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Variance Reduction for Dependent Sequences with Applications to Stochastic
Gradient MCMC∗
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Abstract. In this paper we propose a novel and practical variance reduction approach for additive functionals
of dependent sequences. Our approach combines the use of control variates with the minimization
of an empirical variance estimate. We analyze finite sample properties of the proposed method and
derive finite-time bounds of the excess asymptotic variance to zero. We apply our methodology
to stochastic gradient Markov chain Monte Carlo (SGMCMC) methods for Bayesian inference on
large data sets and combine it with existing variance reduction methods for SGMCMC. We present
empirical results carried out on a number of benchmark examples showing that our variance reduction
method achieves significant improvement as compared to state-of-the-art methods at the expense of
a moderate increase of computational overhead.
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1. Introduction. Variance reduction aims at reducing the stochastic error of a Monte
Carlo estimate; see [39], [42], [25], and [24] for an introduction to this field. Recently one
witnessed a revival of interest in variance reduction techniques for dependent sequences with
applications to Bayesian inference and reinforcement learning among others; see, for instance,
[33], [28], [15], [11], [2], and references therein.

Suppose that we wish to compute the integral of an arbitrary function f : X 7→ R with re-
spect to a probability measure π on a general state-space (X,X ), that is, π(f) =

∫
X f(x)π(dx).

If drawing an independent and identically distributed (i.i.d.) sample from π is an option, a
natural estimator for π(f) is the sample mean

πN (f) := N−1
N−1∑
k=0

f(Xk) , N ∈ N,

where (Xk)
N−1
k=0 is an i.i.d. sample from π. Using the central limit theorem, one can con-

struct an asymptotically valid confidence interval for the value π(f) of the form πN (f) ±
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qN−1/2(Varπ(f))1/2, where q is a quantile of a normal distribution, and Varπ(f) =
∫
X{f(x)−

π(f)}2π(dx). A general way to reduce the variance Varπ(f) is to select another function g in
a set G such that π(g) = 0 and Varπ(f − g)� Varπ(f). Such a function g is called a control
variate. A natural approach to learn g ∈ G is to minimize the empirical variance

Dn(f − g) = (n− 1)−1
n−1∑
k=0

(
f(Xk)− g(Xk)− πn(f − g)

)2
(1.1)

constructed using a new independent learning sample (Xk)
n−1
k=0 . This leads to the empirical

variance minimization (EVM) method recently studied in [6] and [7]. In many problems
of interest, drawing an i.i.d. sample from π is not an option, yet it is possible to obtain a
nonstationary dependent sequence (Xk)

∞
k=0 whose marginal distribution converges to π. This

situation is typical in Bayesian statistics, where π represents a posterior distribution and
(Xk)

∞
k=0 is sampled using Markov chain Monte Carlo (MCMC) methods. Under appropriate

conditions, the central limit theorem also holds, and therefore, it is possible to construct the
asymptotic confidence interval for π(f) of the form[

πN (f)− q

√
V∞(f)

N
, πN (f) + q

√
V∞(f)

N

]
,(1.2)

where V∞(f) is the asymptotic variance defined as

V∞(f) := lim
N→∞

N · E
[(
πN (f)− π(f)

)2]
.(1.3)

A sensible approach is to select a control variate g ∈ G by minimizing an estimate for the
asymptotic variance V∞(f − g). When the spectral estimate of V∞(f − g) is used, this leads
to the empirical spectral variance minimization (ESVM); see [5].

In this paper, special attention is paid to the case when X = Rd and π admits a smooth
and everywhere positive density (also denoted by π) w.r.t. the Lebesgue measure such that
the gradient ∇U := −∇ log π can be evaluated. We study below sampling methods derived
from the discretization of the overdamped Langevin dynamics. It is defined by the following
stochastic differential equation:

dYt = −∇U(Yt) dt+
√

2dWt ,(1.4)

where (Wt)t≥0 is the standard Brownian motion. Note that ∇U does not depend on the
normalizing constant of π which is typically unknown in Bayesian inference. Under some
technical conditions, the distribution of Yt converges to π as t → ∞; see [40]. The gradient-
based MCMC algorithms are based on a time-discretized version of (1.4). In the Bayesian
setting, a computational bottleneck of these algorithms is that the complexity of the gradient
∇U evaluation scales proportionally to the number of observations (sample size) K which can
be very time consuming in the “big data” limit. To alleviate this problem, [46] proposed to
replace the “full” gradient ∇U by a stochastic gradient estimate based on sums over random
minibatches. This algorithm, stochastic gradient Langevin dynamics (SGLD), has emerged as
a key MCMC algorithm in Bayesian inference for large scale datasets. The analysis of SGLD
and its finite sample performance has attracted a wealth of contributions; see, for example,
[30], [45], [34], [14], and the references therein. These works show that the use of stochasticD
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gradient comes at a price: while the resulting estimate of the gradient is still unbiased, its
variance might annihilate the computational advantages of SGLD [14]. Several proposals have
been made to reduce the variance of the stochastic gradient estimate of the “full” gradient,
inspired by several methods, proposed for incremental stochastic optimization; see [41], [28],
and [15]. [20] has investigated the properties of the Stochastic Average Gradient (SAGA)
and Stochastic Variance Reduced Gradient (SVRG) estimators for Langevin dynamics. These
results have been later completed and sharpened by [14], [11], [10]. Other variance reduction
approaches include various subsampling schemes and constructing alternative estimates for
the gradient (see, for instance, [2] and [47]).

The paper is organized as follows. In section 2, we analyze the ESVM approach for
general dependent sequences. In particular, the ESVM method is described in subsection 2.1.
In subsection 2.2, we study the theoretical properties of the ESVM method for asymptotically
stationary dependent sequences. Here we provide a bound for the excess risk V∞(f − ĝn) −
infg∈G V∞(f − g), where a control variate ĝn ∈ G is chosen by minimization of the spectral
variance Vn based on (Xk)

n−1
k=0 , that is, ĝn ∈ arg minVn(f − g). The precise definition of Vn

will be given in subsection 2.1. In section 3, we apply these results to Markov chains which
are uniformly geometrically ergodic in Wasserstein distance. While subsection 3.1 is devoted
to the (unadjusted) Langevin dynamics, in subsection 3.2 we use the ESVM approach for
variance reduction in SGLD-type algorithms. We show that in both cases, the excess variance
can be bounded, with high probability and up to logarithmic factors, as

V∞(f − ĝn)− infg∈G V∞(f − g) = O
(
n−1/2

)
.

This implies asymptotically valid confidence intervals (conditional on the sample used to learn
ĝn) of the form

πN (f − ĝn)± q

√
infg∈G V∞(f − g) + Cn−1/2

N

for some constant C > 0. Note that these intervals can be much tighter than ones in (1.2),
provided that n is large and infg∈G V∞(f − g) is small. The latter condition is satisfied if
the class G is rich enough. In section 4, we illustrate performance of the proposed variance
reduction method on various benchmark problems.

Notations. Let (X, d) be a complete separable metric space. Define the Lipschitz norm of a
real-valued function h by ‖h‖Lip := supx 6=y∈X{|h(y)−h(x)|/d(x, y)}. We denote by Lipd(L) and
Lipb,d(L,B) the class of Lipschitz (resp., bounded Lipschitz) functions on X with ‖h‖Lip ≤ L
(resp., ‖h‖Lip ≤ L and |h|∞ ≤ B). Further, let M1(X) be a set of probability measures

on X. We denote for p ≥ 1, Sp(X, d) := {λ ∈M1(X) :
∫
X dp(x, y)λ(dy) <∞ for all x ∈ X}. For

λ, ν ∈M1(X), we denote their coupling set by Π(λ, ν), i.e., ξ ∈ Π(λ, ν) is the measure on X×X
satisfying for all A ∈ B(X), ξ(A,X) = λ(A) and ξ(X, A) = ν(A). For p ≥ 1 and λ, ν ∈ Sp(X, d),
let W d

p (λ, ν) := infΠ(λ,ν){
∫
X×X dp(x, y) ξ(dx,dy)}1/p be the Wasserstein distance of order p

between λ and ν. For λ, ν ∈M1(X), let KL(λ|ν) be the Kullback–Leibler divergence of λ with
respect to ν, i.e., KL(λ|ν) =

∫
log(dλ/dν)dλ if λ � ν and KL(λ|ν) = ∞ otherwise. Finally,

unless otherwise specified, the symbol . stands for an inequality up to an absolute constant
not depending on parameters of the problem.D
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2. Empirical spectral variance minimization (ESVM).

2.1. Method. Let (Ω,F, (Fk)k≥0,P) be a filtered probability space and (Xk)
∞
k=0 be a

random process adapted to the filtration (Fk)k≥0 and taking values in X. Let f : X → R be
a function such that π(f2) < ∞ and E[f2(Xk)] < ∞ for all k ∈ N. Let also G be a set of
control variates, that is, functions g ∈ G satisfying π(g2) <∞, π(g) = 0, and E[g2(Xk)] <∞
for all k ∈ N. Particular examples of classes G are given below in section 3. Denote the class
of functions h = f − g for g ∈ G by H,

H := {f − g : g ∈ G}.

To shorten notation, we write h̃ = h− π(h) for h ∈ H.
We impose the following covariance stationarity condition on (Xk)

∞
k=0 to ensure that the

asymptotic variance V∞(h) from (1.3) is well-defined for any h ∈ H.

(CS) For any h ∈ H, there exists a symmetric, summable, and positive semidefinite sequence
(ρ(h)(`))`∈Z satisfying the following conditions:

(1) ρ(h)(0) = Varπ(h);

(2) for any ` ∈ N0 and constant R > 0 independent of h and `,∑
k∈N0

|E[h̃(Xk)h̃(Xk+`)]− ρ(h)(`)| ≤ R;

(3) lim
`→∞

∑
k∈N0

|E[h̃(Xk)h̃(Xk+`)]− ρ(h)(`)| = 0.

Proposition 2.1. Assume that the condition (CS) holds. Then, for all h ∈ H, the asymp-
totic variance V∞(h) defined in (1.3) exists and can be represented as

V∞(h) =
∑

`∈Z
ρ(h)(`).(2.1)

Proof. See Appendix A.1.

