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Abstract
Let X1, . . . , Xn be i.i.d. sample in R

p with zero mean and the covariance matrix
�. The problem of recovering the projector onto an eigenspace of � from these
observations naturally arises inmany applications. Recent technique fromKoltchinskii
and Lounici (Ann Stat 45(1):121–157, 2017) helps to study the asymptotic distribution
of the distance in the Frobenius norm

∥
∥Pr − P̂r

∥
∥
2 between the true projector Pr on the

subspace of the r th eigenvalue and its empirical counterpart P̂r in terms of the effective
rank of �. This paper offers a bootstrap procedure for building sharp confidence sets
for the true projector Pr from the given data. This procedure does not rely on the
asymptotic distribution of

∥
∥Pr − P̂r

∥
∥
2 and its moments. It could be applied for small

or moderate sample size n and large dimension p. The main result states the validity
of the proposed procedure for Gaussian samples with an explicit error bound for the
error of bootstrap approximation. This bound involves some new sharp results on
Gaussian comparison and Gaussian anti-concentration in high-dimensional spaces.
Numeric results confirm a good performance of the method in realistic examples.
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1 Introduction

Let X , X1, . . . , Xn be independent identically distributed (i.i.d.) randomvectors taking
values in R

p with mean zero and E ‖X‖2 < ∞. Denote by � its p × p symmetric
covariance matrix defined as

�
def= E

(

XXT
)

.

We also consider the sample covariance matrix �̂ of the observations X1, . . . , Xn

defined as the average of X j XT
j : with X

def= [X1, . . . , Xn] ∈ R
p×n ,

�̂
def= 1

n

n
∑

j=1

X j X
T
j = 1

n
XXT.

In statistical applications, the true covariance matrix � is typically unknown and
one often uses the sample covariance matrix �̂ as its estimator. The accuracy ‖�̂−�‖
of estimation of � by �̂, in particular, for p much larger than n, has been actively
studied in the literature. We refer to [20] for an overview of the recent results based on
the matrix Bernstein inequality; see also [23]. A bound in term of the effective rank
r(�)

def= tr(�)/‖�‖ can be found in [11,22]. This or similar bounds on the spectral
norm ‖�̂ − �‖ can be effectively applied to relate the eigenvalues of � and of �̂

under the spectral gap condition. This paper focuses on a slightly different problem of
recovering the spectral projectors on the eigen-subspaces of � for few significantly
positive eigenvalues. Such tasks naturally arise in many dimensionality reduction
techniques for large p. In particular, the famous principal component analysis (PCA)
projects the vector X onto the subspace spanned by the eigenvectors for the first
principal eigenvalues.A significant error in recovering these eigenvectorswould lead to
a substantial loss of information contained in the data by PCA projection. The popular
sliced inverse regression (SIR) method under the assumption of elliptically contoured
distributions for high dimensional or functional data leads back to recovering the
eigen-subspace from a finite sample; see e.g. [13] and references therein. The use
of dimension reduction methods in deep networking architecture is discussed in [2]
among others.We also mention the use of dimension reduction technique in numerical
integration with applications to finance and insurance; see e.g. [10]. Justification of
the assumption of low effective dimension in financial problems can be found in [24]
among many others.

Surprisingly, the problem of recovering the spectral projectors (eigenvectors or
eigen-subspaces) of � from the sample X1, . . . , Xn for significantly positive spectral
values is much less studied than the problem of recovering the covariance matrix �.
Recently [12] established sharp non-asymptotic bounds on the Frobenius distance
‖Pr − P̂r‖2 between the spectral projectors Pr and its empirical counterparts P̂r for
the r th eigenvalue, as well as its asymptotic behaviour for large samples. This enables
to build some asymptotic confidence sets for the target projector Pr as a proper elliptic
vicinity of P̂r . However, it is well known that such asymptotic results apply only for
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Bootstrap confidence sets for spectral projectors… 1093

really large samples due to a slow convergence of the normalized U-statistics to the
limiting normal law.

The aim of this paper is to develop and validate a bootstrap procedure for building
a confidence set for Pr which applies for small or moderate samples and for large
dimension p. Bootstrapmethods belong nowadays tomost popularways formeasuring
the significance of a test or for building a confidence set. The existing theory based
on the high order expansions of the related statistics states the bootstrap validity
for various parametric methods. However, an extension to a non-classical situation
with a limited sample size and/or high parameter dimension meets serious problems.
We refer to series of works [4–6] which validate a bootstrap procedure for a test
based on the maximum of huge number of statistics. Their study reveals a close
relation between bootstrap validity results, Gaussian comparison and the so called
“anti-concentration” bounds for rectangle sets. The paper [19] studies applicability
of likelihood based statistics for finite samples and large parameter dimension under
possible model misspecification. The important step in the proof of bootstrap validity
was again based on the Gaussian comparison and anti-concentration bounds but now
for spherical sets.

This paper makes a further step in understanding the range of applicability of a
weighted bootstrap method in constructing a finite sample confidence set for a spectral
projector. A proof of bootstrap validity in this setup is a challenging task. The spectral
projector is a non-linear and non-regular function of the covariancematrix, which itself
is a quadratic function of the underlying multivariate distribution. In situations with
high-dimensional space and small or moderate sample size the classical asymptotic
methods of bootstrap validation do not apply. It appears that even in a Gaussian case
the proof of bootstrap consistency requires to develop new probabilistic tools for
establishing some sharp bounds for Gaussian comparison and anti-concentration in
high-dimensional or even infinite dimensional Hilbert spaces. One has also to account
for randomness of the bootstrap measure and the related bootstrap quantiles. The main
contributions of this paper are:

– we offer a new bootstrap procedure for recovering the spectral projector on a low
dimensional eigen-subspace;

– under condition that X1, . . . , Xn are i.i.d. Gaussian, we prove the validity of this
procedure and provide an upper bound on the error of bootstrap approximation
which is dimension free and holds even for the dimension p which is exponential
in the sample size and for small or moderate samples;

– a numerical study illustrates a very good performance of the proposed procedure
in realistic setups;

– we establish new sharp results on Gaussian comparison and anti-concentration
which are heavily used for proving the validity of the bootstrap procedure but they
are probably of independent interest; see Lemmas 2 and 3.

The paper is organized as follows. The next section contains the description of the
bootstrap procedure and themain results about its validity. Numerical results of Sect. 3
illustrate the performance of the procedure for finite samples.Main proofs are collected
in Sect. 4. The results on Gaussian comparison and Gaussian anti-concentration see
in Sect. 5. Appendix A gathers some auxilary statements and existing results.

123



1094 A. Naumov et al.

Throughout the paper the following notation are used. We write a � b (a � b) if
there exists some absolute constant C such that a ≤ Cb (a ≥ Cb resp.). Similarly,
a � b means that there exist c,C such that c a ≤ b ≤ C a. R (resp. C) denotes the
set of all real (resp. complex) numbers. For a self-adjoint operator A with eigenvalues
λk(A), k ≥ 1, let us denote by ‖A‖ and ‖A‖s, s ≥ 1 the operator and Schatten s
norm by ‖A‖ def= sup‖x‖=1 ‖Ax‖ and ‖A‖ss def= ∑∞

k=1 |λk(A)|s . In particular, ‖A‖2 is
the Hilbert–Schmidt (Frobenius) norm of A. For a self-adjoint positive operator A its
effective rank is given by r(A)

def= trA/‖A‖. We assume that all random variables are
defined on common probability space (Ω,F,P). Let E be the mathematical expecta-
tion with respect to P. We also denote byB(H) the Borel σ -algebra. For r.v. X and Y
we write X

d= Y if they are equally distributed.

2 Procedure andmain results

This section presents the bootstrap procedure for building a confidence set for the true
projector Pr and states the result about its validity.

2.1 Setup and problem

Let σ1 ≥ σ2 ≥ · · · ≥ σp be the eigenvalues of � and u j , j = 1, . . . , p, be the
corresponding orthonormal eigenvectors. Matrix � has the following spectral decom-
position

� =
p
∑

j=1

σ ju juTj . (1)

Let μ1 > μ2 > · · · > μq > 0 with some 1 ≤ q ≤ p, be strictly distinct eigenvalues
of � and Pr , r = 1, . . . , q, be the corresponding spectral projectors (orthogonal
projectors in R

p). Denote mr
def= Rank(Pr ). We may rewrite (1) in terms of distinct

eigenvalues and corresponding spectral projectors, namely

� =
q
∑

r=1

μrPr .

Denote by Δr
def= { j : σ j = μr }. Then |Δr | = mr . Define gr

def= μr − μr+1 > 0 for

r ≥ 1. Let gr
def= min(gr−1, gr ) for r ≥ 2 and g1

def= g1. The quantity gr is the r -th
spectral gap of the eigenvalue μr .

Consider now the sample covariancematrix �̂. Similarly to (1), it can be represented
as

�̂ =
p
∑

j=1

σ̂ j û j ûTj ,
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Bootstrap confidence sets for spectral projectors… 1095

where σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂p, û1, . . . , ûp are the eigenvalues and the corresponding
eigenvectors of �̂. Following [12] we may define clusters of eigenvalues σ̂ j , j ∈ Δr .

Let Ê def= �̂ − �. One can show that

inf
j /∈Δr

|̂σ j − μr | ≥ gr − ‖Ê‖, sup
j∈Δr

|̂σ j − μr | ≤ ‖Ê‖.

Assume that ‖Ê‖ ≤ gr/2. Then all σ̂ j , j ∈ Δr may be covered by an interval

(

μr − ‖Ê‖, μr + ‖Ê‖) ⊂ (μr − gr/2, μr + gr/2
)

.

The rest of the eigenvalues of �̂ are outside of the interval

(

μr − (gr − ‖Ê‖) , μr + (gr − ‖Ê‖)) ⊃ [μr − gr/2, μr + gr/2
]

.

Let ‖Ê‖ < 1
4 min1≤s≤r gs =: δr . The set {̂σ j , j ∈ ∪r

s=1Δs} consists of r clusters, the
diameter of each cluster being strictly smaller than 2δr and the distance between any
two clusters being larger than 2δr . We denote by P̂r the projector on subspace spanned
by the direct sum of û j , j ∈ Δr .

It follows from [12, Lemma 5] that ‖P̂r − Pr‖22 has nearly weighted χ2 distribu-
tion; see also Theorem 4 below. Therefore, after centering and standardization, it can
be approximated by the standard normal distribution under some conditions on the
spectrum of �:

L
(

‖P̂r − Pr‖22 − E ‖P̂r − Pr‖22
Var1/2

(‖P̂r − Pr‖22
)

)

≈ N (0, 1), (2)

see [12, Theorem 6]. This allows to build an asymptotic elliptic confidence set for Pr
in the form

{

Pr : ‖P̂r − Pr‖22 − E ‖P̂r − Pr‖22
Var1/2

(‖P̂r − Pr‖22
) ≤ zα

}

,

where zα is a proper quantile of the standard normal law. However, there are at least
two drawbacks of this approach. First, weak approximation in (2) can be very poor in
some cases, especially if the effective rank of � is not large. Figure 1 illustrates this
issue on the artificial Example 1 from Sect. 3 below. Second, this construction requires
to know or to estimate the values E ‖P̂r − Pr‖22 and Var

(‖P̂r − Pr‖22
)

which depend
on the unknown covariance operator�. A partial solution of this problem is discussed
in [12]. It involves splitting the sample into three subsamples, and pilot estimation of
the mean and the variance of ‖P̂r − Pr‖22. The approach only applies in some special
cases, in particular, if the covariance matrix has a nearly spike structure. The present
paper proposes another procedure which

– does not rely on the asymptotic distribution of the error ‖P̂r − Pr‖22,
– does not require to know the moments of ‖P̂r − Pr‖22,
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1096 A. Naumov et al.

