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Abstract
In this paper, we propose a novel variance reduction approach for additive functionals ofMarkov chains based onminimization
of an estimate for the asymptotic variance of these functionals over suitable classes of control variates. A distinctive feature
of the proposed approach is its ability to significantly reduce the overall finite sample variance. This feature is theoretically
demonstrated bymeans of a deep non-asymptotic analysis of a variance reduced functional as well as by a thorough simulation
study. In particular, we apply our method to various MCMC Bayesian estimation problems where it favorably compares to
the existing variance reduction approaches.

Keywords Markov chain Monte Carlo · Empirical spectral variance minimization · Unadjusted Langevin algorithm ·
Metropolis-adjusted Langevin algorithm · Random walk metropolis · Variance reduction · Stein’s control variates

1 Introduction

Variance reduction methods play nowadays a prominent role
as a complexity reduction tool in simulation based numerical
algorithms like Monte Carlo (MC) or Markov Chain Monte
Carlo (MCMC). Introduction to many of variance reduction
techniques can be found inRobert andCasella (1999), Rubin-
stein and Kroese (2016), Gobet (2016), and Glasserman
(2013). While variance reduction techniques for MC algo-
rithms are well studied, MCMC algorithms are still waiting
for efficient variance reduction methods. Recently, one wit-
nessed a revival of interest in this area with numerous
applications to Bayesian statistics, see, for example, Del-
laportas and Kontoyiannis (2012), Mira et al. (2013), Brosse
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et al. (2019), and references therein. The main difficulty in
constructing efficient variance reductionmethods forMCMC
lies in the dependence between the successive values of the
underlying Markov chain which can significantly increase
the overall variance and needs to be accounted for.

Suppose that we wish to compute π( f )
def= Eπ

[
f (X)

]
,

where X is a random vector with a distribution π on X ⊆ R
d

and f : X → R with f ∈ L2(π). Let (Xk)k≥0 be a time
homogeneous Markov chain with values in X. Denote by P
its Markov kernel and define for any bounded measurable
function f

P f (x) =
∫

X
P(x, dy) f (y), x ∈ X.

Assume that P has the unique invariant distribution π , that
is,

∫
X π(dx)P(x, dy) = π(dy). Under appropriate condi-

tions, the Markov kernel P may be shown to converge to the
stationary distribution π , that is, for any x ∈ X,

lim
n→∞ ‖Pn(x, ·) − π‖TV = 0,

where ‖μ − ν‖TV = supA∈X |μ(A) − ν(A)| and X is the
Borel σ -field associated with X. More importantly, under
rather weak assumptions, the ergodic averages

πn( f )
def= n−1

n−1∑

k=0

f (Xk)
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satisfy, for any initial distribution, a central limit theorem
(CLT) of the form

√
n
[
πn( f ) − π( f )

]

= n−1/2
n−1∑

k=0

[
f (Xk) − π( f )

] D−→ N
(
0, V∞( f )

)

with the asymptotic variance V∞( f ) given by

V∞( f )
def= lim

n→∞ n Eπ

[{πn( f ) − π( f )}2]

= Eπ

[
f̃ 2
] + 2

∞∑

k=1

Eπ

[
f̃ Pk f̃

]
, (1)

where f̃ = f −π( f ). This motivates to use ergodic averages
πn( f ) as a natural estimate for π( f ). For a broader discus-
sion of the Markov chain CLT and conditions under which
CLT holds, see Jones (2004), Roberts and Rosenthal (2004),
and Douc et al. (2018).

One important andwidely used class of variance reduction
methods for Markov chains is the method of control variates
which is based on subtraction of a zero-mean random vari-
able (control variate) from πn( f ). There are several methods
to construct such control variates. If ∇ logπ is known, one
can use popular zero-variance control variates based on the
Stein’s identity, see Assaraf and Caffarel (1999) and Mira
et al. (2013). A nonparametric extension of such control vari-
ates is suggested inOates et al. (2017) andOates et al. (2016).
Control variates can be also obtained using the Poisson equa-
tion. Namely, it was observed by Henderson (1997) that the

function Ug
def= g − Pg has zero mean with respect to π ,

provided thatπ(|g|) < ∞. Then the choice g = f̂ with f̂ sat-
isfying the so-called Poisson equation f̂ (x)−P f̂ (x) = f̃ (x)
leads to f − U f̂ = f − f̂ + P f̂ = π( f ), hence yielding
a zero-variance control variate for the empirical mean under
π. Although the Poisson equation involves the quantity of
interest π( f ) and cannot be solved explicitly in most cases,
the above idea still can be used to construct some approxima-
tions for the zero-variance control variate f̂ (x)−P f̂ (x). For
example, Henderson (1997) proposed to compute approxi-
mations to the solution of the Poisson equation for specific
Markov chains with particular emphasis onmodels arising in
stochastic network theory. In Dellaportas and Kontoyiannis
(2012) and Brosse et al. (2019), regression-type control vari-
ates are developed and studied for reversible Markov chains.
It is assumed in Dellaportas and Kontoyiannis (2012) that the
one-step conditional expectations can be computed analyti-
cally for a set of basis functions. The authors in Brosse et al.
(2019) proposed another approach tailored to diffusion set-
ting which does require the computation of integrals of basis

functions and only involves the application of the underlying
differential generator.

There is a fundamental issue related to the control variates
method. Since one usually needs to consider a large class of
control variates, one has to choose a criterion to select the
“best” control variate from this class. In the literature, such a
choice is often based on the least-squares criterion or on the
sample variance, see, for example, Mira et al. (2013), Oates
et al. (2017), South et al. (2018). Note that such criteria can
not properly take into account the correlation structure of the
underlying Markov chain and hence can only reduce the first
term in (1).

