα`V 1/(4p)+2/K(z)

≤ C3 ρ̄
m
n+1∑
`=1

α`A
1/2
`:n+1

n+1∏
j=`+1

√
1− aαjV 1/(4p)+2/K(z),

(109)

where
C3 := 8a−1κ

1/2
Q CS,p C̄ε̄B

1/(4p)
V , ρ̄ := ρ1/(4p).

Bounds (104), (105), (107), (109) together imply

E1/p
z [‖J (1)

n+1‖
p] ≤ 3 C1

√
mαn+1V

2/K(z) + C2

√
m

{ n+1∑
k=0

α2
kAk:n+1

n+1∏
`=k+1

√
1− aα`

}1/2

V 2/K(z)

+ C3 ρ̄
m
n+1∑
k=1

αkA
1/2
k:n+1

n+1∏
`=k+1

√
1− aα`V 1/(4p)+2/K(z).

We distinguish two cases:

1. αk ≡ α for any k ∈ N. Then

E
1
p
z [‖J (1)

n+1‖
p] ≤ 2 C1

√
mαV 2/K(z) + C2

√
mα2

{ n+1∑
k=0

(n− k + 2)(1− aα)(n−k+1)/2

}1/2

V 2/K(z)

+ C3 α
2ρ̄m

n+1∑
k=1

√
n− k + 2(1− aα)(n−k+1)/2V 1/(4p)+2/K(z)

≤ C4

√
mαV 1/(4p)+2/K(z),
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where
C4 := 2 C1 +2

√
e C2 /a+

√
2πe C3 /a

3/2

and we took m such that

ρ̄m ≤
√
α, i.e. m =

⌈
1

2

log(1/α)

log(1/ρ̄)

⌉
.

We obtain
E

1
p
z [‖J (1)

n+1‖
p] ≤ C

(1,f)
J,p α log1/2(1/α)V 1/(4p)+2/K(z), (110)

where
C

(1,f)
J,p := 2

√
pC4 log−1/2(1/ρ). (111)

2. Assume that A5 is satisfied. Then we apply Lemma 26 and obtain

E
1
p
z [‖J (1)

n+1‖
p] ≤ C5

√
m
√
αn+1An+1V

1/(4p)+2/K(z),

where
C5 := (3 C1 +2 C2 /

√
a+ 4 C3 /a)(

√
cα + 1)

and

m =

⌈
1

2

log(1/αn+1)

log(1/ρ̄)

⌉
.

In both cases, we have

E
1
p
z [‖J (1)

n+1‖
p] ≤ C

(1,d)
J,p

√
αn+1An+1

√
log(1/αn+1)V 1/(4p)+2/K(z), (112)

where
C

(1,f)
J,p := 2

√
pC5 log−1(1/ρ). (113)

Proof [Proof of Lemma 33] To estimate H(1)
n we rewrite it as follows

H
(1)
n+1 = −

n+1∑
`=1

α`Γ`+1:n+1Ã(Z`)J
(1)
`−1.

Using Minkowski’s and Cauchy-Schwarz inequality,

E1/p
z [‖H(1)

n+1‖
p] ≤

n+1∑
`=1

α`E1/(2p)
z [‖Γ`+1:n+1‖2p]E1/(4p)

z [‖Ã(Z`)‖4p]E1/4p
z [‖J (1)

`−1‖
4p].

We apply Theorem 1 to estimate E1/(2p)
z [‖Γ`+1:n+1‖2p] and Lemma 16 to estimate E1/(4p)

z [‖Ã(Z`)‖4p].
These bounds lead

E1/p
z [‖H(1)

n+1‖
p] ≤ C̄A Cst,2p

n+1∑
`=1

α`e
−(a/4)

∑n+1
k=`+1 αkE1/(4p)

z [‖J (1)
k−1‖

4p]V 1/K+1/(4p)(z).