Fig. 1 PP-plot between the distribution from (2) and the standard Gaussian

– does not involve any data splitting,
– provides an explicit error bound for the bootstrap approximation in the case when
sample comes from the Gaussian distribution.

The procedure is based on the resampling idea which allows to estimate directly the
quantiles

γα
def= inf

{

γ > 0 : P

(

n‖P̂r − Pr‖22 > γ

)

≤ α

}

(3)

without estimating the covariance matrix �. The introduced bootstrap procedure is
described in the next section.

2.2 Bootstrap procedure

We introduce the following weighted version of �̂:

�◦ def= 1

n

n
∑

i=1

wi Xi X
T
i , (4)

wherew1, . . . , wn are i.i.d. random variables, independent ofX = (X1, . . . , Xn), with
Ew1 = 1, Varw1 = 1. A typical example used in this paper is to apply i.i.d. Gaus-
sian weights wi ∼ N (1, 1). Denote by P

◦(·) def= P(· ∣∣X) and E
◦ the corresponding

conditional probability and expectation. It is obvious that

E
◦ �◦ = �̂. (5)
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In what follows we will often refer to “X-world” and “bootstrap world”. In the X-
world the sample X is random opposite to the bootstrap world, where X is fixed,
but w1, . . . , wn are random. Then, Eq. (5) implies that in the bootstrap world we
know precisely the expectation of �◦ opposite to the X-world, where � is unknown.
Similarly to (1) we may write

�◦ =
p
∑

j=1

σ ◦
j u

◦
ju

◦
j
T
.

Let us denote by P◦
r a projector on the subspace spanned by the direct sum of u◦

j , j ∈
Δr . For a given α we define the quantile γ ◦

α as

γ ◦
α

def= min
{

γ > 0 : P
◦ (n‖P◦

r − P̂r‖22 > γ
)

≤ α
}

. (6)

Note that this value γ ◦
α is defined w.r.t. the bootstrap measure, therefore, it depends

on the data X. This bootstrap critical value γ ◦
α is applied in the X-world to build the

confidence set

E(α)
def= {P : n‖P − P̂r‖22 ≤ γ ◦

α

}

.

The main result given in the next section justifies this construction and evaluate the
coverage probability of the true projector Pr by this set. It states that

P (Pr /∈ E(α)) = P

(

n‖Pr − P̂r‖22 > γ ◦
α

)

≈ α.

2.3 Main results: bootstrap validity

To formulate the main result of this paper we introduce additional notation. Define the
following block-matrix

Γr
def=

⎛

⎜
⎜
⎝

Γr1 O . . . O
O Γr2 O . . . O
. . .

O . . . O Γrq

⎞

⎟
⎟
⎠

, (7)

where Γrs, s �= r are diagonal matrices of order mrms × mrms with values
2μrμs/(μr − μs)

2 on the main diagonal. Let λ1(Γr ) ≥ λ2(Γr ) ≥ · · · be the eigen-
values of Γr .

The available bounds on the distance between the covariance matrix and its empir-
ical counterpart claim that the eigenvalues of � can be recovered with accuracy
O(1/

√
n); see e.g. [11,20,22,23]. Therefore, the part of the spectrum of � below

a threshold of order O(1/
√
n) cannot be estimated. The same applies to the matrix

Γr . Introduce the corresponding value m:
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1098 A. Naumov et al.

λm(Γr ) ≥ tr Γr

(√

log n

n
+
√

log p

n

)

> λm+1(Γr ). (8)

Denote by Πm a projector on the subspace spanned by the eigenvectors of Γr corre-
sponding to its largest m eigenvalues. Now we state our main result.

Theorem 1 Let observations X , X1, . . . , Xn be i.i.d. Gaussian random vectors in Rp

with E X = 0 and E XXT = �. Let γ ◦
α be defined by (6) for any α : 0 < α < 1, with

i.i.d. Gaussian random weights wi ∼ N (1, 1) for i = 1, . . . , n. Then the following
bound is fulfilled

∣
∣
∣
∣
α − P

(

n‖P̂r − Pr‖22 > γ ◦
α

)∣
∣
∣
∣
� ♦, (9)

where

♦ def= m tr Γr√
λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

+ tr(I − Πm)Γr√
λ1(Γr )λ2(Γr )

+ mr tr3 �

g3r
√

λ1(Γr )λ2(Γr )

(
√

log3 n

n
+
√

log3 p

n

)

(10)

and m is defined by (8).

Remark 1 To replace the Gaussian assumption for X1, . . . , Xn by more wide set-
up, for example, sub-Gaussian or -exponential assumption is a challenge for a future
research.Among other difficulties it will require, in particularly, a version of the central
limit theorem for non i.i.d. random elements in high dimensional space with precise
dependence of the rate of convergence on the dimension p. Some partial results are
available, see e.g. [3], but they provide dependence on p, which is not sufficient for
our purposes.

Remark 2 We choose w j , j = 1, . . . , n to be Gaussian r.v. variables. This choice may
lead to the situation that the matrix (4) may have negative eigenvalues. This is not
critical problem since if r -th gap gr > 0 we get that the r -th largest eigenvalue of �◦
is positive and concentrated around μr with high probability.

Remark 3 The result (9) implicitly assumes that the error term ♦ is small. If ♦ ≥ 1
then (9) is meaningless. In particular, this implies that p � exp(n1/3).

Remark 4 The error term ♦ can be described in terms of �. It is easy to check that for
all r

tr Γr � mr
μr tr�

g2r
≤ mr

‖�‖2r(�)

g2r
.

Let us consider, for example, the case r = 2 and m1 = m2 = 1. Introduce a function
f (x) = 2xμ2/(x − μ2)

2 at the points x = μs, s �= 2. It is straightforward to check
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that the maximum of f (x) is achieved at x = μ1 or μ3. Moreover, assume that the
largest values of f (x) are f (μ1) and f (μ3). Then

♦ � m tr�

g2

√
μ1

μ3

(√

log n

n
+
√

log p

n

)

+
√

μ1

μ3

tr(I − Πm)�

g2

+ tr3 �

g22 μ2

√
μ1

μ3

(
√

log3 n

n
+
√

log3 p

n

)

.

Although an analytic expression for the value γ ◦
α is not available, one can evaluate

it from numerical simulations by generating a large number M of independent sam-
ples {w1, . . . , wn} and computing from them the empirical distribution function of
n‖P◦

r − P̂r‖22. In fact, standard arguments, see e.g. [18, Sect. 5.1], in combination with
Theorem 5 suggest that the accuracy ofMonte-Carlo approximation is of orderM−1/2.
Theorem 1 justifies the use of this value γ ◦

α in place of γα defined in (3) provided that
the error ♦ is sufficiently small.

3 Numerical results

This section illustrates the performance of the bootstrap procedure by means of few
artificial examples. Namely, we check how well is the bootstrap approximation of
the true quantiles. We use PP-plots to compare the distributions of n‖P◦

1 − P̂1‖22 and
n‖P̂1 − P1‖22.

First we describe our setup. Let n be a sample size. We consider the different
values of n, namely n = 100, 300, 500, 1000, 2000, 3000. Let X1, . . . , Xn have the
normal distribution in R

p, with zero mean and covariance matrix �. The value of
p and the choice of � will be described below. The distribution of n‖P̂1 − P1‖22 is
evaluated by usingM = 3000Monte-Carlo samples from the normal distribution with
zero mean and covariance �. The bootstrap distribution for a given realization X is
evaluated by M = 3000 Monte-Carlo samples of bootstrap weights {w1, . . . , wn}.
Since this distribution is random and depends on X , we finally use the median from
50 realizations of X for each quantile.

Example 1 In the first example we consider the following parameters:

– p = 500,
– μ1 = 36, μ2 = 30, μ3 = 25, μ4 = 19 and all other eigenvalues μs, s =
5, . . . , 500 are uniformly distributed in [1, 5].

Here we get g1 = 6 and r(�) = 51.79. Figure 2 shows the corresponding PP-plots
for the empirical distribution of n‖P̂1−P1‖22 against its bootstrap counterpart. Table 1
shows the coverage probabilities of the quantiles estimated using the bootstrap.

Example 2 The second example parameters are:

– p = 100,
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1100 A. Naumov et al.

Fig. 2 PP-plot of the bootstrap procedure for Example 1

Table 1 Coverage probabilities
for Example 1

n Confidence levels

0.99 0.95 0.90 0.85 0.80 0.75

100 0.997 0.986 0.954 0.924 0.889 0.850

0.004 0.026 0.052 0.074 0.091 0.104

300 0.992 0.937 0.873 0.812 0.754 0.692

0.026 0.093 0.165 0.207 0.236 0.271

500 0.988 0.962 0.902 0.846 0.788 0.623

0.054 0.139 0.227 0.264 0.323 0.174

1000 0.992 0.974 0.943 0.890 0.841 0.783

0.021 0.062 0.114 0.066 0.153 0.170

2000 0.988 0.954 0.891 0.843 0.795 0.741

0.021 0.059 0.081 0.098 0.126 0.142

3000 0.994 0.961 0.908 0.864 0.815 0.763

0.016 0.053 0.073 0.081 0.092 0.101

For each n the first line corresponds to themedian value of the coverage
probability and the second line corresponds to the interquartile range

– μ6, . . . , μ100 are distributed according to Marchenko–Pastur’s density with the
support on [0.71, 1.34], see [14],

– all other eigenvalues are μ1 = 25.698, μ2 = 15.7688, μ3 = 10.0907, μ4 =
5.9214, μ5 = 3.4321.

Here g1 = 9.93 and r(�) = 6.12. PP plots are presented on Fig. 3 and the coverage
probabilities are collected in Table 2.
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Fig. 3 PP-plot of the bootstrap procedure for Example 1

Table 2 Coverage probabilities
for Example 2

n Confidence levels

0.99 0.95 0.90 0.85 0.80 0.75

100 0.992 0.961 0.918 0.876 0.825 0.768

0.027 0.091 0.146 0.197 0.231 0.257

300 0.988 0.942 0.886 0.832 0.784 0.735

0.020 0.062 0.094 0.118 0.139 0.153

500 0.995 0.966 0.925 0.876 0.822 0.771

0.013 0.035 0.072 0.104 0.120 0.122

1000 0.989 0.957 0.906 0.848 0.795 0.743

0.012 0.038 0.062 0.086 0.093 0.098

2000 0.993 0.958 0.913 0.869 0.819 0.775

0.011 0.028 0.053 0.065 0.076 0.083

3000 0.988 0.952 0.902 0.853 0.803 0.752

0.006 0.021 0.047 0.053 0.062 0.070

For each n the first line corresponds to themedian value of the coverage
probability and the second line corresponds to the interquartile range

Example 3 The third example has the same setup as the previous one except μ1 =
μ2 = 25.698. In that case P1 = u1uT1 +u2uT2. Here g1 = 9, 93 and r(�) = 6.51. The
result is on Fig. 4 and Table 3.