In this paper, we propose a novel variance reduction
method for Markov chains based on the empirical spectral
variance minimization. The proposed method can be viewed
as a generalizationof the approach inBelomestny et al. (2018,
2017) to Markov chains. In a nutshell, given a class of con-
trol variates G, that is, functions g ∈ G with π(g) = 0 we
consider the estimator

πn( f − ĝn)
def= n−1

n−1∑

k=0

{ f (Xk) − ĝn(Xk)}

with ĝn
def= argming∈G Vn( f −g), where Vn( f ) stands for an

estimator of the asymptotic variance V∞( f ) defined in (1).
This generalization turns out to be challenging for at least two
reasons. First, there is no simple way to estimate the asymp-
totic variance V∞( f ) for Markov chains. Due to inherent
serial correlation, estimating V∞( f ) requires specific tech-
niques such as spectral and batch means methods; see Flegal
and Jones (2010) for a survey on variance estimators and
their statistical properties. Second, a non-asymptotic anal-
ysis of the estimate ĝn is highly nontrivial and requires
careful treatment. We perform this analysis for a rather
general class of geometrically ergodicMarkov chains includ-
ing the well-known unadjusted Langevin algorithm (ULA),
metropolis-adjusted Langevin algorithm (MALA) and ran-
dom walk metropolis (RWM). In particular, we show that
under some restrictions on G, the rate of the excess for the
asymptotic variance can be controlled with high probability
as follows:

V∞( f − ĝn) − inf
g∈G

V∞( f − g) = O
(
n−α

)

for some α ∈ [1/2, 1). Let us stress that our results are
rather generic and can cover various types of control variates.
Apart from a comprehensive theoretical analysis, we conduct
an extensive simulation study including Bayesian inference
via MCMC for logistic regression, Gaussian mixtures and
Bayesian inference ofODEmodels.We show that for various
MCMCalgorithms our approach leads to a further significant
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variance reduction as compared to the least-squares-type cri-
teria.

The paper is organized as follows. In Sect. 2, we intro-
duce a general empirical variance minimization procedure
for Markov chains and analyze its properties. In Sect. 3,
we apply our theoretical results to a widely used ULA and
MALA. In Sect. 4, we conduct a thorough numerical study
of the proposed approach. Finally all proofs are collected in
Sect. 5 and Appendix A.

Notations Let ‖ · ‖ denote the standard Euclidean norm. We
say that f : Rd → R is L−Lipschitz function if | f (x) −
f (x ′)| ≤ L‖x − x ′‖ for any x, x ′ ∈ R

d .
For any probability measure ξ on (X,X ), we denote by

Pξ the unique probability under which (Xn)n�0 is a Markov
chain with Markov kernel P and initial distribution ξ . We
denote by Eξ the expectation under the distribution Pξ . For ξ

a probability measure on (X,X ) and A ∈ X , we denote by
ξ P(A) = ∫

ξ(dx)P(x, A); for h : X → R+ a measurable
function, we denote by Ph(x) = ∫

P(x, dy)h(y). Given two
Markov kernels P and Q on X×X , where X is the Borel σ -
field on X, we define PQ(x, A) = ∫∫

P(x, dy)Q(y, A). We
also define Pn inductively by Pn = PPn−1. Let W : X →
[1,∞) be a measurable function. The W -norm of a function
h : X → R is defined as ‖h‖W = supx∈X{|h(x)|/W (x)}. For
any two probability measures μ and ν on (X,X ) satisfying
μ(W ) < ∞ and ν(W ) < ∞, theW -norm ofμ−ν is defined
as ‖μ − ν‖W = sup‖ f ‖W≤1 |μ( f ) − ν( f )|.

We also use the 2-Wasserstein distance and the Kullback–
Leibler divergence in our analysis. The 2-Wasserstein dis-
tance between probability measures μ and ν is denoted by

W2(μ, ν)
def= infζ

(∫
X×X ‖x − y‖2 dζ(x, y)

)1/2, where the
infimum is taken over all probability measures ζ on the
product space X × X with marginal distributions μ and ν.
The Kullback–Leibler divergence for μ and ν is defined as
KL(μ‖ν) = Eμ

[
log(dμ/dν)

]
if μ � ν and KL(μ‖ν) = ∞

otherwise. We say that the probability measure μ satis-
fies the transportation cost-information inequality T2(α) if
there is a constant α > 0 such that for any probability
measure ν

W2(μ, ν) ≤ √
2αKL(ν‖μ). (2)

For a real-valued function h on X ⊂ R
d and a σ -finite mea-

sure λ on (X,X ) we write ‖h‖Lp(λ) = (
∫
X |h(x)|pλ(dx))1/p

with 1 ≤ p < ∞. The set of all functions h with ‖h‖Lp(λ) <

∞ is denoted by Lp(λ) = Lp(X, λ).
Finally, the Sobolev space is defined as Ws,p(X) =

{u ∈ Lp(λ) : Dα u ∈ Lp(λ), ∀|α| � s}, where λ is the Leb-
esgue measure, α = (α1, . . . , αd) is a multi-index with
|α| = α1 + . . . + αd , and Dα stands for differential operator
of the form Dα = ∂ |α|/∂xα1

1 . . . ∂xαd
d . Here all derivatives

are understood in the weak sense. The weighted Sobolev

space Ws,p(X, 〈x〉β) for a polynomial weighting function
〈x〉β = (1 + ‖x‖2)β/2, β ∈ R, is defined by

Ws,p(X, 〈x〉β) = {
u : u · 〈x〉β ∈ Ws,p(X)

}
. (3)

The Sobolev norm is defined as ‖u‖Ws,p(X,〈x〉β) = ∑
|α|≤s∥∥Dα

(
u〈x〉β)∥∥Lp(λ)

.We say thatU ⊂ Ws,p(X, 〈x〉β) is norm-
bounded if there exists c > 0, such that ‖u‖Ws,p(X,〈x〉β) ≤ c
for any u ∈ U .