We again consider two cases:
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1. αk ≡ α for any k ∈ N. Then applying (110) we get

E
1
p
z [‖H(1)

n+1‖
p] ≤ C

(1,f)
J,p C̄A Cst,2p α

2 log1/2(1/α)

n+1∑
k=1

e−αa(n−k+1)/4V 3/K+9/(16p)(z).

This expression may be simplified. We come to the inequality

E
1
p
z [‖H(1)

n+1‖
p] ≤ C

(f)
H,p α

√
log(1/α)V 3/K+9/(16p)(z), (114)

where
C

(f)
H,p := 8 C

(1,f)
J C̄A Cst,2p /a. (115)

2. Assume A5, then we use (112) and inequality e−x ≤ 1− x/2 valid for 0 ≤ x ≤ 1,

E
1
p
z [‖H(1)

n+1‖
p] ≤ C

(1,d)
J,p C̄A Cst,2p(1 + cα α

(2)
∞,p)

√
log(1/αn+1)

×
n+1∑
k=1

αke
−(a/4)

∑n+1
`=k+1 α`

√
αkAkV 3/K+9/(16p)(z)

≤ C
(1,d)
J,p C̄A Cst,2p(1 + cα α

(2)
∞,p)

√
log(1/αn+1)

×
n+1∑
k=1

αk
√
αkAk

n∏
`=k+1

(1− (a/8)α`)V
3/K+9/(16p)(z).

Applying Lemma 26 we get

E
1
p
z [‖H(1)

n+1‖
p] ≤ C

(d)
H,p

√
αn+1An+1

√
log(1/αn+1)V 3/K+9/(16p)(z), (116)

where
C

(d)
H,p := 16 C

(1,d)
J C̄A Cst,2p(1 + cα α

(2)
∞,p)/a. (117)

Appendix F. Temporal-Difference Learning

We preface the proof by a a well-known elementary sufficient condition for a matrix −A to be
Hurwitz. We give the proof for completeness.

Lemma 34 Let A be a d × d matrix. Assume that for all x ∈ Rd, x>Ax > 0, then for any
` ∈ {1, . . . , d}, Reλ`(A) > 0, where λ`(A), ` ∈ {1, . . . , d} are the eigenvalues of A.

Proof Fix ` = 1, . . . , d and let λ = λ`(A) = µ + iν and z = x + iy be the eigenvector of A
corresponding to λ. Then

(A− λI)(x+ iy) = (A− µI)x+ νy + i(−νx+ (A− µI)y) = 0.

This implies that {
x>(A− µI)x = −νx>y
y>(A− µI)y = νy>x.
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Taking the sum of these equations we get x>(A− µI)x+ y>(A− µI)y = 0, or

µ =
x>Ax+ y>Ay

x>x+ y>y
> 0.

Recall that,

A =

τ−1∑
`=0

Eπ0 [ψ(Xτ−1−`){ψ(Xτ−1)− γψ(Xτ )}>] , (118)

for τ ∈ N∗,

Lemma 35 Assume M 2. Then for any ` = 1, . . . , d

Reλ`(A) > 0. (119)

Proof We show that x>Ax > 0 for any x ∈ Rd and then apply Lemma 34. Fix x ∈ Rd and denote

ρ(`) = Eπ0 [x>ψ(X0)ψ>(X`)x]{Eπ0 [x>ψ(X0)ψ(X0)>x]}−1.

Then

x>Ax = Eπ0 [x>ψ(X0)ψ(X0)>x]

{τ−1∑
`=0

(λγ)`(ρ(`)− γρ(`+ 1))

}
.

The sum in the brackets could be rewritten as

τ−1∑
`=0

(λγ)`(ρ(`)− γρ(`+ 1)) = 1− γ
{

(1− λ)
τ−1∑
`=1

(λγ)`−1ρ(`) + (λγ)τ−1ρ(τ)
}
.

