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Abstract—A sample  consisting of independent identically distributed vectors in  with zero mean
and a covariance matrix  is considered. The recovery of spectral projectors of high-dimensional covariance
matrices from a sample of observations is a key problem in statistics arising in numerous applications. In their
2015 work, V. Koltchinskii and K. Lounici obtained nonasymptotic bounds for the Frobenius norm 
of the distance between sample and true projectors and studied asymptotic behavior for large samples. More
specifically, asymptotic confidence sets for the true projector  were constructed assuming that the moment
characteristics of the observations are known. This paper describes a bootstrap procedure for constructing
confidence sets for the spectral projector  of the covariance matrix  from given data. This approach does
not use the asymptotical distribution of  and does not require the computation of its moment char-
acteristics. The performance of the bootstrap approximation procedure is analyzed.
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Consider a sequence of independent identically
distributed (i.i.d.) random vectors , taking
values in . Assume that  and . Let

 be the covariance matrix of the vector X.
Along with the true covariance matrix , we consider
the sample covariance matrix  constructed using the
observations :
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In most statistical applications, the true covariance
matrix  is typically unknown and is replaced by its
sample counterpart . The accuracy of estimating 
by , in particular, when p is much greater than n, has
been extensively studied (see [1–3]). A bound in terms

of the effective rank  was obtained

recently in [4]. Such bounds can be used to recover
individual eigenvalues of  in the case when there are
spectral gaps between these eigenvalues.

In this paper, we recover spectral projectors onto
the subspace spanned by the eigenvectors correspond-
ing to certain eigenvalues of . The recovery of spec-
tral projectors, as well as eigenvectors and eigenspaces
of high-dimensional covariance matrices from a sam-
ple of observations is a key problem in statistics that is
directly related to dimensionality reduction. For
example, in principal component analysis, high-
dimensional data are projected onto the subspaces
spanned by the eigenvectors corresponding to the larg-
est eigenvalues. However, the problem of recovering
spectral projectors of high-dimensional covariance
matrices has been poorly investigated. In [5] nonas-
ymptotic bounds for the Frobenius norm  of
the distance between sample and true projectors were
obtained and asymptotic behavior for large-size sam-
ples was studied. According to [5], given the moments
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of observed random variables, one can construct
asymptotic confidence sets for the true projector .
However, these moment characteristics are typically
unknown. On the other hand, it is well known that
such asymptotic results could be applied only to sam-
ples of very large sizes. In particular, this is due to the
fact that the normalized U-statistics arising in the
given problem converge extremely slowly to a limiting
law.

Before stating the main result, we introduce the con-
cept of a spectral gap and define the sample counterpart
of the spectral projector . Let σj, , denote
the eigenvalues of  arranged in nonincreasing order
and  be the corresponding eigenvec-
tors. The matrix  can be written in terms of its spec-

tral decomposition, namely, . Now, let

μj, , q ≤ p, be different eigenvalues of 
and  be the corresponding spectral
projectors, i.e., . Then

Let . It is easy to see that ,

where . For all  we define  –

μr + 1 > 0. Let  for  and .
Here,  is called the rth spectral gap corresponding to
the eigenvalue .

Now we write  in terms of its spectral decomposi-

tion: , where  ≥  ≥ … ≥  and

, …,  are the eigenvalues and corresponding eigen-
vectors of the matrix . Following [5], we define clus-

ters of eigenvalues , . Let . It is easy
to show that

Assume that . Then all , , belong to

the interval  ⊂ ,

while the other eigenvalues of  lie outside the interval

(μr –  ⊃ . If

we additionally require that  < , then
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the set  consists of r clusters. The diam-

eter of each cluster is strictly less than , and the dis-
tance between any two clusters is greater than . Let

 denote the projector onto the subspace spanned by
, .
As was noted above, the asymptotic normality of

 was proved in [5]. Relying on this result, one
can construct asymptotic confidence sets for an
unknown projector  of the form

where zα is the α-quantile of the normal distribution.
The basic drawbacks of this approach are the slow
convergence rate to the normal law and the fact that a
large sample size is required to achieve a reasonable
quality of the approximation. Additionally, we need to
estimate  and , which
depend on the unknown matrix . In [5] a statistical
procedure is proposed, according to which the sample
is divided into three equal subsamples. The first and
second subsamples are used to estimate the expecta-
tion and variance of , while the third one is
used to construct a confidence set.

In this paper, the quantile

(1)

is estimated using a bootstrap procedure. This
approach

(i) does not rely on the asymptotical distribution of
;

(ii) does not require computing the moments of
;

(iii) does not require splitting the sample into sub-
samples; and

(iv) provides an explicit error bound for the boot-
strap approximation.

Note that the bootstrap method is one of the most
widespread statistical techniques for constructing con-
fidence sets. However, the existing theory proves the
possibility of applying this method basically to para-
metric models. The generalization to the case when
the space dimension is much higher than the sample
size encounters various difficulties. In this context, we
note [6–8]. In this paper, the bootstrap method is
extended to the construction of confidence sets for
spectral projectors. Additionally, it should be noted
that spectral projectors depend nonlinearly on the
covariance matrix, which in turn is a quadratic func-
tion of the original distribution; this causes additional
difficulties.
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The weighted (or bootstrap) version of the matrix
 is defined as

where  are i.i.d. eigenvectors independent of
X =  such that  and . As an
example, we can consider i.i.d. Gaussian weights

. We introduce the conditional probability
 and denote the corresponding expecta-

tion by . It is easy to see that, if the sample is fixed
and the only random variables are the weights , then
the expectation  is the known matrix , i.e.,

. This situation is opposite to the case
, where the expectation is unknown.

Writing , we define the spectral

projectors  as the orthogonal projectors onto the
subspace spanned by . For a given α, the
quantile  is defined as

(2)

(cf. (1)). Note that  depends on the sample X. The
idea of the method is to use  for constructing the

confidence set . Thus, we
need to show that

Define the block matrix

where  are diagonal  matrices

with values  on the main diagonal. Let

 denote the eigenvalues of .
According to available bounds for the distance
between  and , the eigenvalues of  can be recov-

ered with accuracy . Thus, the part of the spec-

trum of  below a threshold of order  cannot be

estimated. The same is true of the matrix . The value
m is determined by
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Let  denote the projector onto the subspace
spanned by the eigenvectors of  corresponding to its
largest m eigenvalues. Below is the main result of this
paper.

Theorem 1. Assume that observations 
are i.i.d. Gaussian random vectors in  with zero mean
and covariance matrix . For any ,
the corresponding quantile  is defined by (2), where the
weights are additionally assumed to satisfy 
for all . Then

where

and m is determined by (3).
For the details of the proof of Theorem 1, see [9].
To conclude, we note that the closeness (on balls)

of two centered Gaussian measures with different
covariance operators has to be estimated in the course
of the proof. A similar problem arises in other statisti-
cal problems. As a result, a more general problem was
solved, namely, upper bounds were obtained for the
closeness of two Gaussian measures with different
means and covariance operators in the class of balls in
a separable Hilbert space (see [10, 11]). The bounds
are optimal with respect to the dependence on the
spectra of the covariance operators of Gaussian mea-
sures. The inequalities cannot be improved in the gen-
eral case.
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