The spectral variance estimator Vn(h) is based on truncation and weighting of the sample
autocovariance functions:

Vn(h) :=
∑
|`|<bn

wn(`)ρ(h)
n (`),(2.2)

where wn is the lag window, bn is the truncation point, and ρ
(h)
n (`) is the sample autocovariance

function given, for ` ∈ N0, by

ρ(h)
n (`) = ρ(h)

n (−`) := n−1
n−`−1∑
k=0

(
h(Xk)− πn(h)

)(
h(Xk+`)− πn(h)

)
.(2.3)

Here the truncation point bn is an integer depending on n, and the lag window wn is a kernel
of the form wn(`) = w(`/bn), where w is a symmetric nonnegative function supported on
[−1, 1] such that supy∈[0,1] |w(y)| ≤ 1 and w(y) = 1 for y ∈ [−1/2, 1/2]. There are several
other estimates for the asymptotic variance V∞(h); see [22] and the references therein. The
ESVM estimator is obtained by

ĥn ∈ arg minh∈H Vn
(
h
)
.(2.4)

The ESVM method is summarized in Algorithm 2.1.D
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Algorithm 2.1. ESVM method

Input: Two independent sequences: Xn = (Xk)
n−1
k=0 and X′N = (X ′k)

N−1
k=0 .

1. Choose a class G of functions with π(g) = 0 for all functions g ∈ G.

2. Find ĝn ∈ arg ming∈G Vn(f − g), where Vn is computed based on Xn.

Output: πN (f − ĝn) computed based on X′N .

2.2. Theoretical analysis. For our theoretical analysis, instead of looking for a function
with the smallest spectral variance in the whole class H we will perform optimization over a
finite approximation (net) of H. It turns out that both estimators have similar theoretical
properties. Fix some ε > 0. Assuming that the class H is totally bounded, let Hε be a
minimal ε-net in the L2(π)-norm, that is, the smallest possible (finite) collection of functions
Hε ⊂ H with the property that for any h ∈ H there exists hε ∈ Hε such that the distance
between h an hε in L2(π)-norm is less than or equal to ε. The cardinality of Hε is called the
covering number and is denoted by |Hε|. Define

ĥn,ε ∈ arg minh∈Hε Vn(h).

To obtain a quantitative bound for the asymptotic variance of ĥn,ε, we need to specify the
decay rate of the sequence (ρ(h)(`))`∈Z from (CS).

(CD) There exist ς > 0 and λ ∈ [0, 1) such that, for any h ∈ H and ` ∈ N0,∣∣ρ(h)(`)
∣∣ ≤ ςλ`.

The following theorem provides a general bound on the excess of asymptotic variance.

Theorem 2.2. Assume that the conditions (CS) and (CD) hold. Assume additionally that
for any n ∈ N there exists a decreasing continuous function αn satisfying

suph∈H P
(∣∣Vn(h)− E[Vn(h)]

∣∣> t
)
≤ αn(t), t > 0.

Then, for any δ ∈ (0, 1) and ε > 0, it holds with probability at least 1− δ that

V∞(ĥn,ε)− infh∈H V∞(h) . α−1
n

(
δ

2|Hε|

)
+
(√
Rn−1/2 +

√
D
)
bnε+

√
RD bnn

−1/2

+
(
R+ ς(1− λ)−1

)
bnn
−1 + ς(1− λ)−2n−1 + ς(1− λ)−1λbn/2,

where α−1
n is an inverse function for αn and D = suph∈HVarπ(h).

Proof. See Appendix A.2.

Under some additional assumptions on the covering number of H and the function αn(t),
a suitable choice of the size of ε-net and the truncation point bn yields the following high-
probability bound:

V∞(ĥn,ε)− infh∈H V∞(h) . n−1/(2+ρ) for some ρ > 0,

where . stands for inequality up to a constant depending on λ, R, D, and ς. In the next
section we shall apply Theorem 2.2 to the analysis of the ESVM algorithm for dependent
sequences in the unadjusted Langevin algorithm (ULA) and SGLD.D
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3. Applications. In general, Theorem 2.2 can be applied to different types of dependent
sequences satisfying conditions (CS) and (CD). In what follows, we let (X, d) be a complete
separable metric space (equipped with its Borel σ-algebra X ) and consider P to be a Markov
kernel on (X,X ). Let Ω = XN be the set of X-valued sequences endowed with the σ-field
F = XN, (Xk)

∞
k=0 be the coordinate process, and Fk = σ(X`, ` ≤ k) be the canonical filtration.

For every probability measure ξ on (X,X ) there exists a unique probability Pξ on (XN,X⊗N)
such that the coordinate process (Xk)

∞
k=0 is a Markov chain with Markov kernel P and initial

distribution ξ. We denote by Eξ the associated expectation. We focus below on the case where
P is W d

p -uniformly ergodic for p = 1 or p = 2.

(WE)-p There exist x0 ∈ X such that
∫
X d(x0, x)P (x0,dx) <∞ and a constant ∆p(P ) ∈ [0, 1)

such that

sup
(x,x′)∈X2, x 6=x′

W d
p (δxP, δx′P )

d(x, x′)
= ∆p(P ) .

[18, Theorem 20.3.4] shows that if (WE)-p holds for some p ≥ 1, then P admits a unique
invariant probability measure which is denoted by π below. Moreover, π ∈ Sp(X, d) and for
any ξ ∈ Sp(X, d),

W d
p (ξPn, π) ≤ ∆n

p (P )W d
p (ξ, π) , n ∈ N.(3.1)

If there is no risk of confusion, we denote for simplicity ∆p = ∆p(P ). Let us start with
a general result for Markov kernels satisfying (WE)-2. We show below that this assumption
implies (CS) and (CD) when H is a subset of Lipschitz functions, and establish an exponential
concentration inequality for Vn(h), h ∈ H. As was emphasized in [31] and [17], powerful tools
for exploring concentration properties of W d

2 -ergodic Markov kernels are the transportation
cost-information inequalities.

Definition 3.1. For p ≥ 1, we say that µ ∈ M1(X) satisfies Lp-transportation
cost-information inequality with constant α > 0 if for any ν ∈ M1(X), W d

p (µ, ν) ≤√
2αKL(ν|µ). We write briefly µ ∈ Tp(α) for this relation.

Lp-transportation cost-information inequalities are well-studied in the literature; see, for
instance, [4] and references therein. The cases p = 1 and p = 2 are of particular interest. Re-
lations between T1(α) and concentration inequalities are covered in [29] and [8]. In particular,
T1(α) is known to be equivalent to Gaussian concentration for all Lipschitz functions; see [8].
In turn T2(α) is a stronger inequality than T1(α). It was first established for the standard
Gaussian measure on Rd by Talagrand in [44]. Moreover, the celebrated result by Bakry and
Émery [3] implies that the measure π(dx) = e−U(x)dx satisfies T2(α) if ∇2U ≥ α−1I; see [4,
Chapter 9.6]. We are especially interested in T2(α), since it is known to be stable under both
independent and Markovian tensorizations; see [37] and [17].

Our results on W d
2 -ergodic Markov kernels are summarized below.

Proposition 3.2. Let H ⊆ Lipd(L), and assume that (WE)-2 holds. Then, for any initial
distribution ξ ∈ S2(X, d), (CS) is satisfied with

ρ(h)(`) = Eπ
[
h̃(X0)h̃(X|`|)

]
, R = A1L

2(1−∆2)−1W2(ξ, π),(3.2)D
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where A1 is a constant given in (A.12), and (CD) is satisfied with

ς = L
√
D

[∫
{W d

2 (δx, π)}2π(dx)

]1/2

, λ = ∆2, D = suph∈HVarπ(h).(3.3)

Moreover, if P (x, ·) ∈ T2(α) for any x ∈ X and some α > 0, then, for any initial distribution
ξ ∈ T2(α), n ∈ N, and t > 0,

Pξ
(∣∣Vn(h)− Eξ[Vn(h)]

∣∣ ≥ t) ≤ 2 exp

(
− (1−∆2)2nt2

cαL2b2n
(
D +Rn−1 + t

)) ,(3.4)

where c > 0 is an absolute constant.

Proof. See Appendix A.3.

It is also possible to remove a quite restrictive assumption P (x, ·) ∈ T2(α) and to re-
lax (WE)-2 to (WE)-1, but in this case (CS) and (CD) can be verified only for H being a
subset of bounded Lipschitz functions. As a price for such a generalization, the exponential
concentration bound is replaced by a polynomial one.

Proposition 3.3. Let H ⊂ Lipb,d(L,B), and assume that (WE)-1 holds. Then for any
initial distribution ξ ∈ S1(X, d), (CS) is satisfied with

ρ(h)(`) = Eπ
[
h̃(X0)h̃(X|`|)

]
, R = A2B

(
1−∆

1/2
1

)−1
,(3.5)

where A2 is a constant given in (A.18), and (CD) is satisfied with

ς = 2LB

∫
W d

1 (δx, π)π(dx), λ = ∆1, D = suph∈HVarπ(h).(3.6)

Moreover, for any p ∈ N,

Pξ
(∣∣Vn(h)− Eξ[Vn(h)]

∣∣ ≥ t) ≤ CpR,1B
2pb

3p/2
n pp

np/2tp
+
CpR,2B

2pb2pn p2p

np−1tp
,(3.7)

where constants CR,1 and CR,2 are given in (A.28).

Proof. See Appendix A.4.

3.1. Langevin dynamics. In this case, X = Rd, and we assume that π has an everywhere
positive density w.r.t. the Lebesgue measure, i.e., π(θ) = Z−1e−U(θ), where Z =

∫
e−U(ϑ)dϑ

is the normalization constant. Consider the first-order Euler–Maruyama discretization of the
Langevin dynamics from (1.4),

θk+1 = θk − γ∇U(θk) +
√

2γ ξk+1,(3.8)

where γ > 0 is a step size and (ξk)
∞
k=1 is an i.i.d. sequence of the standard Gaussian d-

dimensional random vectors. The idea of using (3.8) to approximately sample from π has
been advocated in [40], whose authors coined the term unadjusted Langevin algorithm (ULA).
Consider the following assumption on U .
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(ULA) The function U is continuously differentiable on Rd with gradient ∇U satisfying the
following two conditions.
(1) Lipschitz gradient: there exists LU > 0 such that for all θ, θ′ ∈ Rd it holds that
‖∇U(θ)−∇U(θ′)‖ ≤ LU‖θ − θ′‖.

(2) Strong convexity: there exists a constant mU > 0 such that for all θ, θ′ ∈ Rd it
holds that U(θ′) ≥ U(θ) + 〈∇U(θ), θ′ − θ〉+ (mU/2)‖θ′ − θ‖2.