Since by the Cauchy-Schwartz inequality |ρ(`)| ≤ 1, we obtain

τ−1∑
`=0

(λγ)`(ρ(`)− γρ(`+ 1)) ≥ 1− γ
{

(1− λ)
τ−1∑
`=1

(λγ)`−1 + (λγ)τ−1
}

= 1− γ
{

(1− λ)(1− (λγ)τ−1)(1− λγ)−1 + (λγ)τ−1
}

=
1− γ

1− λγ
{1− (λγ)τ}.

Finally,

x>Ax ≥ 1− γ
1− λγ

{1− (λγ)τ}Eπ0 [x>ψ(X0)ψ(X0)>x] > 0,

where we applied M 2.

Lemma 36 Assume M 1. Then the Markov kernel P defined in (46), is irreducible and aperiodic.
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Proof Recall that the Markov kernel P is irreducible if it admits an accessible small set. We are
going to construct such set.

Since the Markov kernel Q is strongly aperiodic, it admits an accessible (1, εν)-small set C
with ν(C) > 0 (see (Douc et al., 2018, Definition 9.3.5)). Let us take C̃ = X × · · · × X × C and
check that it is accessible and small for P. Note that, for k ≥ τ ,

P(x−τ ,...,x0)(Zk ∈ C̃) = Px0(Xk−τ ∈ C) = Qk−τ (x0, C) .

Since C is accessible for Q, for any x0 ∈ X we can choose k, such that Qk−τ (x0, C) > 0, showing
that C̃ is accessible for P. To check that C̃ is small, note that for any D1, . . . , Dτ+1 ∈ X , and
(x−τ , . . . , x0) ∈ C̃,

Pτ+1((x−τ , . . . , x0), D1 × · · · ×Dτ+1) =

∫ τ∏
k=0

Q(xk, dxk+1)

τ+1∏
k=1

1Dk(xk)

≥
∫ τ∏

k=0

Q(xk,dxk+1)
τ+1∏
k=1

1Dk∩C(xk)
(a)

≥ ετ+1
τ+1∏
k=1

ν(Dk∩C) ≥
(
εν(C)

)τ+1
νC(D1×· · ·×Dτ+1) ,

where (a) follows from (τ + 1) applications of the fact that C is (1, εν) small for Q and

νC(D1 × · · · ×Dτ+1) =
τ+1∏
k=1

ν(Dk ∩ C)/ν(C) . (120)

Hence, C̃ is
(
τ + 1, (εν(C))τ+1νC

)
-small and accessible. This implies that the Markov kernel P is

irreducible. To check that P is aperiodic, we first note that, due to (Douc et al., 2018, Lemma 9.3.3)),
there exists such n0 ∈ N, that for any k ≥ n0, set C is (k, εkν)-small for Q with εk > 0. Hence,
for any k ≥ n0 + τ ,

inf
x−τ :0∈C̃

Pk(x−τ :0, C̃) = inf
x0∈C

Px0(Xk−τ ∈ C) ≥ εk−τν(C) > 0 ,

yielding that the Markov kernel P is aperiodic.

Lemma 37 Assume M 1. Then the Markov kernel P (see (46)) satisfies UE 1 with function V (x0:τ )
defined in (47) and the constants c, b, and R given in (126). Moreover, for any R ≥ 1 the sublevel
sets {x0:τ : W (x0:τ ) ≤ R} are

(
τ + 1, (εRν(CR))τ+1νCR

)
-small with respect to measure νCR

defined in (127).