In all three exampleswe observe the same patterns. The bootstrap proceduremimics
well the most of the underlying distribution of n‖P̂1 −P1‖22. For a really small sample
size n = 100, there is a problem of approximating the high quantiles, while for n
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1102 A. Naumov et al.

Fig. 4 PP-plot of the bootstrap procedure for Example 3

Table 3 Coverage probabilities
for Example 3

n Confidence levels

0.99 0.95 0.90 0.85 0.80 0.75

100 0.999 0.991 0.972 0.939 0.906 0.858

0.003 0.015 0.035 0.059 0.089 0.114

300 0.999 0.981 0.950 0.919 0.873 0.816

0.003 0.023 0.053 0.075 0.114 0.144

500 0.998 0.977 0.947 0.914 0.867 0.820

0.005 0.020 0.041 0.057 0.087 0.106

1000 0.992 0.971 0.937 0.895 0.855 0.796

0.010 0.031 0.061 0.073 0.105 0.129

2000 0.990 0.958 0.911 0.866 0.824 0.774

0.006 0.016 0.024 0.034 0.052 0.055

3000 0.989 0.950 0.897 0.852 0.795 0.749

0.004 0.022 0.034 0.049 0.061 0.064

For each n the first line corresponds to themedian value of the coverage
probability and the second line corresponds to the interquartile range

of order 300 or larger, it works surprisingly well in different setups and for different
dimensions p including the case with p > n.

4 Proofs

This section presents the proof of the main theorem as well as some further statements.
Before going to the proof we outline its main steps. In Sect. 4.2 we show that
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X-world: L
(

n‖P̂r − Pr‖22
) ≈ L
(‖ξ‖2), ξ ∼ N (0, Γr ),

where Γr defined in (7). Further, in Sect. 4.3 we demonstrate that the similar relation
holds in the bootstrap world, namely

Bootstrap world: L
(

n‖P◦
r − P̂r‖22

) ≈ L
(‖ξ◦‖2), ξ◦ ∼ N (0, Γ ◦

r ),

where Γ ◦
r is defined below in (24). To compare ξ and ξ◦ we apply Gaussian com-

parison inequality, Lemma 2. The details are in Sect. 4.4. All necessary concentration
inequalities for sample covariances in the X-world and bootstrap world may be found
in the Appendix A and Sect. 4.1 respectively.

In all our results, we implicitly assume

tr�

gr

(√

log n

n
+
√

log p

n

)

� 1. (11)

Otherwise, the main result becomes trivial.

4.1 Some concentration inequalities

Theorem 2 Assume that the conditions of Theorem 1 hold. Then the following inequal-
ity holds with P-probability at least 1 − 1

n

P
◦
(

‖�◦ − �̂‖ � tr�

[√

log n

n

∨
√

log p

n

])

≥ 1 − 1

n
.

Proof We prove this theorem applying a combination of matrix concentration inequal-
ities. For simplicity we denote ξi

def= wi − 1 and Ai
def= Xi XT

i for all i = 1, . . . , n. It
is easy to see that �◦ − �̂ is a Gaussian matrix series. Indeed,

�◦ − �̂ = 1

n

n
∑

k=1

ξkAk .

Hence, to estimate ‖�◦ − �̂‖ we may directly apply Lemma 8, which gives us that

P
◦
(∥
∥
∥
∥
∥

1

n

n
∑

k=1

ξkAk

∥
∥
∥
∥
∥

� σ

√
log n + √

log p

n

)

≥ 1 − 1

n
, (12)

where σ 2 def= ∥∥∑n
k=1 A

2
k

∥
∥. To finish the proof it remains to estimate with high P-

probability the variance parameter σ . This may be done by using the Bernstein matrix
concentration inequality, Lemma 9. To proceed we need to check all assumptions of
Lemma 9. Applying Lemma 5 with p = 2 we may show that

E ‖Ak‖2 ≤ E ‖Xk‖4 � tr2 �. (13)
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1104 A. Naumov et al.

Moreover, application of the same lemma with p � log2 n gives us that

P(‖Ak‖2 � tr2(�) log2 n) ≥ 1 − n−1. (14)

Let E1 def= {max1≤k≤n ‖A2
k − EA2

k‖ � tr2(�) log2 n
}

. It follows from (13) and (14)
and the union bound that P(Ec

1) ≤ n−1. Introduce the variance parameter

σ̃ 2 def= ∥∥
n
∑

k=1

E(A2
k − EA2

k)
2
∥
∥.

Analogously to (13) one may show that σ̃ 2 ≤ n E ‖A1‖4 ≤ n E ‖X‖8 � n tr4 �.
Applying Lemma 9 we get

P

(

∥
∥

n
∑

k=1

(

A2
k − EA2

k

) ∥
∥ �

√
n tr2(�)

(√

log n +√log p
)
)

≤ P

(

∥
∥

n
∑

k=1

(

A2
k − EA2

k

) ∥
∥ �

√
n tr2(�)

(√

log n +√log p
)

, E1

)

+ 1

n
≤ 2

n
.

(15)

Combining (13) and (15) we may write that with P-probability at least 1 − 1
n

σ 2 � n tr2 � + √
n(
√

log n +√log p) tr2 � � n tr2 �.

Substituting the last inequality to (12) we finish the proof of this theorem. ��
Let us introduce the following notations

E◦ def= �◦ − �, Ê◦ def= �◦ − �̂, Ê = �̂ − �.

Denote Lr (Ê◦) def= Pr
(

�◦ − �̂
)

Cr + Cr
(

�◦ − �̂
)

Pr where

Cr
def=
∑

s �=r

1

μr − μs
Ps .

Theorem 3 (Concentration results in the bootstrap world) Assume that the conditions
of Theorem 1 hold. Then the following bound holds with P-probability at least 1− 1

n

P
◦ (∣∣‖P◦

r − P̂r‖22 − ‖Lr (Ê◦)‖22
∣
∣ � Δ
)

≥ 1 − n−1,

where

Δ
def= mr

tr3 �

g3r

[
log n

n

∨ log p

n

]3/2

.
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Proof Applying Lemma 4 we may write

P◦
r − P̂r = P◦

r − Pr − (P̂r − Pr
) = Lr

(

E◦)− Lr
(

Ê
)+ Sr

(

E◦)+ Sr
(

Ê
)

,

where

‖Sr
(

Ê
) ‖ ≤ 14

(‖Ê‖/gr
)2

, ‖Sr
(

E◦) ‖ ≤ 14
(‖E◦‖/gr

)2
. (16)

It is easy to see that Lr (E◦) − Lr (E) = Lr (Ê◦). We denote Sr (Ê◦) def= Sr (E◦) +
Sr
(

Ê
)

. Then the difference ‖P◦
r −P̂r‖22−‖Lr (Ê◦)‖22 may be rewritten in the following

way:

‖P◦
r − P̂r‖22 − ‖Lr (Ê◦)‖22 = 2

〈

Lr
(

Ê◦) , Sr
(

Ê◦)〉+ ‖Sr (Ê◦)‖22.

Applying the Cauchy–Schwarz inequality we get

∣
∣
∣‖P◦

r − P̂r‖22 − ‖Lr (Ê◦)‖22
∣
∣
∣ ≤ 2‖Lr

(

Ê◦) ‖2‖Sr (Ê◦)‖2 + ‖Sr (Ê◦)‖22. (17)

It follows from (16)

‖Sr
(

E◦) ‖ �
(‖Ê‖/gr

)2 + (‖E◦‖/gr
)2 �
(‖Ê‖/gr

)2 + (‖Ê◦‖/gr
)2

.

From Theorems 2 and 6, and condition (11) we may assume that without loss of
generality that the following inequality holds

max
{‖E◦‖, ‖Ê‖} ≤ gr/2.

This fact guarantees that Rank P◦
r = Rank P̂r = Rank Pr = mr . Applying (16) and

Theorems 2, 6 we get that with P-probability at least 1 − 1
n :

P
◦
(

‖Sr (Ê◦)‖2 � √
mr

tr2 �

g2r

[
log n

n

∨ log p

n

])

≥ 1 − 1

n
. (18)

It remains to estimate ‖Lr (Ê◦)‖2. We proceed similarly to the proof of Theorem 2.
We get that with P-probability at least 1 − 1

n :

P
◦
(

‖Lr (Ê◦)‖2 � √
mr

tr�

gr

[√

log n

n

∨
√

log p

n

])

≥ 1 − 1

n
.

From the last bound and inequalities (17) and (18) we conclude that withP-probability
at least 1 − 1

n :

P
◦ (‖P◦

r − P̂r‖22 − ‖Lr (Ê◦)‖22 � Δ1

)

≥ 1 − 1

n
,
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where

Δ∗
1

def= mr
tr3 �

g3r

[
log n

n

∨ log p

n

][√

log n

n

∨
√

log p

n

]

+ mr
tr4 �

g4r

[
log n

n

∨ log p

n

]2
.

Applying condition (11) we get that

Δ∗
1 ≤ mr

tr3 �)

g3r

[
log n

n

∨ log p

n

]3/2

.

��

4.2 Approximation in the X-world

The main result of this section is the following theorem.

Theorem 4 Assume that the conditions of Theorem 1 hold. Let ξ ∼ N (0, Γr ), where
Γr is defined in (7). Then for all x : x > 0 the following bounds hold

P

(

n‖P̂r − Pr‖22 > x
)

≤ P

(

‖ξ‖2 ≥ x−
)

+ ♦1,

P

(

n‖P̂r − Pr‖22 > x
)

≥ P

(

‖ξ‖2 ≥ x+
)

− ♦1,

where x±
def= x ± ♦2 and

♦1
def� m1/2

r
tr Γr√

λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

,

♦2
def� mr

tr3 �

g3r

√

log3 n

n
.

Proof of Theorem 4 Let us fix an arbitrary x ≥ 0. Without loss of generality we may
assume that ♦1 � 1. Otherwise the claim is trivial. This fact implies that the condi-
tion (46) holds.

Let us rewrite P̂r − Pr as follows

n‖P̂r − Pr‖22 = 2n‖Pr ÊCr‖22 + n‖P̂r − Pr‖22 − 2n‖Pr ÊCr‖22.

Theorem 7 implies that with probability at least 1 − 1
n

∣
∣n‖P̂r − Pr‖22 − 2n‖Pr ÊCr‖22

∣
∣ ≤ Δ∗

1
def� mr

tr3 �

g3r

√

log3 n

n
.
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Hence, we may write down the following two-sided inequalities

P

(

2n‖Pr ÊCr‖22 ≥ x + Δ∗
1

)

− 1

n
≤ P

(

n‖P̂r − Pr‖22 > x
)

≤ P

(

2n‖Pr ÊCr‖22 ≥ x − Δ∗
1

)

+ 1

n
.

For simplicity we denote x±
def= x ± Δ∗

1. Without loss of generality, we consider the

case of the upper bound only, i.e. we set z
def= x−. Similar calculations are valid for

x+.
Let {e j }pj=1 be an arbitrary orthonormal basis inRp. Denote byΨkl

def= ekeTl , l, k =
1, . . . , p. Then {Ψkl}pk,l=1 is the orthonormal basis in Rp×p with respect to the scalar

product given by 〈A,B〉 def= trABT,A,B ∈ R
p×p. By Parseval’s identity

2n‖Pr ÊCr‖22 = 2n
p
∑

l,k=1

〈PrECr , Ψkl〉2 = 2n
p
∑

l,k=1

〈PrECrel , ek〉2.