The ULA has been widely studied under the above assumptions; see, for example, [21]

and [13]. As known from [21], under (ULA) the associated Markov kernel, denoted by P
(ULA)
γ ,

is W d
2 -uniformly ergodic. For completeness, we state below the following proposition [21,

Proposition 3].

Proposition 3.4. Assume (ULA), and set κ = 2mULU/(mU +LU ). Then for any step size

γ ∈ (0, 2/(mU + LU )), P
(ULA)
γ satisfies (WE)-2 with d(ϑ, ϑ′) = ‖ϑ − ϑ′‖ and ∆2 =

√
1− κγ.

Moreover, P
(ULA)
γ has a unique invariant measure π

(ULA)
γ .

It is shown in [21, Corollary 7] that, for any step size γ ∈ (0, 2/(mU + LU )),

W d
2

(
π, π(ULA)

γ

)
≤
√

2κ−1/2LUγ
1/2
{
κ−1 + γ

}1/2 {
2d+ dL2

Uγ/mU + dL2
Uγ

2/6
}1/2

.

We define the asymptotic variance as

V (ULA)
∞ (h) :=

∑
`∈Z

E
π
(ULA)
γ

[(
h(X0)− π(ULA)

γ (f)
)(
h(X|`|)− π(ULA)

γ (f)
)]
.

At each iteration of the algorithm, ∇U is computed. Hence it is an appealing option to
use this gradient to construct Stein control variates (see, for instance, [1], [33], and [36]), given
by

gφ(θ) = −〈φ(θ),∇U(θ)〉+ div
(
φ(θ)

)
,(3.9)

where φ : X → Rd is a continuously differentiable Lipschitz function, 〈·, ·〉 is the standard
scalar product in Rd, and div(φ) is the divergence of φ. Under rather mild conditions on π
and φ, it follows from the integration by parts that π(gφ) = 0 (see [33, Propositions 1 and 2]).
Note that if φ(θ) ≡ b, b ∈ Rd, we get gb(θ) = −〈b,∇U(θ)〉. Then for a parametric class
H = {f − gb : ‖b‖ ≤ B}, assuming that f ∈ Lipd(L1) and that condition (ULA) holds,
we get H ⊂ Lipd(max(L1, BLU )). For other approaches to construct control variates we
refer the reader to [27], [16], and [9]. The next result follows now from Theorem 2.2 and
Proposition 3.2.

Theorem 3.5. Let H ⊂ Lipd(L), and assume that (ULA) holds. Assume additionally that
ξ ∈ T2(β) for some β > 0. Fix any γ ∈ (0, 2/(mU + LU )), and set bn = 2dlog(n)/ log(1/∆2)e
with ∆2 =

√
1− κγ and κ = 2mULU/(mU + LU ). Then, for any ε > 0 and δ ∈ (0, 1), with

probability at least 1− δ,D
ow

nl
oa

de
d 

06
/2

3/
21

 to
 1

32
.2

52
.2

07
.8

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

VARIANCE REDUCTION FOR DEPENDENT SEQUENCES 515

V (ULA)
∞ (ĥn,ε)− infh∈H V

(ULA)
∞ (h)

. C1 ε log(n) + C2

√
log2(n)log(|Hε|/δ)

n
+ C3

log2(n) log (|Hε|/δ)
n

,

where

C1 =

√
R+
√
D

κγ
, C2 =

L
√

(β ∨ γ)(D +R)

κ2γ2
+

√
DR

κγ
, C3 =

L2(β ∨ γ)

κ4γ4
+
R

κγ
+

ς

κ2γ2

with R, ς from Proposition 3.2 and D = suph∈HVar
π
(ULA)
γ

(h).

Proof. The Markov kernel associated to ULA can be written as P
(ULA)
γ (θ, ·) = N (θ −

γ∇U(θ), 2γId). Hence, by [4, Theorem 9.2.1], P
(ULA)
γ (θ, ·) ∈ T2(2γ) for any γ > 0. By

Proposition 3.4, (WE) holds with ∆2 =
√

1− γκ. Hence Proposition 3.2 applies with α =
2(β ∨ γ). Direct computation of the inverse function in the right-hand side of (3.4) leads to

α−1
n

(
δ

2|Hε|

)
≤ 4b2nL

2(β ∨ γ) log (4|Hε|/δ)
(1−∆2)2n

+
4bnL

√
(β ∨ γ)(D +R) log (4|Hε|/δ)

(1−∆2)
√
n

.

Corollary 3.6. Under the assumptions of Theorem 3.5, the following holds.
(1) If class H is parametric, that is, |Hε| ≤ Cρε

−ρ for all ε ∈ (0, 1) and some constants
Cρ, ρ > 0, then it holds for any ε ∈ (0, 1/

√
n) with probability at least 1− 1/n,

V (ULA)
∞ (ĥn,ε)− infh∈H V

(ULA)
∞ (h) . n−1/2 log1/2(n).

(2) If class H is nonparametric, that is, |Hε| ≤ Cρ exp(ε−ρ) for all ε ∈ (0, 1) and some
constants Cρ, ρ > 0, then it holds for any ε ∈ (0, 1/

√
n) with probability at least 1−1/n,

V (ULA)
∞ (ĥn,ε)− infh∈H V

(ULA)
∞ (h) . n−1/(2+ρ).

Here . stands for inequality up to a constant depending on ρ and other constants from

Theorem 3.5. Moreover, if additionally the constant π
(ULA)
γ (f) is in the class H, then

infh∈H V
(ULA)
∞ (h) = 0 and these bounds hold for the asymptotic variance itself.

Discussion. It is well-known that if f̂ satisfies the so-called Poisson equation P
(ULA)
γ f̂− f̂ =

−f +π
(ULA)
γ (f), then by taking g? = f̂ −P (ULA)

γ f̂ as a control variate, we get π
(ULA)
γ (f − g?) =

π
(ULA)
γ (f) and V

(ULA)
∞ (f − g?) = 0. The property h? = f − g? = π

(ULA)
γ (f) ∈ H can be

achieved by taking, for example, H to be a ball in a Sobolev space. Namely, let W s
2 =

{
h ∈

L2(λ) : Dαh ∈ L2(λ), ∀|α| 6 s
}

be the Sobolev space; here λ is the Lebesgue measure
on Rd, α = (α1, . . . , αd) is a multi-index with |α| = α1 + · · · + αd, and Dα stands for the
differential operator Dα = ∂|α|/∂xα1

1 . . . ∂xαdd . The weighted Sobolev space W s
2 (〈x〉β), β ∈ R,

for a polynomial weighting function 〈x〉β = (1 + ‖x‖2)β/2 is defined by W s
2 (〈x〉β) = {h :

h · 〈x〉β ∈ W s
2 }. Let H be a norm-bounded subset of W s

2 (〈x〉β) with β ∈ R and s − d/2 > 0.
Suppose also that ‖〈x〉α−β‖

L2(π
(ULA)
γ )

<∞ for some α > 0. Then |Hε| . exp(ε−d/s), providedD
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that α > s − d/2; see [35, Corollary 4]. Note that h? = π
(ULA)
γ (f) ∈ W s

2 (〈x〉β) for any s > 0
and any β < −1 so that we can take H as a norm-bounded subset of W s

2 (〈x〉β) for arbitrary

large s > 0. Since π
(ULA)
γ and all its derivatives have exponentially decaying tails (see [32]),

‖〈x〉α−β‖
L2(π

(ULA)
γ )

<∞ for any α > 0, and one can achieve that |Hε| . exp(ε−δ) for arbitrary

small δ > 0 and at the same time h? ∈ W s
2 (〈x〉β). Practically one can use Stein control

variates of the form (3.9) with infinitely smooth and compactly supported functions φ. This
will guarantee that f − gφ ∈W s

2 (〈x〉β) for some s > 0, provided that U is smooth enough and
f ∈W s

2 (〈x〉β).

3.2. Extension to the SGLD. In this section, we shall consider the situations where
the target π is given by the posterior distribution in the Bayesian inference problem, that is,
π(θ) ∝ exp (−U(θ)), where U(θ) = U0(θ)+

∑K
i=1 Ui(θ) with K being a number of observations.

Computing ∇U(θ) requires a computational budget that scales linearly with K. Hence it is
often impossible to apply procedures based on discretization of Langevin dynamics directly.
One possible solution advocated by [46] is to replace ∇U(θ) by an unbiased estimate. This
gives rise to the SGLD algorithm, where the parameters are updated according to

θk+1 = θk − γG(θk, Sk+1) +
√

2γ ξk+1,

G(θ, S) = ∇U0(θ) +KM−1
∑

i∈S
∇Ui(θ),

(3.10)

where each Sk+1 is a random batch taking values in SM (here SM is the set of all subsets S of
{1, . . . ,K} with |S| = M) which is sampled from a uniform distribution over SM independently
of Fk (here (Fk)k≥0 is the filtration generated by {(θ`, S`)}`≥0). Note that E[G(θk, Sk+1)|Fk] =
∇U(θk) and therefore G(θk, Sk+1) is an unbiased estimate of ∇U(θk). The available variance
reduction techniques for SGLD usually replace the stochastic gradient in (3.10) with more
sophisticated estimates which preserve unbiasedness but have lower variance.

The simplest variance reduction technique is the fixed-point method (SGLD-FP) proposed
in [2]. This method is applicable when the posterior distribution is strongly log-concave. We
set θ̂ ∈ Θ to be a fixed value of the parameter, typically chosen to be close to the mode of
posterior distribution. We estimate the gradient ∇U(θ) by

GFP(θ, S) = ∇U0(θ) +KM−1
∑

i∈S

(
∇Ui(θ)−∇Ui(θ̂)

)
+

K∑
i=1

∇Ui(θ̂).(3.11)

The SGLD-FP algorithm is obtained by plugging this approximation into (3.10).
More sophisticated variance reduction methods typically use reference values (gik)

K
i=1 of

the gradient (∇Ui)Ki=1 from previous iterates (and not only the last iterate); as a result,
constructed sequence (θk)

∞
k=0 is often not Markovian. One particular example is SAGA-

LD method, adapted from [41], [15]. If i ∈ Sk, the reference value is updated, that is,
gik+1 = ∇Ui(θk). Otherwise, the reference value is simply propagated, that is, gik+1 = gik. One
then considers the following gradient estimator:

GkSAGA(θ, S) = ∇U0(θ) +KM−1
∑

i∈S

(
∇Ui(θ)− gik

)
+ gk , gk =

K∑
i=1

gik .(3.12)
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The recursion is initialized with gi0 = ∇Ui(θ0), i ∈ {1, . . . ,K}, and g0 =
∑K

i=1 g
i
0. Finally, the

gradient is computed according to (3.12) and plugged into (3.10).
For theoretical analysis of SGLD and SGLD-FP algorithms we need the following assump-

tions on U . Without loss of generality, we consider only SGLD; the same reasoning applies to
SGLD-FP.