Proof Let us introduce the function Vι(x0, . . . , xτ ) = eιcQ
∑τ−1
i=0 (i+1)W̃

δQ (xi)+W̃ (xτ ) where cQ is
defined in M 1 and ι ∈ (0, 1/τ) is a parameter to be chosen later. Then

PVι(x0:τ ) =

∫
· · ·
∫

eιcQ
∑τ−1
i=0 (i+1)W̃

δQ (x′i)eW̃ (x′τ )

{τ−1∏
i=0

δxi+1(dx′i)

}
Q(xτ ,dx

′
τ )

(a)

≤
∫
· · ·
∫

eιcQ
∑τ−1
i=0 (i+1)W̃

δQ (x′i)

(
e−cQW̃

δQ (xτ )Ṽ (xτ ) + bQ

){τ−1∏
i=0

δxi+1(dx′i)

}
= eιcQ

∑τ−1
i=1 iW̃

δQ (xi)e−(1−ιτ)cQW̃
δQ (xτ )Ṽ (xτ ) + bQ eιcQ

∑τ
i=1 iW̃

δQ (xi)

= e−ιcQ
∑τ−1
i=0 W̃

δQ (xi)−(1−ιτ)cQW̃
δQ (xτ )Vι(x0:τ ) + bQ eιcQ

∑τ
i=1 iW̃

δQ (xi) ,
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where (a) follows from UE 1. Now we select ι in order to ensure that

e−ιcQ
∑τ−1
i=0 W̃

δQ (xi)−(1−ιτ)cQW̃
δQ (xτ ) ≤ e−c̃W

δQ
ι (x0:τ )

for some constant c̃ > 0 and Wι(x0:τ ) = log Vι(x0:τ ). For this purpose, we first notice that

W
δQ
ι (x0:τ ) ≤

τ−1∑
i=0

((i+ 1)ιcQ)δQW̃ δQ(xi) + W̃ δQ(xτ )

=

∑τ−1
i=0 (1− ιτ)cQ((i+ 1)ιcQ)δQW̃ δQ(xi) + (1− ιτ)cQW̃

δQ(xτ )

(1− ιτ)cQ
.

Now we select ι satisfying
(1− ιτ)(τιcQ)δQ ≤ ι . (121)

Since τι < 1, it is enough to choose ι = ι0, where ι0 satisfies equation (1− ι0τ)c
δQ
Q = ι0, that is,

ι0 =
c
δQ
Q

1 + τc
δQ
Q

. (122)

Then, setting c̃ = (1− τι0)cQ = cQ/(1 + τc
δQ
Q ), we get

c̃W
δQ
ι0 (x0:τ ) ≤ ι0cQ

τ−1∑
i=0

W̃ δQ(xi) + c̃W̃ δQ(xτ ) .

From now on we fix ι = ι0 defined in (122) and for ease of notations we write V (x0:τ ) =
Vι0(x0:τ ), W (x0:τ ) = Wι0(x0:τ ). Then it holds

PV (x0:τ ) ≤ e−c̃W
δQ (x0:τ )V (x0:τ ) + bQ eι0cQ

∑τ
i=1 iW̃

δQ (xi) . (123)

Moreover,

τ∑
i=1

iW̃ δQ(xi) ≤W (x0:τ )− c̃W δQ(x0:τ )− W̃ (xτ ) + cQW̃
δQ(xτ ) ,

which implies

bQ eι0cQ
∑τ
i=1 iW̃

δQ (xi) ≤
{

bQ sup
r>0

ecQr
δQ−r}e−c̃W

δQ (x0:τ )V (x0:τ )

≤ c0e−c̃W
δQ (x0:τ )V (x0:τ ) ,

where we have defined

c0 = bQ exp{cQ(cQδQ)δQ/(1−δQ) − (cQδQ)1/(1−δQ)} . (124)

Equation (123) now implies

PV (x0:τ ) ≤ (c0 + 1)e−c̃W
δQ (x0:τ )V (x0:τ ) . (125)
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We fix R such that for (x0:τ ) ∈ {W (x0:τ ) ≥ R}, it holds

e(c̃/2)W
δQ (x0:τ ) ≥ c0 + 1 .