We may set e j
def= u j . Taking into account definition of Pr and Cr the last equation

may be rewritten as follows

2n‖Pr ÊCr‖22 = 2n
∑

k∈Δr

∑

s �=r

∑

l∈Δs

〈Pr ÊCrul ,uk〉2.

Let us fix arbitrary uk, k ∈ Δr and ul , l ∈ Δs, s �= r . For simplicity we denote them
by u and v respectively. Then

S(u, v) def= √
2n〈Pr ÊCrv,u〉 =

√

2

n

n
∑

i=1

〈u,Pr Xi 〉〈Cr Xi , v〉.

It is easy to see that 〈u,Pr Xi 〉 is a Gaussian r.v. with zero mean and variance
E〈u,Pr Xi 〉2 = 〈u,Pr�Pru〉 = μr . Then 〈u,Pr Xi 〉 d= √

μrηu,i , where ηu,i , i =
1, . . . , n are i.i.d. N (0, 1). Similarly we may write that 〈Cr Xi , v〉 d=

√
μs

(μr−μs )2
ηv,i ,

where ηu,i , i = 1, . . . , n are i.i.d. N (0, 1). Hence, we obtain

S(u, v) d= 1√
n

n
∑

i=1

√

2μsμr

(μr − μs)2
ηu,iηv,i .

Let us fix another pair ũ, ṽ and investigate the covariance

Γ ((u, v), (ũ, ṽ)) def= Cov(S(u, v), S(ũ, ṽ)).
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1108 A. Naumov et al.

It is straightforward to check that

Γ ((u, v), (ũ, ṽ)) = 2〈�Pru,Pr ũ〉〈�Crv,Cr ṽ〉 = 2Γ1(u, ũ)Γ2(v, ṽ),

where for simplicity we denoted

Γ1(u, ũ)
def= 〈�Pru,Pr ũ〉, Γ2(v, ṽ)

def= 〈Cr�Crv, ṽ〉.

Moreover, direct calculations yield that

Γ1(u, ũ) =
{

0, if u �= ũ,

μr , if u = ũ,
Γ2(v, ṽ) =

{

0, if v �= ṽ,
μs

(μr−μs )2
, if v = ṽ.

(19)

We may think of Sr
def= (S(uk,ul), k ∈ Δr , s �= r , l ∈ Δs) as a random vector in

the dimension d
def= mr

∑

s �=r ms (it is easy to see that d � p) with the following
covariance matrix Γr [compare with (7)]:

Γr
def=

⎛

⎜
⎜
⎝

Γr1 O . . . O
O Γr2 O . . . O
. . .

O . . . O Γrq

⎞

⎟
⎟
⎠

,

where Γrs = 2μrμs
(μr−μs )2

Imrms , s �= r , are diagonal matrices of order mrms × mrms

with values 2μrμs
(μr−μs )2

on the main diagonal. In these notations we may write

P

(

2n‖Pr ÊCr‖22 ≥ z
)

= P

(

‖Sr‖2 ≥ z
)

.

Since Pr Xi and Cr Xi are independent Gaussian vectors it is straightforward to check
that the conditional distribution of Sr with respect to Y = (Pr X1, . . . ,Pr Xn) is Gaus-
sian with zero mean and covariance matrix Γ Y

r = 1
n

∑n
i=1 Γ Y

ri , where

Γ Y
ri

def=
[

Γ Y
ri

((

uk1 ,ul1
)

,
(

uk2 ,ul2
))

, k1, k2 ∈ Δr , l1 ∈ Δs1 , l2 ∈ Δs2 , s1, s2 �= r
]

and

Γ Y
ri

((

uk1 ,ul1
)

,
(

uk2 ,ul2
)) = 2μrηuk1 ,iηuk2 ,iΓ2

(

ul1 ,ul2 )

Due to (19) we conclude that Γ Y
r ((uk1 ,ul1), (uk2 ,ul2)) = 0 if l1 �= l2. Let P(· ∣∣ Y ) be

the conditional probability w.r.t. Y . We show that P(‖Sr‖2 ≥ z
∣
∣ Y ) may be approxi-

mated by P(‖ξ‖2 ≥ z), where ξ ∼ N (0, Γr ). For this aim we may apply Corollary 1.

Hence, we need to check that ‖Γ − 1
2

r Γ Y
r Γ

− 1
2

r − I‖ is small. Let us denote by PY (·)
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the distribution of Y , i.e. PY (A) = P(Y ∈ A), A ∈ B(Rp). We also introduce the
following event

E1(δ) def= {Y : ‖Γ − 1
2

r Γ Y
r Γ

− 1
2

r − I‖ ≤ δ
}

, δ > 0.

If max1≤k≤n ‖Γ − 1
2

r Γ Y
rkΓ

− 1
2

r − I‖ ≤ R for some R = R(n, Γr ), then it follows from
Lemma 9 that

PY

(∥
∥
∥
∥
∥

1

n

n
∑

i=1

(

Γ
− 1

2
r Γ Y

rkΓ
− 1

2
r − I

)

∥
∥
∥
∥
∥

� s

n

)

≥ 1 − d · exp
(

− s2

σ 2

)

, (20)

provided that Rs � σ 2, where

σ 2 def=
∥
∥
∥
∥
∥

n
∑

i=1

EY

(

Γ
− 1

2
r Γ Y

ri Γ
− 1

2
r − I

)2
∥
∥
∥
∥
∥

.

It is straightforward to check thatΓ
− 1

2
r Γ Y

ri Γ
− 1

2
r is a block-diagonalmatrix. The number

of blocks equals
∑

s �=r Δs , all of them are the same and have the following structure

⎛

⎜
⎜
⎜
⎝

η2uk1 ,i ηuk1 ,iηuk2 ,i . . . ηuk1 ,iηukr ,i

ηuk1 ,iηuk2 ,i η2uk2 ,i . . . ηuk2 ,iηukr ,i

. . .

ηuk1 ,iηukr ,i ηuk2 ,iηukr ,i . . . η2ukr ,i

⎞

⎟
⎟
⎟
⎠

,

where k j ∈ Δr , j = 1, . . . , r . Hence,

‖Γ − 1
2

r Γ Y
ri Γ

− 1
2

r − I‖ ≤ ‖Γ − 1
2

r Γ Y
ri Γ

− 1
2

r ‖2 + 1 =
(
∑

k1,k2∈Δr

η2uk1 ,iη
2
uk2 ,i

) 1
2 + 1

=
∑

k∈Δr

η2uk ,i + 1.

Applying Lemma 5 we obtain that

PY

(

‖Γ − 1
2

r Γ Y
ri Γ

− 1
2

r − I‖ � mr log n

)

≥ 1 − 1

n
.

Moreover, let R
def� mr log n. Denote E2 def=

{

max1≤i≤n ‖Γ − 1
2

r Γ Y
ri Γ

− 1
2

r − I‖ ≤ R

}

.

Then, P(E2) ≥ 1 − 1
n .
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1110 A. Naumov et al.

Let us estimate σ 2. We fix k1, k2 ∈ Δr , l1 ∈ Δs1 , l2 ∈ Δs2 , s1, s2 �= r . Direct
calculation gives us that

EY

[

Γ
−1/2
r Γ Y

ri Γ
−1/2
r

]2
((uk1 ,ul1), (uk2 ,ul2))

=
∑

s �=r

∑

k∈Δr

∑

l∈Δs

EY ηuk1 ,iη
2
uk,i ηuk2 ,iΓ2(ul1 ,ul)Γ2(ul ,ul2)

×
√

(μr − μs1)
2(μr − μs2)

2

μs1μs2

(μr − μs)
2

μs
.

Let (uk1 ,ul1) �= (uk2 ,ul2)). Then it is easy to check that

EY

[

Γ
−1/2
r Γ Y

ri Γ
−1/2
r

]2
((uk1 ,ul1), (uk2 ,ul2)) = 0.

This means that it is a diagonal matrix. Assume now that (uk1 ,ul1) = (uk2 ,ul2)).
Then

EY

[

Γ
−1/2
r Γ Y

ri Γ
−1/2
r

]2
((uk1 ,ul1), (uk1 ,ul1)) =

∑

k∈Δr

EY ηuk1 ,iη
2
uk,i ηuk2 ,i = mr + 2.

Hence,

‖EY

(

Γ
− 1

2
r Γ Y

ri Γ
− 1

2
r − I

)2‖ � mr and σ 2 � nmr . (21)

Let us denote

Δ∗
2

def� √
mr

(√

log n

n
+
√

log p

n

)

.

It follows from (20) and (21) that

PY

(

Ec
1 (Δ

∗
2)) ≤ PY (Ec

1 (Δ
∗
2) ∩ E2

)

+ n−1 ≤ 2n−1.

Similarly to the previous calculations we may also estimate the probability of the
following event

E3(δ) def= {Y : ‖Γ Y
r − Γr‖ ≤ δ}, δ > 0.

It follows from Lemma 9 that

PY

(∥
∥
∥
∥
∥

1

n

n
∑

i=1

(

Γ Y
ri − Γr

)

∥
∥
∥
∥
∥

� s

n

)

≥ 1 − p · exp
(

− s2

σ̃ 2

)

, (22)
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where

σ̃ 2 def=
∥
∥
∥
∥
∥

n
∑

i=1

EY

(

Γ Y
ri − Γr

)2

∥
∥
∥
∥
∥

� nmax
s �=r

4μ2
rμ

2
s (mr + 2)

(μr − μs)4
� nmr‖Γr‖2. (23)

Here we applied the same arguments as above. Introduce the following quantity

Δ∗
3

def� √
mr‖Γr‖

(√

log n

n
+
√

log p

n

)

.

It follows from (22) and (23) that P(E3(Δ∗
3)) ≥ 1−n−1. Let us denote E def= E1(Δ∗

2)∩
E3(Δ∗

3). Without loss of generality we may assume that P(E) ≥ 1−n−1. To finish the
proof we apply Corollary 1 to obtain

P

(

‖Sr‖2 ≥ z
)

=
∫

P

(

‖Sr‖2 ≥ z
∣
∣ Y = y

)

d PY (y)

=
∫

E
P

(

‖Sr‖2 ≥ z
∣
∣ Y = y

)

d PY (y)

+
∫

Ec
P

(

‖Sr‖2 ≥ z
∣
∣ Y = y

)

d PY (y)

= P(‖ξ‖2 ≥ z) + Rn,

where

|Rn| ≤ Δ∗
4

def�
√
mr tr Γr√

λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

.

Hence, we proved the following bound

P
(

n‖P̂r − Pr‖22 > x
) ≤ P
(‖ξ‖2 ≥ x−

)+ Δ∗
4.

Comparing definition of Δ4 and Δ1 with ♦1 and ♦2 resp. we get the claim of the
theorem. ��

4.3 Approximation in the bootstrap world

The main result of this section is the following theorem.

Theorem 5 Assume that the conditions of Theorem 1 hold. Let ξ◦ ∼ N (0, Γ ◦
r ), where

Γ ◦
r is defined below in (24). For all x : x > 0 the following bounds hold with P-

probability at least 1 − n−1:

P
◦ (n‖P◦

r − P̂r‖22 > x
)

≤ P
◦ (‖ξ◦‖2 ≥ x−

)

+ n−1,

P
◦ (n‖P◦

r − P̂r‖22 > x
)

≥ P
◦ (‖ξ◦‖2 ≥ x+

)

− n−1.
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Here, x±
def= x ± ♦3 and

♦3
def� mr

tr3 �

g3r

√

log3 n

n
+ log3 p

n
.