(SGLD) The function U(θ) = U0(θ) +
∑K

i=1 Ui(θ) satisfies the following conditions.
(1) Lipschitz gradient: for any i ∈ {0, . . . ,K}, Ui is continuously differentiable on Rd

with L̃U -Lipschitz gradient.
(2) Convexity: for any i ∈ {0, . . . ,K}, Ui is convex.
(3) Strong convexity: there exists a constant mU > 0 such that for any θ, θ′ ∈ Rd it

holds that U(θ′) ≥ U(θ) + 〈∇U(θ), θ′ − θ〉+ (mU/2)‖θ′ − θ‖2.

Note that using Stein control variates with SGLD-based sampling procedure (3.10) elim-
inates benefits of using G(θ, S) instead of exact gradient ∇U(θ). Following [23], we replace
∇U by its stochastic counterpart. More precisely, for the kth iteration of SGLD algorithm,
we consider the control variates of the form

gφ(θ, S) = −〈φ(θ), G(θ, S)〉+ div
(
φ(θ)

)
.(3.13)

The control variate gφ depends now on the pair (θ, S). Let H = {f(θ) − gφ(x) : φ ∈ Φ},
where x = (θ, S) ∈ X = Θ× SM . Consider another sequence

(
S̃k
)∞
k=0

of independent batches

uniformly distributed over SM such that for any k, S̃k is independent of Fk. Denote by
PSGLD the transition kernel of SGLD, and let ΥM be a uniform distribution over SM . Set
P := PSGLD ⊗ΥM and Xk = (θk, S̃k).

Proposition 3.7. Assume (SGLD). Then for any step size γ ∈
(
0, L̃−1

U (K + 1)−1
)
, P

satisfies (WE)-2 with ∆2 =
√

1− γmU and d(x, x′) = ‖ϑ − ϑ′‖ + 1{S 6=S′} for any x = (ϑ, S)

and x′ = (ϑ′, S′). Moreover, P has a unique invariant measure π = π
(SGLD)
γ ⊗ΥM .

Proof. See Appendix A.5.

Similarly to Langevin dynamics, we define

V (SGLD)
∞ (h) :=

∑
`∈Z

Eπ
[(
h(X0)− π(f)

)(
h(X|`|)− π(f)

)]
.

Theorem 3.8. Let H ⊆ Lipb,d(L,B), and assume that (SGLD) holds. Fix any γ ∈
(
0, L̃−1

U

(K + 1)−1
)
, and set bn = 2dlog(n)/ log(1/∆1)e with ∆1 =

√
1− γmU . Then, for any ε > 0

and δ ∈ (0, 1), with probability at least 1− δ,

V (SGLD)
∞ (ĥn,ε)− infh∈H V

(SGLD)
∞ (h)

. C4 ε log(n) + C5

√
log5(n)

n

(
|Hε|
δ

)1/ log(n)

+ C6
log n

n
,

where

C4 =

√
R+
√
D

mUγ
, C5 =

B2R1(L, ξ)

(mUγ)2
+

B2R2(L, ξ)

(mUγ)4+2/ logn
+

√
RD

mUγ
, C6 =

D(mUγ) + ς

(mUγ)2D
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with R, ς from Proposition 3.3, D = suph∈HVar
π
(SGLD)
γ

(h), and constants R1(L, ξ), R2(L, ξ)

which can be tracked from (A.27).

Proof. By Proposition 3.7, (WE)-2 holds with ∆2 =
√

1− γmU , and, by Lyapunov in-
equality, (WE)-1 also holds with ∆1 = ∆2. Hence, the second part of Proposition 3.3 can be
applied with p = log n. The remaining part follows from Theorem 2.2 with computation of
the inverse function in the right-hand side of (3.7).

Corollary 3.9. Under the assumptions of Theorem 3.8, if class H is parametric, that is,
|Hε| ≤ Cρε

−ρ for all ε ∈ (0, 1) and some constants Cρ, ρ > 0. Then for any ε ∈ (0, 1/
√
n) it

holds with probability at least 1− 1/n that

V (SGLD)
∞ (ĥn,ε)− infh∈H V

(SGLD)
∞ (h) . n−1/2 log5/2(n),

where . stands for inequality up to a constant depending on ρ and other constants from

Theorem 3.8. Moreover, if additionally π(f) ∈ H, then infh∈H V
(SGLD)
∞ (h) = 0, and these

bounds hold for the asymptotic variance itself.

Remark 3.10. If the class H is constructed using Stein control variates, we can ensure the
inclusion H ⊆ Lipb,d(L,B) by taking smooth and compactly supported functions φ. This in
turn can be achieved by multiplying a given smooth function φ with a mollifier function, that
is, an infinitely smooth compactly supported function.

4. Experiments. In this section, we numerically compare the following two methods to
choose control variates: the EVM method, where a control variate is determined by minimizing
the marginal variance (see (1.1)), and the ESVM method, where a control variate is determined
by minimizing the spectral variance (see (2.2)). Implementation is available at https://github.
com/svsamsonov/vr sg mcmc.

4.1. Toy example. We first consider a multimodal distribution in R2 from [38]. Namely,
let π(x1, x2) = Z−1e−U(x1,x2), where Z is the normalization constant and

U(x1, x2) =
(‖x‖ − µ)2

2M2
− log

(
e−(x1−µ)2/2σ2

+ e−(x1+µ)2/2σ2
)
.

We choose M = 1 and µ = σ = 3; the respective density profile is presented in Figure 1. Our
aim is to estimate π(f) with f(x1, x2) = x1 + x2 using ULA. The parametric class gϕ in (3.9)

is generated by ϕ(x) =
∑p

k=1 βkψk(x), where ψk = e−‖x−µk‖
2/2σ2

ψ with all µk regularly spaced
in [−3, 3] × [−3, 3] and σψ = 2. Details on the step size γ of the ULA, length of the burn-in
period and test trajectories are summarized in Table 1. Boxplots displaying variation of 100
estimates for EVM and ESVM are presented in the same Figure 1. Furthermore, we compute
sample autocovariance functions for a trajectory with and without adding ESVM and EVM
control variates. The results reflect a spectacular decrease in high-order autocovariance for
ESVM; see Figure 1. Note that EVM aims at minimizing only the lag-zero autocovariance;
that is why the autocovariance function for ESVM-adjusted trajectory decreases much faster.

4.2. Gaussian mixture model. We consider posterior mean estimation for unknown pa-
rameter µ in a Bayesian setup with normal prior µ ∼ N (0, σ2

µ), σ2
µ = 100, and sample (Xk)

K−1
k=0 ,

K = 100, drawn from the Gaussian mixture modelD
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Table 1
Experimental hyperparameters.

Experiment nburn ntest γ Batch size

Toy example, subsection 4.1 103 104 0.1 -
Gaussian Mixture, subsection 4.2 104 105 0.01 10

Figure 1. Toy example from subsection 4.1. From left to right: (1) density profile, (2) boxplots displaying
variation of 100 estimates for vanilla ULA, ULA with EVM, and ULA with ESVM, (3) sample autocovariance
functions (ACFs) for a trajectory with and without ESVM and EVM.

Figure 2. Gaussian mixture model from subsection 4.2. From left to right: (1) density of the posterior
distribution, (2) boxplots displaying variation of 100 estimates for vanilla SGLD, SGLD with EVM, and SGLD
with ESVM, (3) sample autocovariance functions (ACFs) for a trajectory with and without ESVM and EVM.

0.5N (−µ, σ2) + 0.5N (µ, σ2) with µ = 1, σ2 = 1.

The density of the posterior distribution over µ is given in Figure 2. It has 2 modes roughly
corresponding to µ = 1 and µ = −1. To generate data from this posterior distribution and
estimate posterior mean, we use SGLD. The parametric class gϕ in (3.13) is generated by
ϕ(x) = β0x

2 + β1x+ β2. Boxplots displaying variation of 100 estimates for EVM and ESVM
and respective sample autocovariance functions are also presented in Figure 2. Note that
the increase in lag-zero autocovariance for ESVM is explained by the additional randomness
in (3.13). On contrary, EVM favors far too small coefficients to overcome this additional
randomness, which leads to poor variance reduction.

4.3. Bayesian logistic regression. The probability of the ith output yi ∈ {−1, 1}, i =
1, . . . ,K, is given by p(yi|xi, θ) = (1 + e−yi〈θ,xi〉)−1, where xi is a d × 1 vector of predictors
and θ is the vector of unknown regression coefficients. We complete the Bayesian model by
considering the Zellner g-prior Nd(0, g(X>X)−1) for θ where X = [x1, . . . ,xN ] is an K × d
design matrix; see [26, section 2]. Normalizing the covariates, for x̃i = (X>X)−1/2xi and
θ̃ = (X>X)1/2θ, we get 〈θ,xi〉 = 〈θ̃, x̃i〉, under the Zellner g-prior, θ̃ ∼ Nd(0, gId). In ourD
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Table 2
Experimental hyperparameters.

Experiment nburn ntrain ntest γ Batch size

Logistic regression, EEG dataset 104 104 105 0.1 15
Logistic regression, SUSY dataset 105 105 106 0.1 50

Figure 3. Bayesian logistic regression for EEG and SUSY datasets from subsection 4.3. Boxplots displaying
variation of 100 estimates of average predictive distribution for (1) left panel: vanilla SGLD-FP, SGLD-FP with
EVM, and SGLD-FP with ESVM, (2) right panel: vanilla SAGA-LD, SAGA-LD with EVM, and SAGA-LD
with ESVM.

experiments we have not noticed significant impact of particular g value on EVM and ESVM
performance and used g = 100 as a default choice.