In what follows, we use the symbol � for inequality up to
an absolute constant.

2 Main results

2.1 Empirical spectral varianceminimization (ESVM)

In this paper, we propose a novel approach to choose a
control variate from the set G referred to as the empirical
spectral variance minimization (ESVM). To shorten nota-
tion, let us denote by H = H(G) a class of functions
h(x) = f (x) − g(x), with g ∈ G. The main idea of the
ESVM approach is to select a control variate which min-
imizes a finite sample estimate for the asymptotic variance
V∞(h). There are several estimates forV∞(h) available in the
literature, see Flegal and Jones (2010). For the sake of clarity,
we consider only the spectral variance estimator which pro-
vides the most generic way to estimate V∞(h). It is defined
as follows. Let P be a Markov kernel admitting a unique

invariant probability π and set h̃
def= h − π(h) (assuming

π(|h|) < ∞). For s ∈ Z+, define the stationary lag s auto-

covariance ρ
(h)
π (s)

def= Eπ

[
h̃(Xs)h̃(X0)

]
and the lag s sample

autocovariance via

ρ̂(h)
n (s)

def= n−1
n−s−1∑

k=0

{h(Xk)−πn(h)}{h(Xk+s)−πn(h)},

(4)

where πn(h)
def= n−1∑n−1

j=0 h(X j ). The spectral variance
estimator is based on truncation and weighting of the sample
autocovariance function,

Vn(h)
def=

bn−1∑

s=−(bn−1)

wn(s)ρ̂
(h)
n (|s|) , (5)

where wn is the lag window and bn is the truncation point.
The truncation point is a sequence of integers and the lag
window is a kernel of the form wn(s) = w(s/bn), where w

is a symmetric nonnegative function supported on [−1, 1]
which fulfills |w(s)| ≤ 1 for s ∈ [−1, 1] and w(s) = 1 for
s ∈ [−1/2, 1/2]. Other possible choices of the lag window
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wn can be considered, see Flegal and Jones (2010). In the
ESVM approach, we choose a control variate by minimizing
the spectral variance

ĥ
def= argmin

h∈H
Vn(h). (6)

As the classH can be too largemaking the resulting optimiza-
tion problem (6) computationally intractable, we consider a
smaller class. Given ε > 0, letHε ⊂ H consist of centers of
the minimal ε-covering net of H with respect to the L2(π)

distance. Further set

ĥε
def= argmin

h∈Hε

Vn(h). (7)

In what follows, we assume that H is a norm-bounded set
in L2(π). Hence the set Hε is finite. The estimates of the
form (7) are referred to as skeleton or sieve estimates in
the statistical literature [see, for example, Wong and Shen
(1995), Devroye et al. (1996), and van de Geer (2000)].

2.2 Theoretical analysis

In this section, we analyze the proposed ESVM procedure in
terms of the excess of the asymptotic variance. Namely, we
provide non-asymptotic bounds of the form:

V∞(̂hε) − inf
h∈H

V∞(h) = O
(
n−α

)
, 1/2 < α < 1, (8)

holding with high probability.
Before we proceed to theoretical results, let us define a

quantity which is used to choose a radius ε of the covering
net Hε over which ĥε is computed. Given any ε > 0, let
HL2(π)(H, ε) be a metric entropy of H in L2(π), that is,

HL2(π)(H, ε)
def= log |Hε|, where |Hε| is cardinality of Hε

(which is assumed to be finite). Define by γL2(π)(H, n) a
so-called fixed point

γL2(π)(H, n)
def= inf{η > 0 : HL2(π)(H, η) ≤ nη2}. (9)

Note that a number η > 0 satisfying HL2(π)(H, η) ≤ nη2 is
finite because of monotonicity of the metric entropy and the
mapping η → nη2 in η. The quantity γL2(π)(H, n) is used
to control the cardinality of Hε. Indeed by choosing ε ≥
γL2(π)(H, n) we get |Hε| ≤ enε2 . It is easily seen from the
above definition that the fixed point is a decreasing function
in n. Let us discuss a typical behavior of γL2(π)(H, n) as
n → ∞ when H is a subset of the weighted Sobolev space
Ws,p(X, 〈x〉β), see (3) for definition. The following result
can be derived from Nickl and Pötscher (2007).

Proposition 1 LetH be a (non-empty) norm-bounded subset
of Ws,p(Rd , 〈x〉β), where 1 < p < ∞, β ∈ R, and s −

d/p > 0. Let also for some α > 0, ‖〈x〉α−β‖L2(π) < ∞.
Then it holds

γL2(π)(H, n) �

⎧
⎨

⎩

n− 1
2+d/s for α > s − d/p,

n
− 1

2+(α/d+1/p)−1 for α < s − d/p.

Now let us turn to assumptions needed for (8) to hold. Our
first assumption is the geometric ergodicity of the Markov
chain (Xk)k≥0. Let W : X → [1,∞) be a measurable func-
tion.

(GE) The Markov kernel P admits a unique invariant prob-
ability measure π such that π(W ) < ∞, and there
exists ς > 0, 0 < ρ < 1 such that for all x ∈ X and
n ∈ N,

∥∥Pn(x, ·) − π
∥∥
W ≤ ςW (x)ρn .

