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Abstract—Upper bounds for the closeness of two centered Gaussian measures in the class of balls in a sepa-
rable Hilbert space are obtained. The bounds are optimal with respect to the dependence on the spectra of
the covariance operators of the Gaussian measures. The inequalities cannot be improved in the general case.
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Let  and  be two Gaussian vectors in  with
zero mean and covariance matrices  and , respec-
tively. We want to estimate

(1)

for some class  of measurable subsets of . For this
purpose, we can use Pinsker’s inequality (see, e.g., [1,
Section 2.4]), which, in the case of the class of all
Borel sets in  taken as C, estimates the total varia-
tion distance of measures in terms of the Kullback–
Leibler divergence. In the Gaussian case, it can be
written in explicit form. However, (1) frequently needs
to be estimated much more accurately, but for a
smaller class . In [2–4], for example, the class of all
rectangles in  was considered and optimal estimates
were found. Additionally, in statistical applications
(bootstrap method or Bayesian analysis) it is very
important (see, e.g., [5–7]) to obtain p-independent
estimates of (1) for the class of all centered balls

 in  Here and below,
 is the Euclidean vector norm.
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The goal of this paper is to estimate  in terms
of corresponding covariance operators so that the
resulting estimates cannot be improved in the general
case. We will consider Gaussian random elements in a
separable Hilbert space  with zero means.

For a self-adjoint nonnegative linear operator A in
 with nonincreasing eigenvalues ,

let  denote the diagonal operator ,
λ2(A), ...). For a self-adjoint linear operator B in  the

trace norm is defined as ,

where  are the eigenvalues of B. The following
theorem is the main result of this paper.

Theorem 1. Let  and  be Gaussian elements in 
with zero mean and covariance operators  and ,
respectively. Let  and  be
the respective eigenvalues of  and . Then there exists
an absolute constant  such that

(2)

where  and  for .

Note that the expression  on the
right-hand side of (2) does not exceed  (see,
e.g., [7]). Additionally, the right-hand side of (2)
involves  and , which appear in

estimating the density functions of  and ,
respectively (see, e.g., formula (6)). Under various
conditions on the spectrum of the covariance opera-
tor, in particular, taking into account the multiplicity
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of the largest eigenvalue, estimates for the density of
the squared norm of a Gaussian vector, were proved,
for example, in [8, 9]. In this paper, however, we
obtain an inequality with a more accurate dependence
on the covariance matrix. It is well known that an arbi-
trary Gaussian element in  with a zero mean can be
represented in the form

(3)

where  are independent standard normal
random variables;  are the eigenvalues of 
arranged in nonincreasing order; and  are the
orthonormalized eigenvectors of  corresponding to
the eigenvalues . The following lemma provides an
upper bound for the maximum of the density  of

the random variable  in terms of the eigenvalues
of .

Lemma 1. Let  be a Gaussian element in a separable
Hilbert space  with zero mean and covariance operator

. Then, for some constant 

(4)

In particular,

(5)

Estimate (5) was proved in [9]. However, (4) is much
more accurate. The following three typical situations
can be distinguished. In the “one-dimensional” case
with  the assertion of the lemma is, in fact,
meaningless, i.e., the effective dimension of the prob-
lem has to be at least two. In the “two-dimensional” case
with , results (4) and (5) coincide. Finally, in
the “multidimensional” case with , the quan-
tities  are of the same order and the right-hand
side of (4) is inversely proportional to the Frobenius
norm  of the operator . In particular, in the

finite-dimensional case  with , if  is
close to the identity matrix, then, according to (4),

. This estimate agrees with the max-
imum of the chi-square probability density function
with p degrees of freedom.

Theorem 1 implies that at least two largest eigenvalues
of each of the operators  and  have to be involved in
the estimate for . The example given below shows
that this dependence and its form in (4) reflect the sub-
stance of the matter. Indeed, let  and  take values in 
and their covariance matrices be diagonal, i.e.,

 and Ση = , respec-
tively. Then
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where R will be specified later. Define  :=

 and set μ1 = λ1,

, where . Obviously,
. It is easy to see

that

where  are the volumes of the ellipsoids 
Applying the formula for the volume of an ellipsoid,
we obtain

Taking  and using the trivial estimate

, we get

where . The last inequality implies

Lemma 1 has the following simple corollary, which
provides an estimate for the probability of hitting a Δ-
strip.

Corollary 1. Let  be a Gaussian element in  having
zero mean and covariance operator . Let . Then
there exists an absolute constant  for which

Proof of Theorem 1. Without loss of generality, we
assume that both covariance operators  have a
diagonal form with nonincreasing eigenvalues. For
every , we define a Gaussian element 
in  with zero mean and a diagonal covariance opera-
tor :
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Let  denote the eigenvalues of the
operator V(s). Define the resolvent operator G(t, s) 

. Obviously,  is also a diagonal
operator and the characteristic function  of

 has the form

It is well known (see, e.g., [11, Section 6.2, p. 168])
that, for a continuous distribution function F(x) and
its characteristic function  the inversion formula

holds. Let x > 0 be fixed. Then

Using the Newton–Leibniz formula, we obtain

Changing the order of integration yields the equality

For a fixed  consider the expression

where  are the eigenvalues of
. Let  be a random variable having an expo-

nential distribution with parameter  and inde-

pendent of Z(s). Then

Moreover,  is the characteristic function

of the random variable . Let  be
the density function corresponding to .
Then
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Let  denote a diagonal operator with values
 on the main diagonal. Then

It is easy to see that the second term does not exceed

(6)

so it remains to estimate , i.e., each .
However, for any j,  does not exceed

, where  is the density function of
. Applying Lemma 1 and integrating the result

with respect to s, we obtain the assertion of the
theorem.

Proof of Lemma 1. For simplicity, we consider the
case of  and write λk instead of . Without

loss of generality, it may be assumed that 

and . Otherwise, we can apply the convo-

lution formula; inequality (5) was proved in [10]
exactly by this method and induction arguments.
Using representation (3) and denoting by  and

 the characteristic functions of 
and , respectively, we obtain

where the Cauchy–Schwarz inequality was applied at
the last step. The Hölder inequality yields

where , 
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Now let

Then, for all 

Similar inequalities hold for even indices, which leads
to the required result.

In this paper we considered Gaussian random ele-
ments in a separable Hilbert space  with zero means.
A possible extension of the present results to Gaussian
measures with different means and covariance opera-
tors can be found, for example, in [12].
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