We analyze the performance of EVM and ESVM methods on two datasets from the UCI
repository. The first dataset, EEG,1 contains K = 14 980 observations in dimension d = 15;
the second dataset, SUSY,2 has K = 500 000 observations in dimension d = 19. The data
is first split into a training set T train

N = {(yi,xi)}Ki=1 and a test set T test
K = {(y′i,x′i)}Ki=1 by

randomly picking K = 100 test points from the data. We use the SGLD-FP and SAGA-
LD algorithms to approximately sample from the posterior distribution p(θ̃|T train

N ). Given a
sample (θ̃k)

n−1
k=0 , we can estimate the predictive distribution for a fixed test point (y′,x′), that

is, p(y′|x′) =
∫
Rd p(y′|x′, θ̃) p(θ̃|T train

N ) dθ̃, by computing the ergodic mean n−1
∑n−1

k=0 f(θ̃k) for

f(θ̃) = p(y′|x′, θ̃). To get rid of randomness caused by the random choice of a test point,
we estimate the average predictive distribution for the whole test set T test

K by computing the

ergodic mean for the function f(θ̃) = K−1
∑K

i=1 p(y′i|x′i, θ̃). Details on the step size γ, length
of the burn-in period and test trajectories, and batch size are summarized in Table 2. Boxplots
for the estimation of average predictive distribution are shown in Figure 3. Note that ESVM
leads to a significant variance reduction for both SGLD-FP and SAGA-LD.

Further, for the EEG dataset we plot in Figure 4 a part of the trajectory f(θ̃m) =
K−1

∑K
i=1 p(y′i|x′i, θ̃m) for 500 consecutive sample values θ̃m with and without adding the

ESVM control variate. These trajectories are accompanied by the sample autocovariance
functions for vanilla and variance-reduced samples for both EVM and ESVM. Again, since
EVM aims at minimizing only lag-zero autocovariance, the decrease in autocovariance func-
tion for this method is smaller than for ESVM. We also report in Figure 5 how autocovariance
functions change with batch sizes. Note that for small batch sizes ESVM still manages to
remove correlations, while EVM almost fails.

1https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State.
2https://archive.ics.uci.edu/ml/datasets/SUSY.D
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Figure 4. Bayesian logistic regression for the EEG dataset from subsection 4.3 with the batch size 150.
From left to right: (1) part of a trajectory with and without ESVM, (2) sample autocovariance functions (ACFs)
for a trajectory with and without ESVM.

Figure 5. Bayesian logistic regression for the EEG dataset from subsection 4.3. Comparison of sample
autocovariance functions (ACFs) for different batch sizes. From left to right: batch size 5, 10, 50, respectively.

4.4. Bayesian probabilistic matrix factorization. A typical problem in recommendation
systems is to predict a user’s rating for a particular item given other users’ ratings of this
item and how a given user evaluated other items. A common approach to this problem is
probabilistic matrix factorization via Bayesian inference; see [43]. Namely, we are interested
in approximating matrix R ∈ RM×N , where M is a number of users, N is a number of rated
items, and Ri,j stands for the rating assigned by the ith user to the jth item. Due to natural
limitations (user is unlikely to rate all possible items), we observe only a some small subset
of elements of R and want to predict ratings of the hidden part. In probabilistic matrix
factorization, we aim at representing R as a product R = U>V + C, where U ∈ RD×M ,
V ∈ RD×N , and C ∈ RM×N is a matrix of biases with elements Ci,j = ai + bj , a ∈ RM ,
b ∈ RN . In the subsequent experiments we assume that rank parameter D = 10 is fixed. The
naive solution would be to find

U, V, a, b = arg minU,V,a,b
∑

(i,j)∈Itrain

(
Ri,j − 〈Ui, Vj〉 − ai − bj

)2
,

where Itrain is a train subset of ratings. Unfortunately, optimizing this criterion leads to a
significantly overfitted model. One possible approach to overcome overfitting is to consider
the penalized model

U, V, a, b = arg minU,V,a,b
∑

(i,j)∈Itrain

(
Ri,j − 〈Ui, Vj〉 − ai − bj

)2
+ λU‖U‖2 + λV ‖V ‖2 + λa‖a‖2 + λb‖b‖2,D
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but it requires careful tuning of penalization coefficients λU , λV , λa, λb. We thus would benefit
a lot from a Bayesian approach for tuning weights; this was pointed out in [43]. We follow a
slightly simplified formulation proposed by [12]; that is, we consider

λU , λV , λa, λb ∼ Γ(1, 1), Uk,i ∼ N
(
0, λ−1

U

)
, Vk,j ∼ N

(
0, λ−1

V

)
,

ai ∼ N
(
0, λ−1

a

)
, bi ∼ N

(
0, λ−1

b

)
, Ri,j |U, V ∼ N

(
〈Ui, Vj〉+ ai + bj , τ

−1
)
.

In order to sample from the posterior distribution which we denote by p(Θ|R), where Θ =
{U, V, a, b, λU , λV , λa, λb}, we use the following two-step procedure:

1. Sample from p(U, V, a, b|R, λU , λV , λa, λb) using SGLD or SGLD-FP with a minibatch
size of 5000 observations with a step size γ = 10−4. Sample for 1000 steps before
updating the weights λU , λV , λa, λb;

2. Sample new λ from p(λU , λV , λa, λb|U, V, a, b) using the Gibbs sampler.
The experiments are performed on the MovieLens dataset ml − 100k (link to dataset). We
apply our control variates procedure as a postprocessing step following [2]. The functional of
interest is the mean squared error over the test subsample, f(U, V, a, b) =

∑
(i,j)∈Itest(Ri,j −

〈Ui, Vj〉 − ai − bj)2. Since the dimension of parameter space is very high, first-order control
variates are the only option among Stein’s control variates. Parts of SGLD- and SGLD-
FP-based trajectories before and after using control variates, and confidence intervals for
estimation of f , are presented in Figure 6.

Appendix A. Supplementary material for variance reduction for dependent sequences
with applications to stochastic gradient MCMC.

A.1. Proof of Proposition 2.1. With notation h̃ = h−π(h), we can represent the variance
of πn(h), h ∈ H, as

E

( 1

n

n−1∑
k=0

h̃(Xk)

)2
 =

1

n2

{
n−1∑
k=0

E
[
h̃2(Xk)

]
+ 2

n−1∑
`=1

n−`−1∑
k=0

E
[
h̃(Xk)h̃(Xk+`)

]}
.

Figure 6. Bayesian probabilistic matrix factorization from subsection 4.4. Left panel: test mean squared
error (MSE) trajectory for SGLD (left) and SGLD-FP (right) with and without ESVM. Right panel: confidence
intervals for test mean squared error trajectory for SGLD (left) and SGLD-FP (right).D
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Multiplying the both sides by n and subtracting ρ(h)(0) + 2
∑n−1

`=1 (1− `n−1)ρ(h)(`), we get

nE

( 1

n

n−1∑
k=0

h̃(Xk)

)2
− ρ(h)(0)− 2

n−1∑
`=1

(
1− `

n

)
ρ(h)(`)

=
1

n

n−1∑
k=0

(
E
[
h̃2(Xk)

]
− ρ(h)(0)

)
+

2

n

n−1∑
`=1

n−`−1∑
k=0

(
E
[
h̃(Xk)h̃(Xk+`)

]
− ρ(h)(`)

)
.

It follows from the Cesàro mean theorem and (CS) that the right-hand side tends to zero as
n→∞. Similarly, ρ(h)(0) + 2

∑n−1
`=0 (1− `n−1)ρ(h)(`)→

∑
`∈Z ρ

(h)(`) as n→∞.

A.2. Proof of Theorem 2.2. Let us first start with a technical lemma the proof of which
we postpone to the end of the section. In what follows, set V n(h) := E[Vn(h)].

Lemma A.1. Let H be a class of functions with constant mean and assume that (CS) and
(CD) hold. Then, for any h ∈ H and any h1, h2 ∈ H with ‖h1 − h2‖L2(π) ≤ ε,

(1)
∣∣V∞(h)− V n(h)

∣∣ . (R+ ς(1− λ)−1
)
bnn
−1 + ς(1− λ)−2n−1 + ς(1− λ)−1λbn/2,

(2)
∣∣V n(h1)− V n(h2)

∣∣ . √RDbnn−1/2 +
(
R+ ς(1− λ)−1

)
bnn
−1

+
(√
Rn−1/2 +

√
D
)
bnε.

Let h∗ be a function in H leading to the smallest V n(h), that is,

h∗ ∈ arg minh∈H V n(h).

For simplicity, we assume that h∗ exists as all the following arguments can easily be adapted by
considering an approximate minimizer. We decompose the excess of the asymptotic variance
as

V∞(ĥn,ε)− infh∈H V∞(h)

= V∞(ĥn,ε)− V n(ĥn,ε) + V n(ĥn,ε)− V n(h∗) + V n(h∗)− infh∈H V∞(h)

≤ 2 suph∈H
∣∣V∞(h)− V n(h)

∣∣+ V n(ĥn,ε)− V n(h∗).(A.1)

To bound the first term in (A.1), we apply Lemma A.1 and obtain

suph∈H
∣∣V∞(h)− V n(h)

∣∣(A.2)

.
(
R+ ς(1− λ)−1

)
bnn
−1 + ς(1− λ)−2n−1 + ς(1− λ)−1λbn/2.

It remains to bound the second term in (A.1). Let h∗ε ∈ Hε be any closest to h∗ point in
L2(π)-distance. By the definition of ĥn,ε, Vn(ĥn,ε)− Vn(h∗ε) ≤ 0. Hence,

V n(ĥn,ε)− V n(h∗)

≤ V n(ĥn,ε)− V n(h∗)−
(
Vn(ĥn,ε)− Vn(h∗ε)

)
= V n(ĥn,ε)− V n(h∗)−

(
Vn(ĥn,ε)− Vn(h∗)

)
+
(
Vn(h∗ε)− Vn(h∗)

)
≤ suph∈Hε

{
V n(h)− Vn(h)

}
+
(
Vn(h∗)− V n(h∗)

)
+
(
Vn(h∗ε)− Vn(h∗)

)
.(A.3)D
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By assumption and the union bound, it holds for the first term in (A.3) that

P

(
sup
h∈Hε

{
V n(h)− Vn(h)

}
> t

)
≤ |Hε| sup

h∈Hε
P
(
V n(h)− Vn(h) > t

)
≤ |Hε|αn(t).

The second term in (A.3) can be handled in the same way,

P
(
Vn(h∗)− V n(h∗) > t

)
≤ αn(t).

The last term in (A.3) we represent as

Vn(h∗)− Vn(h∗ε) = Vn(h∗)− Vn(h∗ε)−
(
V n(h∗)− V n(h∗ε)

)
+
(
V n(h∗)− V n(h∗ε)

)
.