Proof Let us fix an arbitrary x ≥ 0. We introduce the following notations

E◦ def= �◦ − �, Ê◦ def= �◦ − �̂.

and remind Ê = �̂ − �. Applying Lemma 4 we may write

P◦
r − P̂r = P◦

r − Pr − (P̂r − Pr
) = Lr

(

E◦)− Lr
(

Ê
)+ Sr

(

E◦)+ Sr
(

Ê
)

.

It is easy to see that

Lr
(

E◦)− Lr
(

Ê
) = Pr

(

�◦ − �̂
)

Cr + Cr
(

�◦ − �̂
)

Pr
def= Lr

(

Ê◦
)

.

Then

n‖P◦
r − P̂r‖22 = n‖Lr

(

Ê◦) ‖22 + n‖P◦
r − P̂r‖22 − n‖Lr

(

Ê◦) ‖22.

It follows from Theorem 3 that with P - probability at least 1 − n−1

P
◦ (
∣
∣
∣n‖P◦

r − P̂r‖22 − n‖Lr
(

Ê◦) ‖22
∣
∣
∣ ≤ Δ∗

1

)

≥ 1 − n−1,

where

Δ∗
1

def� mr
tr3 �

g3r

√

log3 n

n
+ log3 p

n
.

Introduce the notation x±
def= x ±Δ∗

1. From the previous inequality we may conclude
the following two-sided inequalities

P
◦ (2n‖Pr Ê◦Cr‖22 ≥ x+

)

− n−1 ≤ P
◦ (n‖P◦

r − P̂r‖22 > x
)

≤ P
◦ (2n‖Pr Ê◦Cr‖22 ≥ x−

)

+ n−1.

It follows that we need to estimate the term 2n‖Pr Ê◦Cr‖22. Without loss of generality,

we consider the case of the upper bound only, i.e. we set z
def= x+. Similar calculations

are valid for x−. Analogously to the approximation in theX-world we choose {u j }pj=1
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as an orthonormal basis in Rp. By Parseval’s identity,

2n‖Pr Ê◦Cr‖22 = 2n
p
∑

l,k=1

〈

Pr Ê◦Crul ,uk
〉2

.

Applying the orthogonality of Pr and Cr we obtain

2n‖Pr Ê◦Cr‖22 = 2n
∑

k∈Δr

∑

s �=r

∑

l∈Δs

〈Pr Ê◦Crul ,uk〉2.

Let us fix arbitrary uk, k ∈ Δr and ul , l ∈ Δs, s �= r . For simplicity we denote them
by u and v respectively. We may write

S◦(u,v) def= √
2n〈Pr Ê◦Crv,u〉 =

√

2

n

n
∑

i=1

ηi 〈u,Y i 〉〈v,Yi 〉,

where we denoted ηi
def= wi − 1,Y i

def= Pr Xi and Yi
def= Cr Xi . Since ηi ∼ N (0, 1),

then

S◦(u,v) d= ξ◦(u, v) ∼ N
(

0,Var◦
(

ξ◦(u, v)
))

, Var◦(ξ◦(u, v)) = 2

n

n
∑

i=1

〈u,Y i )
2(v,Yi 〉2.

Let us fix another pair ũ, ṽ and investigate the covariance

Γ ◦
r ((u, v) , (ũ, ṽ))

def= Cov◦ (ξ◦ (u, v) , ξ◦ (ũ, ṽ)
)

.

Direct calculations show that

Γ ◦
r ((u, v) , (ũ, ṽ)) = 2

n

n
∑

i=1

〈u,Y i 〉〈ũ,Y i 〉〈v,Yi 〉〈ṽ,Yi 〉.

We form the following covariance matrix

Γ ◦
r

def= [Γ ◦ ((u, v) , (ũ, ṽ))
]

((u,v),(ũ,ṽ)) . (24)

Denote ξ◦ def= (ξ◦(uk,ul), k ∈ Δr , s �= r , l ∈ Δs). Then

P
◦ (2n‖Pr Ê◦Cr‖22 ≥ z

)

= P
◦ (‖ξ◦‖2 ≥ z

)

.

Comparing definition of Δ1 and ♦3 we conclude the claim of the theorem. ��
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4.4 Gaussian comparison

In this section we prove the following Lemma.

Lemma 1 Let ξ ∼ N (0, Γr ) and ξ◦ ∼ N (0, Γ ◦
r ), where Γr and Γ ◦

r are defined
in (7), (24) respectively. Let m be defined by the relations (8).

Then the following holds with P-probability al least 1 − n−1:

sup
x≥0

|P(‖ξ‖2 ≥ x) − P
◦(‖ξ◦‖2 ≥ x)| ≤ ♦4,

where

♦4
def� m tr Γr√

λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

+ tr(I − Πm)Γr√
λ1(Γr )λ2(Γr )

.

Here Πm is a projector on the subspace spanned by the eigenvectors of Γr corre-
sponding to its largest m eigenvalues.

Proof Without loss of generality we may assume that ♦4 � 1. The proof is based on
the application of Corollary 2. First we estimate ‖Γ ◦

r − Γr‖. Introduce the following
notations

Γ ◦
ri

def= [Γ ◦
ri ((uk1 ,ul1), (uk2 ,ul2)), k1, k2 ∈ Δr , l1 ∈ Δs1 , l2 ∈ Δs2 , s1, s2 �= r ],

where

Γ ◦
ri ((uk1 ,ul1), (uk2 ,ul2))

def= 2

√

μ2
r

(μr − μs1)
2(μr − μs2)

2 ηuk1 ,iηuk2 ,iηul1 ,iηul2 ,i .

In these notations we may rewrite Γ ◦
r as follows

Γ ◦
r ((uk1 ,ul1), (uk2 ,ul2)) = 1

n

n
∑

i=1

Γ ◦
ri ((uk1 ,ul1), (uk2 ,ul2)).

Due to Lemma 9 we need to show that there exists R = R(n, Γr ) such that

max
1≤k≤n

‖Γ ◦
rk − Γr‖ � R,

and estimate

σ̃ 2 =
∥
∥
∥

n
∑

k=1

E(Γ ◦
rk − Γr )

2
∥
∥
∥ = n
∥
∥
∥E(Γ ◦

r1 − Γr )
2
∥
∥
∥.
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It is obvious that ‖Γ ◦
ri − Γr‖ ≤ ‖Γ ◦

ri‖ + ‖Γr‖. Let Zr j
def= (ηuk , jηul , j , s �= r , l ∈

Δs, k ∈ Δr )
T, j = 1, . . . , n. Since Γ ◦

r1 = Zr1ZT
r1 we obtain

‖Γ ◦
r1‖ = ‖Zr1‖2 = 2

∑

s �=r

∑

k∈Δr

∑

l∈Δs1

μsμr

(μs − μr )2
η2uk ,1η

2
ul ,1.

ApplyingLemma5wegetP
(‖Γ ◦

r1‖ � log2 n tr Γr
) ≥ 1−n−1.Moreover, it is obvious

that ‖Γr‖ ≤ tr Γr . To bound max1≤i≤n ‖Γ ◦
ri − Γr‖ we introduce the following event

E1 def=
{

max
1≤i≤n

‖Γ ◦
ri − Γr‖ � log2 n tr Γr .

}

.

Using the union bound we may show that P(Ec
1) ≤ n−1. It remains to estimate σ̃ 2.

Since σ̃ 2 = n‖E(Γ ◦
r1)

2 − Γ 2
r ‖ we first calculate E(Γ ◦

r1)
2. It follows that

E(Γ ◦
r1)

2 = E Zr1Z
T
r1Zr1Z

T
r1 = E ‖Zr1‖2Zr1Z

T
r1.

Let us fix some s1, s2 �= r , k1, k2 ∈ Δr , l1 ∈ Δs1, l2 ∈ Δs2 . Then the entry of E(Γ ◦
r1)

2

in the position ((uk1 ,ul1), (uk2 ,ul2)) has the following form

E
4μr

√
μs1μs2

|μs1 − μr ||μs2 − μr |ηuk1ηuk2ηul1ηul2
∑

s �=r

∑

k∈Δr

∑

l∈Δs

μsμr

(μs − μr )2
η2ukη

2
ul ,

where ηuk , ηul , k ∈ Δr , l ∈ Δs, s �= r , are i.i.d. N (0, 1) r.v. It is easy to check that
all off-diagonal entries are equal zero and it remains to estimate the diagonal entries
only. We obtain

E
4μrμs1

(μs1 − μr )2
η2uk1

η2ul1

∑

s �=r

∑

k∈Δr

∑

l∈Δs

μsμr

(μs − μr )2
η2ukη

2
ul = E S1 E S2,

where

S1
def= μ2

r

∑

k∈Δr

η2ukη
2
uk1

,

S2
def= 4
∑

s �=r

∑

l∈Δs

μsμs1

(μs − μr )2(μs1 − μr )2
η2ulη

2
ul1

.

We get that E S1 � μ2
r mr and

E S2 �
∑

s �=r

∑

l∈Δs

μsμs1

(μs − μr )2(μs1 − μr )2
.
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Hence, σ̃ 2 � n‖Γr‖ tr Γr = n‖Γr‖2r(Γr ). Let us introduce the following quantity

Δ∗
1

def� ‖Γr‖r 1
2 (Γr )

(√

log n

n
+
√

log p

n

)

and the event E2 def= {‖Γ ◦
r − Γr‖ ≤ Δ∗

1}. Applying Lemma 9 we get

P(Ec
2 ) ≤ P(Ec

2 ∩ E1) + n−1 ≤ 2n−1.

To apply Corollary 2 we also need to show that the remaining part of the trace of Γ ◦
r

concentrates around its non-random counterpart. We take m and Πm as stated in the
lemma and let Π◦

m be a projector on the subspace spanned by the eigenvectors of Γ ◦
r

corresponding to its largest m eigenvalues. It is easy to check that tr(I − Π◦
m)Γ ◦

r ≤
tr(I − Πm)Γ ◦

r . Denote Πm
def= I − Πm and

E3 def=
{∣
∣
∣
∣
trΠmΓ ◦

r − trΠmΓr

∣
∣
∣
∣
� trΠmΓr

log3 n√
n

}

.

It is easy to check that

trΠmΓ ◦
r = 1

n

n
∑

j=1

tr(ΠmZr j )(ΠmZr j )
T = 2

n

n
∑

j=1

∑

s∈Tr

∑

k∈Δr

∑

l∈Δs

μsμr

(μs − μr )2
η2uk , jη

2
ul , j ,

where Tr is the set of indices corresponding to the smallest d − m eigenvalues of
Γr . Moreover, simple calculations show that E trΠmΓ ◦

r = trΠmΓr . We introduce

additional notations. Denote γsr
def= μsμr

(μs−μr )2
and

Q j
def=
∑

s∈Tr

∑

k∈Δr

∑

l∈Δs

γsr [η2uk , jη2ul , j − 1], j = 1, . . . , n.