Now (125) implies UE 1 with constants

c =
cQ

2(1 + τc
δQ
Q )

, R = (2 log (1 + c0)/c̃)1/δQ , b = (c0 + 1)
(
1 ∨ eR−2cR

δQ)
. (126)

Now let us define, for R ≥ 1, the sublevel sets CR = {x ∈ X : W̃ (x) ≤ R}, C̃R = {x0:τ ∈
Xτ+1 : W (x0:τ ) ≤ R}. To check that C̃R is small, we proceed similarly to Lemma 36. For any
D1, . . . , Dτ+1 ∈ X , and x0:τ ∈ C̃R,

Pτ+1(x0:τ , D1 × · · · ×Dτ+1) =

∫ τ∏
k=0

Q(xτ+k, dxτ+k+1)
τ+1∏
k=1

1Dk(xτ+k)

≥
∫ τ∏

k=0

Q(xτ+k, dxτ+k+1)

τ+1∏
k=1

1Dk∩CR(xτ+k)
(a)

≥ ετ+1
R

τ+1∏
k=1

ν(Dk ∩ CR)

≥
(
εRν(CR)

)τ+1
νCR(D1 × · · · ×Dτ+1) ,

where (a) follows from (τ + 1) applications of the fact that CR is (1, εRν)-small for Q and

γCR(D1 × · · · ×Dτ+1) =

τ+1∏
k=1

ν(Dk ∩ CR)/ν(CR) . (127)

Hence, C̃R is
(
τ + 1, (εRν(CR))τ+1νCR

)
-small for the Markov kernel P.

Lemma 38 Under the assumptions of Theorem 6, Assumption A1(ε) holds with

CA = (1 + γ) C2
ψ

(
ι−β0 ∨ 1

)
(1− λγ)−1 .

Proof Using (43), (44), and ab ≤ a2/2 + b2/2, we get

‖Ā(x0:τ )‖ ≤ (1/2)

τ−1∑
s=0

(λγ)s
(
(1 + γ)‖ψ(xτ−1−s)‖2 + ‖ψ(xτ−1)‖2 + γ‖ψ(xτ )‖2

)
.

Using (47) and M 3(ε,K), for any s ∈ {0, . . . , τ − 1},

‖ψ(xτ−1−s)‖2 ≤ C2
ψ W̃

βδQ(xτ−1−s) ≤ C2
ψ ι
−β
0 W β(x0:τ ) , (128)

and, similarly,

‖ψ(xτ )‖2 ≤ C2
ψW

β(x0:τ ) .

Combining the above inequalities, we get

‖Ā(x0:τ )‖ ≤ (1 + γ) C2
ψ

(
ι−β0 ∨ 1

)
(1− λγ)−1W β(x0:τ ) .
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Lemma 39 Under the assumptions of Theorem 6, Assumption A3(K) holds with

Cb,K =
1

2(1− λγ)

(
C2
ψ

{
βK

eι0

}β
+ C2

R,K

)
.

Proof Using (43), (44), and ab ≤ a2/2 + b2/2, we get

‖b̄(x0:τ )‖ ≤ (1/2)
τ−1∑
s=0

(λγ)s
(
‖ψ(xτ−1−s)‖2 + |R(xτ−1, xτ )|2

)
. (129)

Using (128) and M 3(ε,K),

‖‖ψ(xτ−1−s)‖2‖V 1/K ≤ C2
ψ ι
−β
0 sup

y>0

{
yβ

ey/K

}
= C2

ψ

{
βK

eι0

}β
.

Moreover, using ι0τ < 1, for any values x0, . . . , xτ−2 it holds

|R(xτ−1, xτ )|2 ≤ C2
R,K exp

{ ι0
K

(
W̃ δQ(xτ−1) + W̃ (xτ )

)}
≤ C2

R,K exp
{ ι0
Kι0τ

(
ι0τW̃

δQ(xτ−1) + W̃ (xτ )
)}

≤ C2
R,K V

1/K(x0:τ ) .

Combining the previous bounds with (129) yields the statement.
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