Now the union bound implies

P
(
Vn(h∗)− Vn(h∗ε)−

(
V n(h∗)− V n(h∗ε)

)
> t
)
≤ 2αn(t).

Furthermore, using Lemma A.1 and the fact that h∗ε is ε-close to h∗ in L2(π)-distance,∣∣V n(h∗)− V n(h∗ε)
∣∣

.
√
RDbnn

−1/2 +
(
R+ ς(1− λ)−1

)
bnn
−1 +

(√
Rn−1/2 +

√
D
)
bnε.

Combining these inequalities and substituting them into (A.3), we obtain, with probability at
least 1− (|Hε|+ 3)αn(t),

V n(ĥn,ε)− V n(h∗)(A.4)

. t+
√
RDbnn

−1/2 +
(
R+ ς(1− λ)−1

)
bnn
−1 +

(√
Rn−1/2 +

√
D
)
bnε.

Substituting (A.2) and (A.4) into (A.1) we conclude that, with the same probability,

V∞(ĥn,ε)− infh∈H V∞(h) . t+
(√
Rn−1/2 +

√
D
)
bnε+

√
RD bnn

−1/2

+
(
R+ ς(1− λ)−1

)
bnn
−1 + ς(1− λ)−2n−1 + ς(1− λ)−1λbn/2,

where we have used the notation of Theorem 2.2. The proof is completed by taking t =
α−1
n

(
δ/2|Hε|

)
and assuming that |Hε| ≥ 3 (this involves no loss of generality). We are left

with the task of proving Lemma A.1.

Proof of Lemma A.1. Let us first find a leading term in sample autocovariance function.
Recall that for any h ∈ H, h̃ = h− π(h). By expanding the brackets and adding/subtracting
π(h) in the definition (2.3), we get, for any |`| ≤ bn,

ρ(h)
n (`) = A

(h)
n,1(`) +A

(h)
n,2(`) +A

(h)
n,3(`),(A.5)D
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where, for 0 ≤ ` ≤ bn,

A
(h)
n,1(`) = A

(h)
n,1(−`) := n−1

n−`−1∑
k=0

h̃(Xk)h̃(Xk+`),

A
(h)
n,2(`) = A

(h)
n,2(−`) := −n−1πn(h̃)

{
n−`−1∑
k=0

h̃(Xk) +
n−1∑
k=`

h̃(Xk)

}
,

A
(h)
n,3(`) = A

(h)
n,3(−`) := (1− `/n)π2

n(h̃).

It follows that the leading term in this decomposition is A
(h)
n,1(`). The remainder terms A

(h)
n,2(`)

and A
(h)
n,3(`) can be bounded, under assumptions (CS) and (CD), as follows:

∣∣∣E[A(h̃)
n,3(`)

]∣∣∣ ≤ n−2

{
n−1∑
k=0

E
[
h̃2(Xk)

]
+ 2

n−1∑
`=0

n−`−1∑
k=1

E
[
h̃(Xk)h̃(Xk+`)

]}

≤ n−1

{
ρ(h)(0) + 2

n−1∑
`=0

(1− `n−1)ρ(h)(`)

}
+ 3Rn−1

≤ Cn−1,(A.6)

where C := 2ς(1− λ)−1 + 3R. In the same manner we conclude that

∣∣∣E[A(h)
n,2(`)

]∣∣∣ ≤ n−1E1/2
[
π2
n(h̃)

]E1/2

(n−`−1∑
k=0

h̃(Xk)

)2

+

(
n−1∑
k=`

h̃(Xk)

)2


≤ 2Cn−1.(A.7)

The last two bounds show that the last two terms in (A.5) are of order n−1. Having disposed
of this preliminary step, we can now return to statements of the lemma.

Statement 1. From decomposition (A.5) and bounds (A.6), (A.7), we deduce that∣∣V n(h1)− V n(h2)
∣∣ =

∑
|`|≤bn

wn(`) E
[
ρ(h1)
n (`)− ρ(h2)

n (`)
]

≤ 2bn max|`|≤bn

∣∣∣E[A(h1)
n,1 (`)−A(h2)

n,1 (`)
]∣∣∣+ 12Cbnn

−1.

With notation h̃12 = h̃1 − h̃2, it follows, for any 0 ≤ ` ≤ bn, that

A
(h1)
n,1 (`)−A(h2)

n,1 (`) = n−1
n−`−1∑
k=0

(
h̃1(Xk)h̃12(Xk+`) + h̃12(Xk)h̃2(Xk+`)

)
.

Using the Cauchy–Schwarz inequality (twice) and (CS), we have

E

[
n−`−1∑
k=0

h̃1(Xk)h̃12(Xk+`)

]
≤ E1/2

[
n−`−1∑
k=0

h̃2
1(Xk)

]
E1/2

[
n−`−1∑
k=0

h̃2
12(Xk+`)

]

≤
√
R+ (n− l)ρ(h̃1)(0)

√
R+ (n− l)ρ(h̃12)(0).D
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We now apply this argument again and obtain

E
[
A

(h1)
n,1 (`)−A(h2)

n,1 (`)
]
. Rn−1 +

√
RDn−1/2 +

(√
Rn−1/2 +

√
D
)∥∥h̃1 − h̃2

∥∥
L2(π)

.

Finally, since ‖h̃1 − h̃2‖L2(π) ≤ 2‖h1 − h2‖L2(π), we conclude∣∣V n(h1)− V n(h2)
∣∣

.
(
R+ C

)
bnn
−1 +

√
RDbnn

−1/2 +
(√
Rn−1/2 +

√
D
)
bn‖h1 − h2‖L2(π).

Statement 2. Let us denote

Vn,ρ(h) =
∑
|`|≤bn

wn(`)ρ(h)(`).

With this notation, we have the following decomposition:∣∣V∞(h)− V n(h)
∣∣ ≤ ∣∣V∞(h)− Vn,ρ(h)

∣∣+
∣∣Vn,ρ(h)− V n(h)

∣∣.(A.8)

To bound the first term in the right-hand side of (A.8), we represent it as

|Vn,ρ(h)− V∞(h)| ≤
∑
|`|≤bn

|1− wn(`)|
∣∣ρ(h)(`)

∣∣+
∑
|`|>bn

∣∣ρ(h)(`)
∣∣.

Using (CD) and the fact that wn(`) = 1 for ` ∈ [−bn/2, bn/2], we obtain∑
|`|≤bn

|1− wn(`)|
∣∣ρ(h)(`)

∣∣ = 2

bn∑
`=bn/2

|1− wn(`)|
∣∣ρ(h)(`)

∣∣ ≤ 2ς(1− λ)−1λbn/2.

In the same manner we can see that∑
|s|>bn

∣∣ρ(h)(s)
∣∣ ≤ 2ς(1− λ)−1λbn .

Combining the last two bounds we conclude that

|Vn,ρ(h)− V∞(h)| ≤ 4ς(1− λ)−1λbn/2.(A.9)

Now let us turn to the second term in the right-hand side of (A.8). The decomposition (A.5)
and the bounds (A.6), (A.7) yield

|V n(h)− Vn,ρ(h)| =
∑
|`|≤bn

wn(`)
(

E
[
ρ(h)
n (`)

]
− ρ(h)(`)

)
≤
∑
|`|≤bn

∣∣∣E[A(h)
n,1(`)

]
− ρ(h)(`)

∣∣∣+ 6Cbnn
−1.

Using (CS) and (CD), it follows that∣∣∣E[A(h)
n,1(`)

]
− ρ(h)(`)

∣∣∣ ≤ n−1
n−`−1∑
k=0

∣∣∣E[h̃(Xk)h̃(Xk+`)
]
− ρ(h)(`)

∣∣∣+ `n−1ρ(h)(`)

≤ Rn−1 + ς`λ`n−1.

Combining these, we get

|V n(h)− Vn,ρ(h)| ≤
(
12ς(1− λ)−1 + 20R

)
bnn
−1 + 2ς(1− λ)−2n−1.(A.10)

Finally, we obtain the desired conclusion by substituting (A.9) and (A.10) into (A.8).D
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A.3. Proof of Proposition 3.2. 1. The sequence (ρ(h)(`))∞`=0 is symmetric and positive
semidefinite by construction. By the Markov property, for any k, ` ∈ N,

Eξ
[
h̃(Xk)h̃(Xk+`)

]
− ρ(h)(`) = Ēζ

[
h̃(X)φ`(X)− h̃(X ′)φ`(X

′)
]
,

where we denote φ`(x) := P `h̃(x) and ζ ∈ Π(ξP k, π) is the optimal coupling of ξP k and π in
W d

2 -distance, (X,X ′) ∼ ζ. Note that∣∣Ēζ [h̃(X)φ`(X)− h̃(X ′)φ`(X
′)]
∣∣ ≤ {Ēζ [{h̃(X)− h̃(X ′)}2]}1/2{Ēζ [{φ`(X ′)}2]}1/2

+ {Ēζ [{φ`(X)− φ`(X ′)}2]}1/2{Ēζ [{h̃(X)}2]}1/2.

It is easy to check that φ` is a Lipschitz function,

|φ`(x)− φ`(x′)| ≤ LW d
2 (δxP

`, δx′P
`) ≤ L∆`

2d(x, x′) .

Since the Markov kernel P is W2-geometrically ergodic, we get∣∣Ēζ [h̃(X)φ`(X)− h̃(X ′)φ`(X
′)]
∣∣

≤ LW d
2 (ξP k, π){Ēζ [{φ`(X ′)}2]}1/2 + L∆`

2W
d
2 (ξP k, π){Ēζ [{h̃(X)}2]}1/2.

Let us compute Ēζ [{φ`(X ′)}2] = π(φ2
` ). Since P is W d

2 -geometrically ergodic, we have
W d

2 (δyP
`, π) ≤ ∆`

2W
d
2 (δy, π). Note also that π(h̃) = 0 implies π(φ`) = 0; hence

π(φ2
` ) =

∫ [
φ`(y)−

∫
φ`(x)π(dx)

]2

π(dy) ≤ L2∆2`
2

∫
{W d

2 (δy, π)}2π(dy).(A.11)

Finally, we need to compute Ēζ [{h̃(X)}2] = ξP k
(
h̃2
)
. For an arbitrary x̂ ∈ X,

∣∣h̃(x)
∣∣2 =

∣∣∣∣∫ {h(x)− h(y)}π(dy)

∣∣∣∣2 ≤ 2L2

(
d2(x, x̂) +

∫
d2(x, x̂)π(dx)

)
.