It is obvious that Q j are i.i.d. r.v. We estimate

E

∣
∣
∣
∣
trΠmΓ ◦

r − trΠmΓr

∣
∣
∣
∣

m

= 2m

nm
E

∣
∣
∣
∣

n
∑

j=1

Q j

∣
∣
∣
∣

m

.

Applying Rosenthal’s inequality (see e.g. [17]) we obtain

E

∣
∣
∣
∣

n
∑

j=1

Q j

∣
∣
∣
∣

m

≤ Cm
(

m
m
2 n

m
2 E

m
2 Q2

1 + mmn E |Q1|m
)

.

It remains to estimate E |Q1|m . We may rewrite Q1 as follows

Q1 = AQ11 + Q11Q12 + mr Q12,
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where

A
def=
∑

s∈Tr

∑

l∈Δs

γsr , Q11
def=
∑

k∈Δr

[η2uk − 1],

Q12
def=
∑

s∈Tr

∑

l∈Δs

γsr [η2ul − 1].

Applying Lemma 5 we estimate each term separately and show that

E |Q1|m � Cmm2m trm ΠmΓr .

Hence,

E

∣
∣
∣
∣
trΠmΓ ◦

r − trΠmΓr

∣
∣
∣
∣

m

≤ Cmm3m

n
m
2

trm ΠmΓr .

Choosing m � log n and applying Markov’s inequality we get P(E3) ≥ 1 − n−1.
Denote now E = E2 ∩ E3. It follows that P(E) ≥ 1− 1

n . Applying Corollary 2 we get
that for all w ∈ E

sup
x≥0

|P(‖ξ‖2 ≥ x) − P
◦(‖ξ◦‖2 ≥ x)| � Δ∗

2,

where

Δ∗
2

def= ‖Γr‖mr
1
2 (Γr )√

λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

+ tr(I − Πm)Γr√
λ1(Γr )λ2(Γr )

.

Comparing Δ∗
2 with ♦4 we finish the proof of this lemma. ��

4.5 Proof of themain result

This section collects the results of the previous sections and provides a proof of The-
orem 1.

Proof of Theorem 1 Let us fix an event E ⊂ Ω which holds with P - probability at least
1− 1

n . Suppose that for all ω ∈ E the statements of Theorems 4, 5 and Lemma 1 hold.
First we show that for all x > 0

∣
∣P

◦ (n‖P◦
r − P̂r‖22 > x

)

− P

(

n‖P̂r − Pr‖22 > x
)∣
∣ � ♦, (25)

where ♦ is defined in (10). Applying Theorem 5 we may show that

P
◦ (n‖P◦

r − P̂r‖22 > x
)

≥ P
◦ (‖ξ◦‖2 ≥ x + ♦3

)

− n−1,
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where we recall that

♦3 � mr
tr3 �

g3r

√

log3 n

n
+ log3 p

n
.

Lemma 1 implies

P
◦ (n‖P◦

r − P̂r‖22 > x
)

≥ P

(

‖ξ‖2 ≥ x + ♦3

)

− ♦4 − n−1, (26)

where

♦4 � ‖Γr‖mr
1
2 (Γr )√

λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

+ tr (I − Πm) Γr√
λ1(Γr )λ2(Γr )

.

As it is clear from (26) we need to get bounds for ♦3-band of the squared norm of the
Gaussian element ξ . For this purpose one can use Lemma 3. Then we get from (26)

P
◦(n‖P◦

r − P̂r‖22 > x) ≥ P(‖ξ‖2 ≥ x) − ♦3 − ♦4,

where

♦3 � mr tr3 �

g3r
√

λ1(Γr )λ2(Γr )

√

log3 n

n
+ log3 p

n
.

Finally, applying Theorem 4 and Lemma 3 we get

P
◦ (n‖P◦

r − P̂r‖22 > x
)

≥ P

(

n‖P̂r − Pr‖22 > x
)

− ♦1 − ♦2 − ♦3 − ♦4,

where

♦1 � m1/2
r tr Γr√

λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

,

♦2 � mr tr3 �

g3r
√

λ1(Γr )λ2(Γr )

√

log3 n

n
.

Similarly we may write down all inequalities in the opposite direction. It is easy to
see that ♦1 + ♦2 + ♦3 + ♦4 ≤ ♦, where

♦ � m tr Γr√
λ1(Γr )λ2(Γr )

(√

log n

n
+
√

log p

n

)

+ tr(I − Πm)Γr√
λ1(Γr )λ2(Γr )

+ mr tr3 �

g3r
√

λ1(Γr )λ2(Γr )

⎛

⎝

√

log3 n

n
+
√

log3 p

n

⎞

⎠ .
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Hence, we finish the proof of (25). Now we show that for all w ∈ E

γα+ε1 ≤ γ ◦
α ≤ γα−ε2 (27)

with ε1
def= 2♦, ε2

def= ♦. It follows from Theorem 4, Lemma 3 and definition of ♦
that

P

(

n‖P̂r − Pr‖22 > γα

)

≥ α − ♦.

Moreover, bydefinition (3) ofγα wewriteP(n‖P̂r−Pr‖22 > γα) ≤ α. Both inequalities
imply that

α − ♦ ≤ P

(

n‖P̂r − Pr‖22 > γα

)

≤ α. (28)

The proof of (27) follows from this inequality and (25):

P
◦ (n‖P̂r − Pr‖22 > γα−ε2

)

≤ P

(

n‖P̂r − Pr‖22 > γα−ε2

)

+ ♦ ≤ α,

P
◦ (n‖P̂r − Pr‖22 > γα+ε1

)

≥ P

(

n‖P̂r − Pr‖22 > γα+ε1

)

− ♦ ≥ α.

Hence, applying (27) and (28) we write

P

(

n‖P̂r − Pr‖22 > γ ◦
α

)

− α ≤ P

(

n‖P̂r − Pr‖22 > γα+ε1

)

− α ≤ 2♦,

P

(

n‖P̂r − Pr‖22 > γ ◦
α

)

− α ≥ P

(

n‖P̂r − Pr‖22 > γα−ε2

)

− α ≥ −2♦.

The last two inequalities conclude the claim of the theorem. ��

5 Gaussian comparison and anti-concentration inequalities

In this sectionwe obtain bounds for theKolmogorov distance between the probabilities
of two Gaussian elements to hit a ball in a Hilbert space. The key property of these
bounds is that they are dimension-free and depend on the nuclear (Schatten-one) norm
of the difference between the covariance operators of the elements. We start from the
discussion of the Gaussian comparison inequality.

Due to the Pinsker inequality the total variation distance between any probability
measures P1 and P2 on (Ω,F) may be bounded as follows

sup
A∈F

|P1(A) − P2(A)| ≤ √KL(P1,P2)/2, (29)

where

KL(P1,P2)
def=
∫

log
d P1

d P2
d P1
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is the Kullback–Leibler divergence between P1,P2; see e.g. [21, pp. 88–132]. Let ξ

and η be Gaussian elements in a real separable Hilbert space H with zero mean and

covariance matrices �ξ ,�η resp. Assume that ‖�− 1
2

ξ �η�
− 1

2
ξ − I‖ ≤ 1/2. Taking

P1
def= N (0,�ξ ) and P2

def= N (0,�η) one may check (see e.g. [19]) that

KL(P1,P2) ≤ ‖�− 1
2

ξ �η�
− 1

2
ξ − I‖22/2.

In particular, the last inequality and (29) imply that

sup
x>0

|P(‖ξ‖ ≤ x) − P(‖η‖ ≤ x)| ≤ ‖�− 1
2

ξ �η�
− 1

2
ξ − I‖2/2. (30)

To apply this inequality one have to estimate the Hilbert–Schmidt norm in the r.h.s.
of (30). Below we will show that using Bernstein’s matrix inequality we may control

the operator norm ‖�− 1
2

ξ �η�
− 1

2
ξ −I‖ and the r.h.s. of (30) may be bounded up to some

constant by
√
p‖�− 1

2
ξ �η�

− 1
2

ξ − I‖. The following lemma shows that it is possible
to derive a dimensional free bound if we limit ourselves to the centred balls from the
beginning.

We recall notation of the nuclear (Schatten-one) norm. For a self-adjoint operator
A with eigenvalues λk(A), k ≥ 1, let us denote by ‖A‖1 the nuclear norm by

‖A‖1 def= tr |A| =
∞
∑

k=1

|λk(A)|.

We suppose below thatA is a nuclear operator and ‖A‖1 < ∞. Let�ξ be a covariance
operator of an arbitrary Gaussian random element in H. By {λkξ }k≥1 we denote the
set of its eigenvalues arranged in the non-increasing order, i.e. λ1ξ ≥ λ1ξ ≥ . . ., and

let �ξ
def= diag(λ jξ )

∞
j=1. Note that

∑∞
j=1 λ jξ < ∞. The following lemma is the main

result of this section.

Lemma 2 Let ξ and η be Gaussian elements in H with zero mean and covariance
operators �ξ and �η respectively. The following inequality holds

sup
x≥0

∣
∣
∣P

(

‖ξ‖2 ≤ x
)

− P

(

‖η‖2 ≤ x
)∣
∣
∣ �
(

1
√

λ1ηλ2η
+ 1
√

λ1ξ λ2ξ

)

♦0,

where ♦0
def= ‖�ξ − �η‖1.

More general problem to obtain the upper bounds for the closeness of two Gaussian
measures with different means and covariance operators in the class of balls [9].

We complement the result of Lemma 2 with several remarks. The first remark is
that by the Weilandt–Hoffman inequality, ‖�ξ − �η‖1 ≤ ‖�ξ − �η‖1, see e.g. [15].
This yields the bound in terms of the nuclear norm of the difference �ξ − �η, which
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may be more useful in a number of applications. The result of Lemma 2 may be also

rewritten in terms of the operator norm ‖�− 1
2

ξ �η�
− 1

2
ξ − I‖.

Corollary 1 Under assumptions of Lemma 2 the following bound for ♦0 holds

♦0 ≤ ‖�− 1
2

ξ �η�
− 1

2
ξ − I‖ tr�ξ .

Proof The proof follows directly from the following well known inequality ‖AB‖1 ≤
‖A‖1‖B‖. ��
In the current paper we will also use the following corollary of Lemma 2. Denote by
e jξ , j ≥ 1—orthonormal eigenvectors of �ξ and let Πξ,m

def= ∑m
k=1 e jξ e

T
jξ

Corollary 2 Let m : 1 ≤ m < ∞. Under assumptions of Lemma 2 the following bound
for ♦0 holds

♦0 ≤ m‖�ξ − �η‖ + tr(I − Πξ,m)�ξ + tr(I − Πη,m)�η. (31)

Proof The proof is obvious. ��
Remark 5 It is easy to see that we may assume without loss of generality that �ξ and
�η are diagonal matrices. Then the last two terms in (31) are the sums of eigenvalues
λ jξ , λ jη, j ≥ m + 1.

In the next lemmawe show that onemay obtain dimensional free anti-concentration
inequality for the squared norm of a Gaussian element with dependence on the first
two largest eigenvalues of � only.