(BR) There exists a non-empty set S ⊂ X and real numbers
u > 1, J > 0 and l > 0 such that

sup
x∈S

Ex [u−σ ] ≤ J and sup
x∈S

W (x) ≤ l, (10)

where σ is the return time to the set S.

Remark 2 Let us introduce drift and small set conditions.

(DS) The Markov kernel P is irreducible, aperiodic and

• There exists measurable function W : X → [1,∞), λ ∈
[0, 1), b < ∞, and l < ∞ such that λ + 2b/(1 + l) < 1
and

PW ≤ λW + b1{W≤l}. (11)

• There exists m, ε > 0 such that for all x, x ′ ∈ {W ≤ l},
‖δx Pm − δx ′ P‖TV ≤ 2(1 − ε).

It follows from Douc et al. (2018, Theorem 19.5.1) that (DS)
implies (GE) and by Douc et al. (2018, Proposition 14.1.2)
(DS) implies (BR). Explicit expressions for the constants ς

and ρ may be found in Douc et al. (2018, Theorem 19.4.1).
Note also that (GE) implies that P is positive, aperiodic and
condition (DS) is satisfied for some small set S and some
function W0 verifying W ≤ W0 ≤ ς0W and constants ς0 <

∞, b0 < ∞, λ0 ∈ [0, 1). Hence (GE) implies (BR) for
some constants u > 1 and J > 0 [see Douc et al. (2018,
Theorem 15.2.4)].

We also need a Gaussian concentration for Vn(h), which
requires an additional assumption on the classH. It is impor-
tant to note that Vn(h) is a quadratic form of (h(X j ))

n−1
j=0. As
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a result, without much surprise, concentration results for the
quadratic forms of Markov Chains shall play a key role in
our analysis. We shall consider below two situations. While
the first situation corresponds to bounded functions h, the
second one deals with Lipschitz continuous functions h. In
the second case, we additionally assume a contraction in L2-
Wasserstein distance. Thus we assume either

(B) Boundedcase: There exist B > 0 such that suph∈H |h|∞
≤ B with |h|∞ = supx∈X |h(x)|

or

(L) Lipschitz case: Functions h ∈ H are L-Lipschitz.

together with

(CW) The Markov kernel P(x, ·) belongs to T2(α) for any
x ∈ X and some α > 0. Moreover, there exists 0 <

r < 1, such thatW2(P(x, ·), P(y, ·)) ≤ r‖x − y‖ for
any x, y ∈ X.

The rate of convergence for the variance excess is given in
the following theorem.

Theorem 3 Assume (GE) and either (L)+(CW) or (B)+(BR).
Set bn = 2(log(1/ρ))−1 log(n) and take ε = γL2(π)(H, n).
Then for any δ ∈ (0, 1), there is n0 = n0(δ) > 0 such that
for any n ≥ n0 and x0 ∈ X0 with Px0 −probability at least
1 − δ, it holds

V∞(̂hε) − inf
h∈H

V∞(h) � C1 log(n)γL2(π)(H, n)

+C2
log(n) log(1/δ)√

n
,

where � stands for inequality up to an absolute constant,

C1 = K 2

log(1/ρ)

C2 = ς1/2(π(W ) + W (x0))

(1 − ρ)1/2 log(1/ρ)

(
K 2 + sup

h∈H
‖h‖2W 1/2

)
,

X0 = X, K 2 = √
αL2/(1− r) under (L)+(CW) and X0 = S,

K 2 = βB2 under (B)+(BR), with

β = ςl

1 − ρ

(
1

log u
+ Jςl

1 − ρ

)
.

In view of Proposition 1, Theorem 3 may be summarized
by saying that the excess variance V∞(̂hε) − infh∈H V∞(h)

is bounded with high probability by a multiple of n−1/2+η

for some η > 0 depending on the capacity of the classH. In
statistical literature, such rates are referred to as slow rates

of convergence. These rates can be improved by imposing
additional conditions onH. To this end let consider the case
when H contains a constant function. Since π(h) = π( f )
for all h ∈ H, this constant must be equal to π( f ), and hence
infh∈H Vn(h) = 0. In this case, we obtain tighter bounds.

Theorem 4 Assume (GE), (L), and (CW). Assume also that
H contains a constant function h∗(x) ≡ const. Fix the
size of the lag window bn = 2(log(1/ρ))−1 log(n) and
take ε = γL2(π)(H, n). Then for any δ ∈ (0, 1), there is
n0 = n0(δ) > 0 such that for all n ≥ n0 and x0 ∈ X it holds
with Px0 −probability at least 1 − δ,

V∞(̂hε) � C1 log(n)γ 2
L2(π)

(H, n) + C2
log(n) log(1/δ)

n
,

(12)

where

C1 = αL2

(1 − r)2 log(1/ρ)
and

C2 = αL2

(1 − r)2 log(1/ρ)

+ ς(π(W ) + W (x0))

(1 − ρ)1/2 log(1/ρ)
sup
h∈H

‖h‖2W 1/2 .

In view of Proposition 1, Theorem 4 asserts that under an
additional assumption that H contains a constant function,
the excess variance V∞(̂hε)−infh∈H V∞(h) can be bounded
by a multiple of n−1+η for some η > 0 depending on H.

3 Application toMarkov Chain Monte Carlo

In this section, we consider the application of the ESVM
approach to MCMC-type algorithms. The main goal of
MCMC algorithms is to estimate expectations with respect
to a probability measure π onRd , d ≥ 1, with a density π of
the form π(x) = e−U (x)/

∫
Rd e−U (y)dy with respect to the

Lebesgue measure, where U is a nonnegative potential. Let
x∗ be such that ∇U (x∗) = 0 and without loss of generality
we assume x∗ = 0. Consider the following conditions on the
potential U .