In order to bound ξP k(d2(x, x̂)), we write∫
d2(x, x̂)ξP k(dx) =

∫∫
d2(x, x̂)ζ(dxdx′) ≤ 2

∫∫
d2(x, x′)ζ(dxdx′)

+ 2

∫
d2(x, x̂)π(dx) ≤ 2∆2k

2 {W d
2 (ξ, π)}2 + 2

∫
d2(x, x̂)π(dx) .

Hence

ξP k
(
h̃2
)
≤ 4L2

∫
d2(x, x̂)π(dx) + 2L2∆2k

2 {W d
2 (ξ, π)}2,

and
∣∣Eξ[h̃(Xk)h̃(Xk+`)]− ρ(h)(`)

∣∣ ≤ A1L
2∆k+`

2 W d
2 (ξ, π), where

A1 := 2 inf x̂∈XW
d
2 (δx̂, π) + 2W d

2 (ξ, π) +

[∫
{W d

2 (δy, π)}2π(dy)

]1/2

.(A.12)
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Summing the last inequality with respect to k, we obtain∑∞

k=0

∣∣Eξ[h̃(Xk)h̃(Xk+`)]− ρ(h)(`)
∣∣ ≤ A1L

2(1−∆2)−1∆`
2W2(ξ, π) .(A.13)

Hence, the second assumption in (CS) holds with R defined in (3.2). The third assertion
clearly follows from (A.13). To check (CD), we write

|ρ(h)(`)| =
∣∣∣∣∫ h̃(x)

[
δxP

`
(
h
)
− π(h)

]
π(dx)

∣∣∣∣ ≤ L∫ ∣∣h̃(x)
∣∣W d

2 (δxP
`, π)π(dx)

≤ L∆`
2

∫ ∣∣h̃(x)
∣∣W d

2 (δx, π)π(dx) ≤ L∆`
2

√
D

[∫
{W d

2 (δx, π)}2π(dx)

]1/2

.(A.14)

Hence (CD) holds with λ = ∆2 and ς = L
√
D[
∫
{W d

2 (δx, π)}2π(dx)]1/2.
2. The proof essentially relies on [17]. Denote Zn(h) := (h(X0), . . . , h(Xn−1)), and recall

the representation (2.2). It follows from [5, section 5.2] that Vn(h) can be represented as a
quadratic form

Vn(h) = 〈AnZn(h), Zn(h)〉 ,

where An = n−1(I − n−1E)W (I − n−1E), E is an n × n matrix with elements Ej,k = 1 for
any 1 ≤ j, k ≤ n, and W is a Toeplitz matrix with elements Wj,k = wn(j − k). Note that
Vn(h) is invariant to shifts and, in particular, Vn(h) = Vn(h̃). It is straightforward to show
that ‖An‖ ≤ 2bnn

−1; see [5, Lemma 9]. Furthermore, [5, Corollary 18] implies

Pξ
(∣∣Vn(h)− Eξ[Vn(h)]

∣∣ ≥ t) ≤ 2 exp

(
− (1−∆2)2t2

cαL2
(
Eξ[‖AnZn(h̃)‖2] + t‖An‖

)),(A.15)

where c > 0 is some universal constant. By the Cauchy–Schwarz inequality, ‖AnZn(h)‖2 ≤
‖An‖2‖Zn(h)‖2. Moreover, using (CS), we get

Eξ[‖Zn(h̃)‖2] ≤ R+ nVarπ[h] ≤ R+ n suph∈HVarπ[h] = R+ nD.(A.16)

The statement follows from substitution (A.16) into (A.15).

A.4. Proof of Proposition 3.3. 1. Proceeding similarly to Appendix A.3, we use the
Markov property to write, for k, ` ∈ N,∣∣Eξ[h̃(Xk)h̃(Xk+`)]− ρ(h)(`)

∣∣ ≤ {Ēζ [{h̃(X)− h̃(X ′)}2]}1/2{Ēζ [{φ`(X ′)}2]}1/2

+ {Ēζ [{φ`(X)− φ`(X ′)}2]}1/2{Ēζ [{h̃(X)}2]}1/2 ,

where ζ ∈ Π(ξP k, π) is the optimal coupling of ξP k and π in W d
1 distance, (X,X ′) ∼ ζ. Since

function h̃ is bounded and Lipschitz,

Ēζ
[
{h̃(X)− h̃(X ′)}2

]
≤ 2BĒζ

[∣∣h̃(X)− h̃(X ′)
∣∣] ≤ 2LB∆k

1W
d
1 (ξ, π).

Similarly, using that φ` is bounded and Lipschitz (see Appendix A.3 for the details),

Ēζ
[
{φ`(X)− φ`(X ′)}2

]
≤ 2LB∆k+`

1 W d
1 (ξ, π).D
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Proceeding as in (A.11), we obtain

Ēζ [{φ`(X ′)}2] ≤
∫∫ [

φ`(x)− φ`(y)
]2
π(dx)π(dy) ≤ 2BL∆`

1

∫
W d

1 (δy, π)π(dy).

Using the simple bound Ēζ [{h̃(X)}2] ≤ 4B2, it holds that∣∣Eξ[h̃(Xk)h̃(Xk+`)]− ρ(h)(`)
∣∣ ≤ 2BC ′2∆

(k+`)/2
1(A.17)

with

C ′2 = 2L{W d
1 (ξ, π)}1/2

{∫
W d

1 (δx, π)π(dx)

}1/2

+
{

2LBW d
1 (ξ, π)

}1/2
.(A.18)

Hence, the second assumption in (CS) holds with

R = 2BC ′2
(
1−∆

1/2
1

)−1
,(A.19)

and the third one follows from (A.17). Proceeding as in (A.14),

∣∣ρ(h)(`)
∣∣ ≤ 2LB∆`

1

∫
W d

1 (δx, π)π(dx) ,

and (CD) holds with λ = ∆1 and

ς = 2LB

∫
W d

1 (δx, π)π(dx).(A.20)

2. Without loss of generality, we assume that ‖h‖∞ ≤ 1. By Minkowski’s inequality,

∥∥Vn(h)− EξVn(h)
∥∥
ξ,p
≤
∑bn

`=−bn+1
wn(`)

∥∥ρ(h)
n (`)− Eξ[ρ

(h)
n (`)]

∥∥
ξ,p
,

where ‖ · ‖ξ,p :=
(
Eξ[·
]p

)1/p. For ` ∈ N0, we get

ρ(h)
n (`) =

1

n

n−`−1∑
k=0

(
h(Xk)− πn(h)

)(
h(Xk+`)− πn(h)

)
=

1

n

n−`−1∑
k=0

h̃(Xk)h̃(Xk+`)

− 1

n

(
πn(h)− π(h)

)2
+
πn(h)− π(h)

n

`−1∑
k=0

[
h̃(Xk) + h̃(Xn−`+k)

]
=: T1 + T2 + T3.

Hence,

ρ(h)
n (`)− Eξ[ρ

(h)
n (`)] =

(
T1 − Eξ[T1]

)
+
(
T2 − Eξ[T2]

)
+
(
T3 − Eξ[T3]

)
=: T̄1 + T̄2 + T̄3.D
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Now we proceed with estimating ‖T̄1‖ξ,p. By [19, Theorem 2] and Lemma A.2, setting βr,` =
1 ∧∆r−`

1 and A1 = 4 ∨ 256L{W1(ξ, π) + 2 inf x̂∈XW1(δx̂, π)},

‖T̄1‖pξ,p ≤
(2p− 2)!

(p− 1)!
ep

(nA1

n−1∑
r=0

βr,`

)p/2
∨ nA116p−2

n−1∑
r=0

(r + 1)p−2βr,`

 .(A.21)

It can be easily seen that

n−1∑
r=0

(r + 1)p−1βr,` ≤
`p−1

p− 1
+

p!

∆2
1

[
1

logp (1/∆1)
+ `p

]
,

n−1∑
r=0

βr,` ≤
2`

(1−∆1)
.(A.22)

Substituting (A.22) into (A.21) and using Stirling’s formula,

‖T̄1‖pξ,p ≤ 22ppp
[(

2A1`n

1−∆1

)p/2
+ nA116p

{
`p +

2pppp1/2

ep∆2
1

(
1

logp (1/∆1)
+ `p

)}]
.

Since ` ≤ bn, we obtain the following final bound on T̄1,

‖T̄1‖ξ,p ≤ 4p

[(
2bnA1

n(1−∆1)

)1/2

+ 32bnn
1/p−1A

1/p
1

(
1 +

p(1 + log (1/∆1))

e∆
2/p
1 log (1/∆1)

)]
.(A.23)

Let us consider now T̄2 and T̄3. Using (WE),

‖πn(h)− π(h)‖ξ,p ≤ n
−1

∥∥∥∥∥
n−1∑
k=0

h(Xk)− Eξ[h(Xk)]

∥∥∥∥∥
ξ,p

+
LW1(ξ, π)

n(1−∆)
.

By Lemma A.3 and [19, Theorem 2], setting A2 = 4L{W1(ξ, π) + 2 inf x̂∈XW1(δx̂, π)},∥∥∥∥∥
n−1∑
k=0

h(Xk)− Eξ[h(Xk)]

∥∥∥∥∥
ξ,p

≤ 4p

[
n1/2A

1/2
2√

1−∆1
∨ 2pn1/pA

1/p
2

∆
1/p
1 e log (1/∆1)

]
.

Now it holds for T̄2,

‖T̄2‖ξ,p ≤ 2
∥∥πn(h)− π(h)

∥∥2

ξ,2p
≤ 4

n2

∥∥∥∥∥
n−1∑
k=0

h(Xk)− Eξ[h(Xk)]

∥∥∥∥∥
2

ξ,2p

+
6L2W 2

1 (ξ, π)

n2(1−∆)2

≤ 26p2

[
A2

n(1−∆1)
∨ 4p2n2/pA

2/p
2

n2∆2/pe2 log2 (1/∆1)

]
+

4L2W 2
1 (ξ, π)

n2(1−∆1)2
.(A.24)

Finally, since ` ≤ bn and h is bounded,

‖T̄3‖ξ,p ≤ 16bnn
−1.(A.25)

Using (A.23), (A.24), and (A.25), we get

∥∥Vn(h)− Eξ[Vn(h)]
∥∥
ξ,p
≤ 2bn

[
C ′1pb

1/2
n

n1/2
+
C ′2p

2bn

n1−1/p
+

C ′3p
4

n2−2/p

]
,(A.26)
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where

C ′1 =
4(2A1)1/2

√
1−∆1

, C ′2 =
27A

1/p
1 (1 + 2 log (1/∆1))

∆
2/p
1 log (1/∆1)

+
26A2

1−∆1
+ 12,

C ′3 =
28A

2/p
2

e2∆
2/p
1 log2 (1/∆1)

+
A2

2

4(1−∆1)2
.