Lemma 3 (Δ-band of the squared norm of a Gaussian element) Let ξ be a Gaussian
element in H with zero mean and covariance operator �ξ . Then for arbitrary Δ > 0
and any λ > λ1

P(x < ‖ξ‖2 < x + Δ) ≤
[

e−x/(2 λ)

2
√

λ1ξ λ2ξ

∞
∏

j=3

(1 − λ jξ /λ)−1/2
]

Δ, (32)

where λ1ξ ≥ λ2ξ ≥ · · · are the eigenvalues of �ξ . In particular, one has

sup
x>0

P(x < ‖ξ‖2 < x + Δ) ≤ Δ
√

λ1ξ λ2ξ
. (33)

Remark 6 The infinite product in the r.h.s. of (32) is convergent. Indeed, taking loga-
rithm and using log(1 + x) ≥ x/(x + 1) for x > −1 we obtain

0 < −1

2
log

∞
∏

j=3

(1 − λ jξ /λ) ≤ 1

2(λ − λ1ξ )

∞
∑

j=3

λ jξ < ∞,

where we also used the fact that �ξ is a nuclear operator and ‖�ξ‖1 < ∞. Taking
λ = ‖�ξ‖1 we get∏∞

j=3 (1 − λ jξ /λ)−1/2 ≤ √
e.
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Remark 7 The right-hand sides of (32) and (33) depend on first two eigenvalues of
�ξ . In general it is impossible to get similar bounds of order O(Δ) with dependence
on λ1ξ only. It is easy to get in one dimensional case, i.e. when λ1ξ = 1 and λ2ξ = 0,
that for all positive Δ ≤ log 2 one has

sup
x>0

P(x < ‖ξ‖2 < x + Δ) ≥ Δ1/2/(2
√

π).

Proof of Lemma 2 Without loss of generalitywemay assume that�ξ = �ξ ,�η = �η,

where �ξ
def= diag(λ1ξ , λ2ξ , . . .), �η

def= diag(λ1η, λ2η, . . .) and λ1ξ ≥ λ1ξ ≥ · · ·
and similarly in decreasing order for λiη’s.

Fix any s : 0 ≤ s ≤ 1. Let Z(s) be a Gaussian random element in H with zero
mean and diagonal covariance operator �(s):

�(s)
def= s�ξ + (1 − s)�η.

Denote by λ1(s) ≥ λ2(s) ≥ · · · -eigenvalues of �(s). It is straightforward to check
that the characteristic function f (t, s) of ‖Z(s)‖22 can be written as

f (t, s) = E exp{i t‖Z(s)‖2} =
∞
∏

j=1

(1 − 2i tλ j (s))
−1/2

= exp

{

− 1

2

∞
∑

j=1

log(1 − 2i tλ j (s))

}

. (34)

Indeed, one may use the following representation

Z(s)
d=

∞
∑

j=1

√

λ j (s) Z j e j , (35)

where Z j , j ≥ 1, are i.i.d. N (0, 1) r.v. and e j , j ≥ 1, be the standard orthonormal
basis in H. Then it is sufficient to apply an expression for the characteristic function
of Z2

j . We rewrite f (t, s) in terms of trace-class operators

f (t, s) = exp
{− tr log

(

I − 2i t�(s)
)

/2
}

.

It is well known, see e.g. [7, Sect. 6.2, p. 168], that for a continues d.f. F(x) with c.f.
f (t) we may write

F(x) = 1

2
+ i

2π
lim

T→∞V.P.
∫ T

−T
e−i t x f (t)

dt

t
,
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where V.P. stands for the principal value of the integral. Let us fix an arbitrary x > 0
and denote Δ(x)

def= P(‖ξ‖2 ≤ x) − P(‖η‖2 ≤ x). Then

Δ(x) = i

2π
lim

T→∞V.P.
∫ T

−T

f (t, 1) − f (t, 0)

t
e−i t x dt .

Since

f (t, 1) − f (t, 0) =
∫ 1

0

∂ f (t, s)

∂s
ds,

changing the order of integration we get

Δ(x) = i

2π
lim

T→∞V.P.
∫ 1

0

∫ T

−T

∂ f (t, s)/∂s

t
e−i t x dt ds

It is easy to check that

∂ f (t, s)/∂s = i t f (t, s) tr
{

(�ξ − �η)G(t, s)
}

,

where G(t, s)
def= (I − 2i t �(s))−1. Hence,

Δ(x) = − 1

2π
lim

T→∞

∫ 1

0
tr
{

(�ξ − �η)Ĝ(T , s)
}

ds, (36)

where

Ĝ(T , s)
def=
∫ T

−T
f (t, s)G(t, s)e−i t x dt, s ∈ [0, 1], T > 0.

We show that for any T > 0 and s ∈ [0, 1] one has

‖Ĝ(T , s)‖ ≤ c√
λ1(s)λ2(s)

. (37)

For this aim we denote the eigenvalues of G(t, s) by μ j (t, s)
def= (1 − 2i tλ j (s))−1.

Let Z j (s), j ≥ 1 be independent exponentially distributed r.v. with mean 2λ j (s) (we
write Exp(2λ j (s))), which are also independent of Zk, k ≥ 1. Then

E eit Z j = μ j (t, s). (38)
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1124 A. Naumov et al.

Applying (38) we obtain

f (t, s)μ j (t, s) = E exp

(

i t
[∑

k≥1

λk(s)Z
2
k + Z j

]
)

= E eita
2
j · E
(

exp
(

i t
[

λ1(s)Z
2
1 + λ2(s)Z

2
2

])
)

, (39)

where a2j
def= Z j +∑k≥3 λk(s)Z2

k . We fix j and get a bound for

I
def=
∣
∣
∣
∣

∫ T

−T
f (t, s)μ j (t, s)e

−i t x dt

∣
∣
∣
∣
.

Using (39) we obtain

I ≤ E

∣
∣
∣
∣

∫ T

−T
eit(a

2
j−x)

E exp

(

i t
[

λ1(s)Z
2
1 + λ2(s)Z

2
2

]
)

dt

∣
∣
∣
∣
.

It follows from [8, Lemma 2.2] (see also [16, p. 242]) that there exists an absolute
constant c such that

∣
∣
∣
∣

∫ T

−T
eit(a

2
j−x)

E exp

(

i t
[

λ1(s)Z
2
1 + λ2(s)Z

2
2

]
)

dt

∣
∣
∣
∣
≤ c√

λ1(s)λ2(s)
. (40)

For readers convenience we repeat the proof of this inequality below in Lemma 10.
Applying (40)we get that the absolute values of all eigenvalues of Ĝ(T , s) are bounded
by c(λ1(s)λ2(s))−1/2 and, therefore, we obtain (37). Hence

∣
∣tr
{

(�ξ − �η)Ĝ(T , s)
}∣
∣ ≤ ‖�ξ − �η‖1‖Ĝ(T , s)‖ ≤ c‖�ξ − �η‖1√

λ1(s)λ2(s)
.

The last inequality and (36) imply the claim of the lemma. ��
Proof of Lemma 3 To simplify all notations we will omit index ξ .

The inequality (33) follows immediately from (32) if we take λ = ‖�‖1 and use
Remark 6.

In order to prove (32) it is sufficient to show that for a density function g(u) of ‖ξ‖22
one has

g(u) ≤ e−u/(2 λ)

2
√

λ1λ2

∞
∏

j=3

(1 − λ j/λ)−1/2. (41)

According to representation (35) ‖ξ‖2 d= ∑∞
j=1 λ j Z2

j , where Z1, Z2, . . . are i.i.d.
N (0, 1) r.v. We denote by g(m, u), m = 1, 2, . . . (resp. g j (u), j = 1, 2, . . . ) the
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density function of
∑m

j=1 λ j Z2
j (resp. λ j Z2

j ). We have for all j = 1, 2, . . . and any
λ > λ1

g j (u) = (2πuλ j )
−1/2d j (u)

≤ (2πuλ j )
−1/2 exp{−u/(2λ)}d j (λλ j/(λ − λ j ), u), (42)

where d j (u) = d(λ j , u) = exp{−u/(2λ j )}. Moreover,

(2πu)−1/2(λ − λ j )
1/2/(λλ j )

1/2 d j (λλ j/(λ − λ j ), u)

is the density function of Z2
j

√

λλ j/(λ − λ j )
1/2. First consider g(2, u):

g(2, u) =
∫ u

0
g1(u − v)g2(v)dv

≤ exp{−u/(2λ)}
2π

√
λ1λ2

∫ 1

0

dz√
(1 − z)z

= exp{−u/(2λ1)}
2
√

λ1λ2
. (43)

Therefore, due to (42) and (43) we obtain

g(3, u) =
∫ u

0
g2(u − v)g3(v)dv

≤ exp{−u/(2λ)}
2
√

λ1λ2
√
2πλ3

∫ u

0

d3(λλ3/(λ − λ3), v)√
v

dv

≤ exp{−u/(2λ)}
2
√

λ1λ2
(1 − λ3/λ)−1/2.

In a similar way by induction we can get for any m > 3 that

g(m, u) ≤ e−u/(2 λ)

2
√

λ1λ2

m
∏

j=3

(1 − λ j/λ)−1/2. (44)

Now take an arbitrary ε > 0 and any integer m > 0. Let 0 < μ < 1/(2λ j ) for all
j ≥ m + 1. By Markovs inequality and using the moment generating function of χ2

we obtain

P

( ∞
∑

j=m+1

λ j Z
2
j ≥ ε2

)

≤ e−με2
∞
∏

j=m+1

E eμλ j Z2
j = e−με2

∞
∏

j=m+1

1
√

1 − 2μλ j
.

Let us choose μ
def= 1/(4

∑∞
j=m+1 λ j ). Taking logarithm and using log(1 + x) ≥

x/(x + 1) for x > −1 we obtain

0 < −1

2
log

∞
∏

j=m+1

(1 − 2μλ j ) ≤ μ

1 − 2μλm+1

∞
∑

j=m+1

λ j <
1

4(1 − 1/2)
= 1/2,
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It follows now that
∏∞

j=m+1 (1 − 2μλ j )
−1/2 ≤ √

e < 2. Hence,

P

( ∞
∑

j=m+1

λ j Z
2
j ≥ ε2

)

≤ 2 exp

{

− ε2
(

4
∞
∑

j=m+1

λ j

)−1}

.

Since ‖�‖1 < ∞ it follows that
∑∞

j=m+1 λ j tends to zero asm goes to infinity. Hence,

there exists M
def= M(ε) such that for all m ≥ M

P

( ∞
∑

j=m+1

λ j Z
2
j ≥ ε2

)

≤ ε2.

Therefore, for any m ≥ M

P(x − ε < ‖ξ‖22 < x + ε) ≤ ε2 + 2(ε + ε2) sup
y∈T (ε,x)

g(m, y), (45)

where T (ε, x) = {y ∈ R
1 : x − ε − ε2 ≤ y ≤ x + ε + ε2}. Dividing the right-hand

side of (45) by 2ε we obtain (41) from (44) as ε tends to 0. ��
Acknowledgements The authors are grateful to the Associate Editor and the Reviewers for the careful
reading of the manuscript and pertinent comments. Their constructive feedback helped to improve the
quality of thiswork and shape its final form. Thiswork has been funded by theRussianAcademic Excellence
Project ‘5-100’. Results of Section 5 have been obtained under support of the RSF Grant No. 18-11-00132.

A Auxiliary results

A.1 Concentration inequalities for sample covariances and spectral projectors in
X-world

In this section we present concentration inequalities for sample covariance matrices
and spectral projectors in X-world.