(LD1) The function U is continuously differentiable on
R
d with Lipschitz continuous gradient: There exists

LU > 0 such that for all x, y ∈ R
d ,

‖∇U (x) − ∇U (y)‖ ≤ LU ‖x − y‖.

(LD2) U is strongly convex:There exists a constantmU > 0,
such that for all x, y ∈ R

d it holds that
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U (y) ≥ U (x) + 〈∇U (x), y − x〉 + mU ‖x − y‖2/2.

(LD3) There exist K1 ≥ 0 and m̃U > 0 such that for any x ∈
R
d with ‖x‖ > K1 and any y ∈ R

d ,
〈
D2U (x)y, y

〉 ≥
m̃U ‖y‖2. Moreover, there exists MU ≥ 0 such that
for any x ∈ R

d ,
∥∥D3U (x)

∥∥ ≤ MU .

Unadjusted Langevin algorithmTheLangevin stochastic dif-
ferential equation associated with π is defined by

dYt = −∇U (Yt )dt + √
2dBt , (13)

where (Bt )t≥0 is the standard d-dimensional Brownian
motion. Undermild technical conditions, the Langevin diffu-
sion admitsπ as its unique invariant distribution.We consider
the sampling method based on the Euler–Maruyama dis-
cretization of (13). This scheme referred to as unadjusted
Langevin algorithm (ULA), defines the discrete-timeMarkov
chain (Xk)k≥0 given by

Xk+1 = Xk − γ∇U (Xk) + √
2γ Zk+1 , (14)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional stan-
dard Gaussian random variables and γ > 0 is a step size;
see Roberts and Tweedie (1996a). We denote by PULA

γ the
Markov kernel associated with the chain (14). It is known
that under (LD1) and (LD2) or (LD3), PULA

γ has a stationary
distribution πγ which is close to π [in a sense that one can
bound the distance between πγ and π , e.g., in total variation
andWasserstein distances, see Dalalyan (2017), Durmus and
Moulines (2017)].

Proposition 5 1. Assume (LD1), (LD2). Then for any 0 <

γ < 2/(mU +LU ), PULA
γ satisfies (GE) with the invari-

ant distribution πγ and W (x) = ‖x‖2. Moreover, PULA
γ

fulfills (CW) with

α = 2γ and r = √
1 − γ kU ,

where kU
def= 2mU LU /(mU +LU ).

2. Assume (LD1), (LD3). Then for any 0<γ <m̃U/(4 L2
U ),

PULA
γ satisfies (GE), (BR) with the invariant distribution

πγ , W (x) = ‖x‖2, and S = {
x ∈ R

d : ‖x‖ ≤ R
}
with

sufficiently large radius R > 0.

Proof 1. For the proof of (GE) see Durmus and Moulines
(2016, Proposition 2) and Durmus and Moulines (2017,
Theorem 12) and Remark 2. To prove (CW) we observe
that PULA

γ (x, ·) = N (x−γ∇U (x), 2γ Id).Hence, for all
γ > 0, we get using Bakry et al. (2013, Theorem 9.2.1),
PULA

γ (x, ·) ∈ T2(2γ ), that is PULA
γ (x, ·) fulfills (2).

Assuming that (LD1) and (LD2) hold, we may show
using Durmus and Moulines (2016, Proposition 3) that

for any 0 < γ ≤ 2/(mU +LU )) and any x, y ∈ X,
W2(PULA

γ (x, ·), PULA
γ (y, ·)) ≤ √

1 − γ kU d(x, y).
2. See Brosse et al. (2019, Lemma 19 and Proposition

16). ��

Metropolis-adjusted Langevin algorithm (MALA) Here we
consider a popular modification of ULA called Metropolis
Adjusted Langevin Algorithm (MALA). At each iteration, a
new candidate Yk+1 is proposed according to

Yk+1 = Xk − γ∇U (Xk) + √
2γ Zk+1 , (15)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional stan-
dard Gaussian random vectors and γ > 0 is a step size. This
proposal is accepted with probability α(Xk,Yk+1), where

α(x, y)
def= min

(
1,

π(y)qγ (y, x)

π(x)qγ (x, y)

)
,

where qγ (x, y) = (4πγ )−d/2 exp(−‖y − x + γ∇U (x)‖2/
(4γ )). We denote by PMALA

γ the Markov kernel associated
with the MALA chain.

Proposition 6 Assume (LD1), (LD3). Then there existsγ > 0
such that for any γ ∈ [0, γ ], PMALA

γ satisfies (GE), (BR)

with the invariant distribution π , W (x) = ‖x‖2, and S ={
x ∈ R

d : ‖x‖ ≤ R
}
with sufficiently large radius R > 0.

Proof See Brosse et al. (2019, Proposition 21 and 23). ��

Random walk metropolis (RWM) At each iteration, a new
candidate Yk+1 is proposed according to

Yk+1 = Xk + √
γ Zk+1, (16)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional stan-
dard Gaussian random vectors and γ > 0. This proposal is
accepted with probability α(Xk,Yk+1), where

α(x, y) = min
(
π(y)/π(x), 1

)

We denote by PRWM
γ the Markov kernel associated with

the RWM chain. Assumption (GE) is discussed in Roberts
and Tweedie (1996b) and Jarner and Hansen (2000) under
various conditions. In particular, the following result for
super-exponential densities holds.