(A.27)

Under the assumption p < n1/2, we obtain

∥∥Vn(h)− Eξ[Vn(h)]
∥∥
ξ,p
≤ bn‖h‖2∞

[
CR,1pb

1/2
n

n1/2
+
CR,2p

2bn

n1−1/p

]
(A.28)

with CR,1 = 2C ′1, CR,2 = 2C ′2 + 2C ′3. Now the statement follows from Markov’s inequality.

Lemma A.2. Assume (WE)-1. Let h ∈ Lipb,d(L,B). For i,m ∈ N0, we define g̃i,m(x, x′) =

h̃(x)h̃(x′)− cξ,i,m, where cξ,i,m := Eξ [gi,m(Xi, Xi+m)]. For p, r,m ∈ N0, let

C(h)
p,r,m := sup

∣∣∣covξ

(∏u

k=1
g̃ik,m(Xik , Xik+m),

∏v

k=1
g̃jk,m(Xjk , Xjk+m)

)∣∣∣,
where the supremum is taken over all 0 ≤ i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv ≤ n with
u+ v = p. Then, for any p, r ∈ N,

C(h)
p,r,m ≤

{
22p+2B2p, r ≤ m,
L
{
W1(ξ, π) + 2 inf x̂∈XW1(δx̂, π)

}
v24pB2p−1∆r−m

1 , r > m.

Proof. Define the function

Gi1,...,iu,m(xi1 , xi1+m, . . . , xiu , xiu+m) :=
∏u

k=1
g̃ik,m(xik , xik+m) .

Let Di1,...,iu,m = Gi1,...,iu,m(Xi1 , Xi1+m, . . . , Xiu , Xiu+m). Since ‖Gi1,...,iu,m‖∞ ≤ (2B)2u and

‖Gj1,...,jv ,m‖∞ ≤ (2B)2v, we get C
(h)
p,r,m ≤ 22p+2B2p. Now let m < r. Using Markov’s property,

covξ
(
Di1,...,iu,m, Dj1,...,jv ,m

)
= Eξ

[(
Di1,...,iu,m − Eξ[Di1,...,iv ,m]

)(
P j1−iu−mϕ(Xiu+m)− π(ϕ)

)]
,

where
ϕ(x) := Ex

[
Gj1,...,jv ,m(x,Xm, Xj2−j1 , Xj2−j1+m, . . . , Xjv−j1 , Xjv−j1+m)

]
.

It follows from Lemma A.4 that ‖ϕ‖Lip ≤ Lv24v−1B2v−1. By [18, Theorem 20.1.2]∥∥P j1−iu−mϕ∥∥
Lip
≤ ∆j1−iu−m

1 ‖ϕ‖Lip, and hence

|P j1−iu−mϕ(x)− π(ϕ
)
| ≤ Lv24v−1B2v−1∆j1−iu−m

1 W1(δx, π) .

This yields∣∣covξ
(
Di1,...,iu,m, Dj1,...,jv ,m

)∣∣ ≤ Lp24pB2p−1∆j1−iu−m
1 Eξ

[
W1(δXiu+m , π)

]
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For a fixed x̂ ∈ X, by the triangle inequality,

W1(δx, π) ≤W1(δx, δx̂) +W1(δx̂, π) = d(x, x̂) +W1(δx̂, π).

Since Eξ[d(Xiu+m, x̂)] ≤W1(δξP
iu+m, δx̂), we get

Eξ [d(Xiu+m, x̂)] ≤W1(ξP iu+m, π) +W1(δx̂, π) ≤ ∆iu+mW1(ξ, π) +W1(δx̂, π),

showing that Eξ
[
W1(δXiu+m , π)

]
≤W1(ξ, π) + 2W1(δx̂, π). The proof is complete.

Lemma A.3. Assume (WE)-1. Let h ∈ Lipb,d(L,B). For p, r ∈ N0, we define

Cp,r := sup

∣∣∣∣∣covξ

(
u∏
k=1

(
h(Xik)− Eξ[h(Xik)]

)
,

v∏
k=1

(
h(Xjk)− Eξ[h(Xjk)]

))∣∣∣∣∣ ,
where the supremum is taken over all 0 ≤ i1 ≤ · · · ≤ iu < iu + r ≤ j1 ≤ · · · ≤ jv ≤ n with
u+ v = p. Then for any p, r ∈ N,

Cp,r ≤ L
{
W1(ξ, π) + 2 inf x̂∈XW1(δX̂ , π)

}
p22pB2p−1∆r

1.

Proof. The proof is along the same lines as Lemma A.2 and is omitted.

Lemma A.4. Assume (WE)-1. Set

ϕ(x) = Ex
[
Gj1,...,jv ,m(x,Xm, Xj2−j1 , Xj2−j1+m, . . . , Xjv−j1 , Xjv−j1+m)

]
,

where Gj1,...,jv ,m defined in Lemma A.2. Then

‖ϕ‖Lip ≤ Lv24v−1B2v−1.

Proof. We split the proof into two parts. First, we estimate Lipschitz constant of g(x) =
Ex
[∏v

k=1 h̃(Xik)h̃(Xik+m)
]

for 0 = i1 ≤ i2 ≤ · · · ≤ iv and m > 0. Note that g(x) =

h̃n1(x)Ex[
∏b
k=2 h̃

nk(Xmk)], where 0 = m1 < m2 < · · · < mb are distinct indices among

(i1, i1 +m, . . . , iv, iv +m) and (n1, . . . , nb) are their associated multiplicities (
∑b

k=1 nk = 2v).
Hence, applying Lemma A.5 with fi = h̃ and K = 2B, we get ‖g‖Lip ≤ 2Lv(2B)2v−1. Now
we estimate the Lipschitz constant of

ϕ(x) = Ex
[∏v

k=1

(
h̃(Xjk−j1)h̃(Xjk−j1+m)− cξ,jk,m

)]
,(A.29)

where cξ,jk,m := Eξ[h̃(Xjk)h̃(Xjk+m)]. Expanding (A.29), we obtain

ϕ(x) =
∑

(δ1,...,δv)
(−1)

∑
k δkEx

[∏v

k=1
h̃δk(Xjk)h̃δk(Xjk+m)

]
c1−δk
ξ,jk,m

,(A.30)

where the sum is taken w.r.t. all (δ1, . . . , δv) with δi ∈ {0, 1}. Note that all terms in the
decomposition (A.30) are Lipschitz. Since |cξ,jk,m| ≤ 4B2, we get

‖ϕ‖Lip ≤
v∑
s=1

2Ls

(
v

s

)
(2B)2s−1(2B)2v−2s = 2Lv(2B)2v−1

v∑
s=1

(v − 1)!

(s− 1)!(v − s)!

= Lv24v−1B2v−1.D
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Lemma A.5. Assume (WE)-1. For any b, v ≥ 1, 0 = i1 < · · · < ib ≤ n and nk ∈
N,
∑b

k=1 nk = v we define g(x) = Ex
[∏b

k=1 f
nk
ik

(Xik)
]
, where fik ∈ Lipb,d(L,K). Then

‖g‖Lip ≤ LvKv−1.

Proof. Note that g(x) = fn1
0 (x)Ex

[∏b
k=2 f

nk
ik

(Xik)
]
. We proceed by induction in the num-

ber of distinct indices b. If b = 1, then, for any v ∈ N,

|fv0 (x)− fv0 (y)| = |f0(x)− f0(y)| ·
∣∣∣v−1∑
k=0

fk0 (x)fv−k−1
0 (y)

∣∣∣ ≤ vLKv−1d(x, y) .

Assume b > 1. Since g(x) = fn1
0 (x)P i2g1(x) with g1(x) = Ex[

∏b
k=2 f

nk
ik

(Xik−i2)],

|g(x)− g(y)| ≤
∣∣fn1

0 (x)− fn1
0 (y)

∣∣∣∣P i2g1(x)
∣∣+
∣∣fn1

0 (x)
∣∣∣∣P i2g1(x)− P i2g(y)

∣∣.
The function g1 depends on b − 1 indices and

∑b
k=2 nk = v − n1. The induction assumption

and [18, Theorem 20.1.2] show under (WE)-1 that ‖P i21 g1‖Lip ≤ ‖g1‖Lip ≤ L(v− n1)Kv−n1−1.
Observe that

‖g‖Lip ≤ n1LK
n1−1Kv−n1 + L(v − n1)Kv−n1−1Kn1 ,

and the proof is complete.

A.5. Proof of Proposition 3.7. We provide the proof only for SGLD, since its adaptation

to SGLD-FP is straightforward. Let x = (θ
(1)
0 , S̃

(1)
0 ), y = (θ

(2)
0 , S̃

(2)
0 ). We use the standard

synchronous coupling technique adapted from [10, Lemma 1]. Let (ξk)k≥0 be a sequence of
i.i.d. d-dimensional Gaussian random variables, (Sk)k≥0 and (S̃k)k≥0 be independent mini-

batches with |Sk| = |S̃k| = M . Set (θ
(1)
0 , θ

(2)
0 ) = (x, y), and define recursively for k ≥ 0,

θ
(i)
k = θ

(i)
k−1 − γG(θ

(i)
k−1, Sk) +

√
2γξk;

G(θ, S) = ∇U0(θ) +NM−1
∑

i∈S
∇Ui(θ).

Finally, define the sequences (X
(i)
n )n≥0, i = 1, 2, as X

(i)
n = (θ

(i)
n , S̃n) for any n ≥ 0. Since X

(1)
k

and X
(2)
k are distributed according to δxP

k
and δyP

k
, respectively,

W 2
2 (δxP

k
, δyP

k
) ≤ E

[
d2(X

(1)
k , X

(2)
k )
]

= E
[
‖θ(1)
k − θ

(2)
k ‖

2
]
.

The rest of the proof follows [10, Lemma 1] and is omitted.
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