Theorem 6 Let X , X1, . . . , Xn be i.i.d. centered Gaussian random vectors inRp with
covariance � = E(XXT). Then

E ‖�̂ − �‖ � ‖�‖
(√

r(�)

n
+ r(�)

n

)

.

Moreover, for all t ≥ 1 with probability 1 − e−t

‖�̂ − �‖ � ‖�‖
[√

r(�)

n

∨ r(�)

n

∨
√

t

n

∨ t

n

]

.

Proof See [11, Theorem 6, Corollary 2]. ��
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To deal with spectral projectors we need the following result which was proved in
[12]. Let us introduce additional notations. We denote by �̃ an arbitrary perturbation
of � and Ẽ def= �̃ − �. Recall that

Cr
def=
∑

s �=r

1

μr − μs
Ps .

Lemma 4 Let �̃ be an arbitrary perturbation of � and let P̃r be the corresponding
projector. The following bound holds:

‖P̃r − Pr‖ ≤ 4
‖Ẽ‖
gr

.

Moreover, P̃r − Pr = Lr (Ẽ) + Sr (Ẽ), where Lr (Ẽ)
def= Cr ẼPr + Pr ẼCr and

‖Sr (Ẽ)‖ ≤ 14

(‖Ẽ‖
gr

)2

.

Proof See [12, Lemma 1]. ��
Theorem 7 (Concentration results in X-world) Assume that the conditions of Theo-
rem 1 hold. Then for all t : 1 ≤ t ≤ n1/4 and

tr�

gr

(√

t

n
+
√

log p

n

)

� 1, (46)

the following bound holds with probability at least 1 − e−t

∣
∣
∣‖P̂r − Pr‖22 − ‖Lr (E)‖22

∣
∣
∣ � mr

‖�‖3r3(�)

g3r

(
t

n

)3/2

.

Proof The proof follows from [12, Theorems 3, 5]. ��

A.2 Concentration inequalities for sums of random variables and randommatrices

In what follows for a vector a = (a1, . . . , an) we denote ‖a‖s def= (∑n
k=1 |ak |s

)1/s .
For a random variable X and r > 0 we define the ψr -norm by

‖X‖ψr

def= inf{C > 0 : E exp(X/C)r ≤ 2}.

If a random variable X is such that for any p ≥ 1,E1/p |X |p ≤ p1/r K , for some
K > 0, then ‖X‖ψr ≤ cK where c > 0 is a numerical constant.
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1128 A. Naumov et al.

Lemma 5 Let X , Xi , i = 1, . . . , n be i.i.d. random variables with E X = 0 and
‖X‖ψr ≤ 1, 1 ≤ r ≤ 2. Then there exists some absolute constant C > 0 such that for
all p ≥ 1

E

∣
∣
∣
∣
∣

n
∑

k=1

ak Xk

∣
∣
∣
∣
∣

p

≤ (Cp)p/2‖a‖p
2 + (Cp)p‖a‖p

r∗ ,

where a = (a1, . . . , an) and 1/r + 1/r∗ = 1.

Proof See [1, Lemma 3.6]. ��
Lemma 6 If 0 < s < 1 and X1, . . . , Xn are independent random variables satisfying
‖X‖ψs ≤ 1, then for all a = (a1, . . . , an) ∈ R

n and p ≥ 2

E

∣
∣
∣
∣
∣

n
∑

k=1

ak Xk

∣
∣
∣
∣
∣

p

≤ (Cp)p/2‖a‖p
2 + Cs p

p/s‖a‖p
p.

Moreover, for s ≥ 1/2, Cs is bounded by some absolute constant.

Proof See [1, Lemma 3.7]. ��
Lemma 7 Let η1, . . . , ηn be i.i.d. standard normal random variables. For all t ≥ 1

P

(∣
∣
∣
∣
∣

n
∑

i=1

ai (η
4
i − 3)

∣
∣
∣
∣
∣
� t2‖a‖2

)

≤ e−t . (47)

Moreover, if η1, . . . , ηn are i.i.d. standard normal random variables and independent
of η1, . . . , ηn then

P

(∣
∣
∣
∣
∣

n
∑

i=1

ai (η
2
i η

2
i − 1)

∣
∣
∣
∣
∣
� t2‖a‖2

)

≤ e−t . (48)

Proof We prove (48) only. The proof of (47) is similar. Let εi , i = 1, . . . , n, be
i.i.d. Rademacher r.v. Denote ξi

def= η2i η
2
i − 1, i = 1, . . . , n. Applying Lemma 6 with

s = 1/2 we write

E |
n
∑

i=1

aiξi |p ≤ 2p E |
n
∑

i=1

aiεiξi |p ≤ C p pp/2‖a‖p
2 + C p p2p‖a‖p

p ≤ C p p2p‖a‖p
2 .

From Markov’s inequality

P

(∣
∣
∣
∣
∣

n
∑

i=1

ai (η
2
i η

2
i − 1)

∣
∣
∣
∣
∣
≥ t2‖a‖2

)

≤ C p p2p

t2p
.

Taking p = t/(Ce)1/2 we finish the proof of the lemma. ��
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Lemma 8 (Matrix Gaussian series) Consider a finite sequence {Ak} of fixed, self-
adjoint matrices with dimension d, and let {ξk} be a finite sequence of independent
standard normal random variables. Compute the variance parameter

σ 2 def=
∥
∥
∥
∥
∥

n
∑

k=1

A2
k

∥
∥
∥
∥
∥

.

Then, for all t ≥ 0,

P

(∥
∥
∥
∥
∥

n
∑

k=1

ξkAk

∥
∥
∥
∥
∥

≥ t

)

≤ 2d exp(−t2/2σ 2).

Proof See in [20, Theorem 4.1]. ��
Lemma 9 (Matrix Bernstein inequality) Consider a finite sequence Xk of indepen-
dent, random, self-adjoint matrices with dimension d. Assume that EXk = 0 and
λmax(Xk) ≤ R almost surely. Compute the norm of the total variance,

σ 2 def=
∥
∥
∥
∥
∥

n
∑

k=1

EX2
k

∥
∥
∥
∥
∥

.

Then the following inequalities hold for all t ≥ 0:

P

(

λmax

(
n
∑

k=1

Xk

)

≥ t

)

≤ d exp

(

− t2/2

σ 2 + Rt/3

)

.

Moreover, if EXk = 0 and EXp
k � p!

2 Rp−2A2
k then the following inequalities hold

for all t ≥ 0:

P

(

λmax

(
n
∑

k=1

Xk

)

≥ t

)

≤ d exp

(

− t2/2

σ̃ 2 + Rt

)

,

where

σ̃ 2 def=
∥
∥
∥

n
∑

k=1

A2
k

∥
∥
∥.

Proof See in [20, Theorem 6.1]. ��

A.3 Auxiliary lemma

Lemma 10 Assume that Z1, Z2 be i.i.d. andN (0, 1). Let λ1, λ2 be any positive num-
bers and b �= 0. There exists an absolute constant c such that
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∣
∣
∣
∣

∫ T

−T
eitb E exp

(

i t
[

λ1Z
2
1 + λ2Z

2
2

]
)

dt

∣
∣
∣
∣
≤ c√

λ1λ2
. (49)

Proof Denote the l.h.s. of (49) by I ′. Using Euler’s formula for complex exponential
function we get for positive g and any d ∈ R

g + id =
√

g2 + d2eiζ , ζ = arcsin
d

√

g2 + d2
.

Hence, by (34) we get

I ′ =
∣
∣
∣
∣
∣

∫ T

−T
exp

(

i tb +
2
∑

k=1

iφk

2

) 2
∏

k=1

(

1 + 4t2λ2k
)−1/4
∣
∣
∣
∣
∣
,

where φk
def= φk(t)

def= arcsin
(

2λk t/(1 + 4t2λ2k)
1
2
)

. Since
∏2

k=1

(

1 + 4t2λ2k
)−1/4

is
even function and φk(t), k = 1, 2, is odd function of t , we may rewrite I ′ as follows

I ′ = 2√
λ1λ2

∣
∣
∣
∣
∣
∣

∫ T

0

1

t
sin

(

tb +
2
∑

k=1

1

2

(

φk − π

2

)) 2
∏

k=1

(

t2λ2k
1 + 4t2λ2k

)1/4

dt

∣
∣
∣
∣
∣
∣

.

We note that

2
∏

k=1

(

t2λ2k
1 + 4t2λ2k

)1/4

≤ √|t |λ2

Hence, to prove (49) it is enough to show that

I ′′ def=
∣
∣
∣
∣
∣
∣

∫ T

1/λ2

1

t
sin

(

tb +
2
∑

k=1

1

2

(

φk − π

2

)) 2
∏

k=1

(

t2λ2k
1 + 4t2λ2k

)1/4

dt

∣
∣
∣
∣
∣
∣

≤ c.

We may rewrite I ′′ as follows

I ′′ ≤ I ′′
1 + · · · + I ′′

4 ,
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where

I ′′
1

def=
∣
∣
∣
∣

∫ T

1/λ2

1

t
sin(tb) dt

∣
∣
∣
∣
,

I ′′
2

def=
∣
∣
∣
∣
∣

∫ T

1/λ2

1

t

[

sin

(

tb +
2
∑

k=1

1

2

(

φk − π

2

))

− sin(tb)

]

dt

∣
∣
∣
∣
∣
,

I ′′
3

def=
∣
∣
∣
∣
∣
∣

∫ T

1/λ2

1

t
sin

(

tb +
2
∑

k=1

1

2

(

φk − π

2

))
⎡

⎣1 −
(

t2λ21
1 + 4t2λ21

)1/4
⎤

⎦ dt

∣
∣
∣
∣
∣
∣

,

I ′′
4

def=
∣
∣
∣
∣
∣

∫ T

1/λ2

1

t
sin

(

tb +
2
∑

k=1

1

2

(

φk − π

2

))

×
⎡

⎣1 −
(

t2λ22
1 + 4t2λ22

)1/4
⎤

⎦

(

t2λ21
1 + 4t2λ21

)1/4

dt

∣
∣
∣
∣
∣
∣

.

The bound I ′′
1 ≤ c is true since for any positive A and B we have

∣
∣
∣
∣

∫ B

A

sin t

t
dt

∣
∣
∣
∣
≤ 2
∫ π

0

sin t

t
dt .

To estimate I ′′
2 we shall use the following inequalities

| sin(x + y) − sin(x)| ≤ |y| for all x, y ∈ R,

0 ≤ π

2
− arcsin(1 − z) ≤ 2

3
2 z

1
2 for 0 ≤ z ≤ 1.

Applying these inequalities we get that

∣
∣
∣
∣
∣
sin

(

tb +
2
∑

k=1

1

2

(

φk − π

2

))

− sin(tb)

∣
∣
∣
∣
∣
≤ c′

λ22t
2
,

where c′ is some absolute constant. Hence,

I ′′
3 ≤ c′

λ22

∫ ∞

1/λ2

1

t3
dt ≤ c.

The estimates for I ′′
3 and I ′′

4 are similar. For simplicity we estimate I ′′
3 only. Applying

the following inequality

0 ≤ 1 −
(

t2λ2k
1 + 4t2λ2k

)1/4

≤ 1

4t2λ22
, k = 1, 2,
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1132 A. Naumov et al.

we obtain that

I ′′
3 ≤ c′′

λ22

∫ ∞

1/λ2

1

t3
dt ≤ c,

where c′′ is some absolute constant. ��
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