Proposition 7 Assume (LD1), (LD3). Then PRWM
γ satisfies

(GE), (BR) with the invariant distribution π , W (x) =
cπ−1/2(x) for some c > 0, and S = {

x ∈ R
d : ‖x‖ ≤ R

}

with sufficiently large radius R > 0.

Proof See Jarner and Hansen (2000, Theorem 4.2). ��
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4 Numerical study

In this section,we studynumerical performance of theESVM
method for simulated and real-world data. Python implemen-
tation is available at https://github.com/svsamsonov/esvm.

Following Assaraf and Caffarel (1999), Mira et al.
(2013), Oates et al. (2019), we choose G to be a class of
Stein control variates of the form

g� = −〈�,∇U 〉 + div(�), (17)

where � : � → R
d with � ⊂ R

d , div(�) is the diver-
gence of �, and U is the potential associated with π , that
is, π(x) ∝ e−U (x), see Sect. 3. Under (LD1) and (LD2),
for continuously differentiable functions �, π(g�) = 0,
see Oates et al. (2019, Lemma 1). This suggests to con-
sider a class H = {h = f − g� : g� ∈ G}. Our standard
choice will be �(x) = b or �(x) = Ax + b, where
A ∈ R

d×d is a matrix and b ∈ R
d is a vector. They will

be referred to as the first- and second-order control variates,
respectively. It is worth noting that polynomial-based control
variates are not exhaustive and one can use other control vari-
ates. For instance, in the Gaussian mixture model considered
below, polynomial-based control variates do not fit structure
of the problem, so a class of radial basis functions will be
used.

In the ESVMmethod, we choose the trapezoidal nonneg-
ative kernel w supported on [−1, 1] :

w(s) =

⎧
⎪⎪⎨

⎪⎪⎩

2s + 2, −1 ≤ s < −1/2,

1, −1/2 ≤ s ≤ 1/2,

−2s + 2, 1/2 < s ≤ 1.

(18)

Our experiments with other kernels, for instance, w(s) =
1
2 + 1

2 cosπs did not reveal any sensitivity of ESVM to
a particular kernel choice. In fact, even the simplest ker-
nel w(s) = 1{|s|≤ 1

2 } showed results comparable with ones
for w(s) given in (18). Another parameter of ESVM to be
chosen is the lag-window size bn . In practice, it is not con-
venient to choose bn according to Theorems 3 and 4, since
it involves parameters of the Markov chain which are not
usually available. Therefore, we choose bn by analyzing the
sample autocorrelation function (ACF) of the Markov chain,
see discussion below. Moreover, our experiments show that
ESVM is not much sensitive to particular choice of bn . For a
wide range of possible values, our procedure shows reason-
ably good performance.

Numerical study is organized as follows. First we use
ULA, MALA, or RWM algorithm to sample a training tra-
jectory of the size n = nburn + ntrain. We consider the first
nburn observations as a burn-in period, and exclude them from

subsequent computations. Then we compute optimal param-
eters ÂESVM, b̂ESVM which minimize the spectral variance
Vn(h) with n = ntrain and obtain the resulting control variate
ĥESVM. For comparison purposes, we also compute param-
eters ÂEVM, b̂EVM based on minimization of the empirical
variance V ′

n(h) = (n − 1)−1∑n−1
k=0{h(Xk) − πn(h)}2 with

n = ntrain and obtain the corresponding control variate ĥEVM.
Variance reductionusing ĥEVM will be referred to as theEVM
algorithm, see Belomestny et al. (2017), Mira et al. (2013),
and Papamarkou et al. (2014). We use the BFGS optimiza-
tion method to find the optimal parameters for both ESVM
and EVM algorithms.

To evaluate performance of ESVM and EVM, we use
the same MCMC algorithm to sample Ntest = 100 inde-
pendent training trajectories of size n = nburn + ntest.
Then for each trajectory, we exclude first nburn observa-
tions and compute three different estimates for π( f ): (i)
vanilla estimate (ergodic average of f without variance
reduction); (ii) EVM estimate (ergodic average of ĥEVM);
(iii) ESVM estimate (ergodic average of ĥESVM). For each
test trajectory,we define the variance reduction factors (VRF)
as the ratios Vn( f )/Vn(ĥESVM) or Vn( f )/Vn(ĥEVM) with
n = ntest. We report the average VRF over Ntest trajectories
together with the corresponding boxplots of ergodic aver-
ages. On these boxplots, we display the lower and upper
quartiles for each estimation procedure. We will refer to
the methods based on the first-order control variates as
ESVM-1 and EVM-1, and for the second-order ones as
ESVM-2 and EVM-2, respectively. The values bn , nburn,
ntrain, ntest together with parameters of MCMC algorithms
for each example considered below are presented in Sect. 6,
Table 6.

Gaussian mixture model (GMM) Let π be a mixture of
two Gaussian distributions, that is, π = ρN (μ,�) + (1 −
ρ)N (−μ,�) for ρ ∈ [0, 1]. It is straightforward to check
that (LD1) holds. If μ and � are such that ‖�−1μ‖2 ≤
λmin(�

−1), the densityπ satisfies (LD2).Otherwise,wehave
(LD3).

We set ρ = 1/2, d = 2, μ = (0.5, 0.5)�, and consider
two instances of the covariance matrix: � = I and � = �0,
where �0 is a randomly initialized symmetric matrix with
λmin(�0) ≥ 0.1. The quantities of interest are Eπ [X1] and
Eπ [X2

1].
First let us briefly discuss how one can choose the lag-

window size bn . Let us look at the sample ACF plot of the
first coordinate given in Fig. 1. One may observe that ACF
decreases fast enough for anyMCMCalgorithm, and it seems
reasonable to set bn = 50 or close to it.Moreover, we analyze
performance of ESVM for different choices of bn by running
the ULA algorithm to estimate Eπ [X1] and letting bn to run
over the values from 1 to 5000. The corresponding VRFs are
given also in Fig. 1. Here, to compute the spectral variance
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Fig. 1 GMM with � = �0. Left: sample autocorrelation function for X1. Right: average variance reduction factors for different choices of bn

Table 1 Variance reduction factors in GMM with � = I (top) and
� = �0 (bottom)

Method Eπ [X1] Eπ [X2
1]

ULA MALA RWM ULA MALA RWM

ESVM 9.1 6.1 8.2 609.2 319.6 531.2

EVM 4.5 3.6 5.3 607.8 316.3 528.7

ESVM 24.6 7.9 22.2 15.2 9.4 15.3

EVM 16.5 7.5 14.3 9.2 5.0 9.3

Bold indicates that our algorithms outperform existing

over test trajectories, we use fixed btestn = n1/3test , no matter
which value of bn was used during the training. Note that
even for bn = 1 on train (that is, taking into account only the
first-order autocovariance) ESVM outperforms EVM, and
for values bn ∈ [10, 1000] we observe the optimal perfor-
mance of ESVM.

Numerical results for estimating Eπ [X1] are presented in
Table 1. The corresponding boxplots for Eπ [X1] are given
in Fig. 2, and for Eπ [X2

1] are given in Sect. 6, Figs. 6 and 7.
For the sake of convenience, all the estimates are centered by
their analytically computed expectations. Note that ESVM
outperforms EVM in both cases � = I and � = �0 and for
all samplers used.

Gaussian mixture with isolated modes Let us now consider
the Gaussianmixturemodel with different means and covari-
ates,π = ρN (μ1, σ1)+(1−ρ)N (−μ2, σ2)with ρ ∈ [0, 1].
For simplicity, we let d = 1. We are interested in the case
when |μ1 − μ2| � max{σ1, σ2}. When sampling from π

using ULA, MALA, or RWM, the corresponding Markov
chain tends to “stuck” at the modes of density π , which leads
to slow convergence. We are going to compare the results
obtained using ESVM and EVMwith the ones fromMijatovi
and Vogrinc (2018) based on a discretized Poisson equation.

Fig. 2 Estimation of Eπ [X1] in GMM with � = I (top row) and � = �0 (bottom row). In each row, boxplots are given for ULA, MALA, and
RWM, respectively
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Table 2 Variance reduction
factors in GMM with isolated
modes

ntrain EVM-2 ESVM-2 Poisson-CV ESVM-r, r = 4 ESVM-r, r = 10 ESVM-r, r = 20

104 1.03 1.04 up to 8900 95.8 6457.2 265,382.8

105 1.92 1.20 up to 13,200 98.8 7176.5 378,249.0

For comparison purposes, we will reproduce experiments
from the aforementioned paper, see Sect. 5.2.1, and refer
to the reported variance reduction factors.

Our aim is to estimate π( f ) with f (x) = x3. We fix
ρ = 0.4,μ1 = −3,μ2 = 4, σ1 = 1, σ2 = 0.5, and useRWM
with step size γ = 1.0 as a generating procedure. Results for
the second-order control variates (our standard choice) are
reported in Table 2, showing that this class of functions �

does not allow us to achieve comparable to Mijatovi and
Vogrinc (2018) variance reduction factors. Let us consider
instead the following set of radial basis functions

�(x) =
r∑

k=1

ak(x − bk) exp

(
− (x − bk)2

2

)
, (19)

where ak , bk ∈ R, k = 1, . . . , r . The ESVM algorithm
with control variates determined by �(x) from (19) will be
referred to as the ESVM-r algorithm. Results for ESVM-r
are also given in Table 2 showing comparable results with the
Poisson-based approach from Mijatovi and Vogrinc (2018)
(it is referred to as the Poisson-CV) and even outperforming
it for large enough train sample size ntrain and number of
basis functions r .

Banana-shapedensityThe “Banana-shape” distribution, pro-
posed by Haario et al. (1999), can be obtained from a
d-dimensional Gaussian vector with zero mean and covari-
ance diag(p, 1, . . . , 1) by applying transformation

ϕb(x) : Rd → R
d ,

ϕ(x) = (x1, x2 + bx21 − pb, x3, . . . , xd),

where p > 0 and b > 0 are parameters; here b controls the
curvature of density’s level sets. The potential U is given by

U (x1, . . . , xd) = x21/2p + (x2 + bx21 − pb)2

+
∑d

k=3
x2k /2.

As can be easily seen, the assumption (H3) holds. As to the
assumption (H1), it is fulfilled only locally. The quantity
of interest is Eπ [X2]. In our simulations, we set p = 100,
b = 0.1 and consider d = 2 and d = 8. VRFs are reported in
Table 3. Boxplots for d = 8 are shown in Fig. 3. In this prob-
lem, ESVM significantly outperforms EVM both for d = 2
and d = 8. Because of the curvature of the level sets, the
step sizes in all considered methods should be chosen small

Table 3 Estimation of Eπ [X2] for the banana-shaped density in d = 2
and d = 8

Method d = 2 d = 8

ULA MALA RWM ULA MALA RWM

ESVM 4.7 2.7 42.4 5.3 6.5 18.5

EVM 1.4 1.3 1.5 1.4 4.6 1.7

Bold indicates that our algorithms outperform existing

enough, leading to highly correlated samples. This explains
a poor performance of the EVM method in this context.

Logistic and probit regression Let Y = (Y1, . . . , Yn) ∈
{0, 1}n be a vector of binary response variables, x ∈ R

d

be a vector of regression coefficients, and Z ∈ R
N×d be a

design matrix. The log-likelihood and likelihood of i th point
for the logistic and probit regression are given by

�log(Yi |x,Zi ) = YiZ�
i x − ln(1 + eZ

�
i x ), plog(Yi |x,Zi )

= exp(�log(Yi |x,Zi )),
�pro(Yi |x,Zi ) = Yi ln(�(Z�

i x))

+ (1 − Yi ) ln(�(−Z�
i x)), ppro(Yi |x,Zi )

= exp(�pro(Yi |x,Zi )),

where Z�
i is the i th row of Z for i ∈ {1, . . . , N }.We complete

the Bayesianmodel by considering the Zellner g-prior for the
regression parameter x , that is, Nd(0, g(Z�Z)−1). Defining
x̃ = (Z�Z)1/2x and Z̃i = (Z�Z)−1/2Zi , the scalar product
is preserved, that is 〈x,Zi 〉 = 〈x̃, Z̃i 〉 and, under the Zellner
g-prior, x̃ ∼ Nd(0, gId). In the sequel, we apply the algo-
rithms in the transformed parameter space with normalized
covariates and put g = 100.

The unnormalized posterior probability distributions πlog

and πpro for the logistic and probit regression models are
defined for all x̃ ∈ R

d by

πlog(x̃ |Y,Z) ∝ exp(−Ulog(x̃)) with Ulog(x̃)

= −
∑N

i=1
�log(Yi |x̃,Zi ) + (2σ 2)−1 ‖x̃‖2 ,

πpro(x̃ |Y,Z) ∝ exp(−Upro(x̃)) with Upro(x̃)

= −
∑N

i=1
�pro(Yi |x̃,Zi ) + (2σ 2)−1 ‖x̃‖2 .

It is straightforward to check that Ulog,Upro satisfy (LD1)
and (LD2).
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Fig. 3 Estimation of Eπ [X2] for the banana-shape density in d = 8. Boxplots are given for ULA, MALA, and RWM, respectively

Table 4 Average test likelihood
estimation in logistic regression

Method PIMA dataset EEG dataset

ULA MALA RWM ULA MALA RWM

ESVM-1 347.6 535.6 411.7 542.3 996.6 483.5

EVM-1 347.9 542.1 415.5 548.1 1020.2 508.9

ESVM-2 11,387.3 28,792.8 19,503.3 11,406.6 44,612.5 11,324.9

EVM-2 2704.8 4087.3 5044.1 350.3 39985.4 453.3

Bold indicates that our algorithms outperform existing

We analyze the performance of ESVM algorithm on two
datasets from the UCI repository. The first dataset, Pima,1

contains N = 768 observations in dimension d = 9. The
second one, EEG,2 has dimension d = 15, and for our
experiments we take randomly selected subset of size 5000
(to speed up sampling procedure). We split each dataset
into a training part T train

N = [(yi ,Zi )]Ni=1 and a test part
T test
K = [(y′

i ,Z
′
i )]Ki=1 by randomly picking K test points from

the data. Then we use ULA, MALA, and RWM algorithms
to sample from πlog(x̃ |Y,Z) and πpro(x̃ |Y,Z), respectively.

Given the sample (x̃k)
n−1
k=0, we aim at estimating the aver-

age likelihood over the test set T test
K , that is,

∫

Rd
f (x̃)πlog(x̃ |Y,Z) dx̃

(
or

∫

Rd
f (x̃)πpro(x̃ |Y,Z) dx̃ for probit regression

)
,

where the function f is given by

f (x̃) = K−1
K∑

i=1

plog(y
′
i |Z′

i , x̃)

(
or K−1

K∑

i=1

ppro(y
′
i |Z′

i , x̃) for probit regression

)
.

VRFs are reported for first- and second-order control vari-
ates. Results for logistic regression are given in Table 4.

1 https://www.kaggle.com/uciml/pima-indians-diabetes-database.
2 https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State.

Boxplots for the average test likelihood estimation using
second-order control variates are shown in Fig. 4. The same
quantities for probit regression are reported in Sect. 6, see
Table 7, Figs. 8, and 9.

Note that ESVM also outperforms EVM in this example.
It is worth noting that for ULA and RWM, we show up to
100 times better performance in terms of VRF. For MALA,
the results for EVM and ESVM are similar since the samples
are much less positively correlated.

Van der Pol oscillator equation The setup of this experiment
is much similar to the one reported in South et al. (2018).
Here a position px (t) ∈ R evolves in time t according to the
second-order differential equation

d2 px
dt2

− x(1 − p2x )
dpx
dt

+ p = 0, (20)

where x ∈ R is an unknown parameter indicating the nonlin-
earity and the strength of the damping. Letting qx = dpx/dt
we can formulate the oscillator as the first-order system

⎧
⎨

⎩

dpx
dt = qx ,

dqx
dt = x(1 − p2x )qx + px ,

where only the first component px is observed. This sys-
tem was solved numerically using x� = 1 and starting point
px� (0) = 0, qx� (0) = 2. Observations Yi = px� (ti ) + εi
were made at successive time instants ti = i , i = 1, . . . , T ,
and Gaussian measurement noise εi of standard deviation
σ = 0.5 was added. We use a normal prior π0(x) with mean
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Fig. 4 Estimation of the average test likelihood in logistic regression for the Pima dataset (top row) and the EEG dataset (bottom row). In each
row, boxplots are given for ULA, MALA, and RWM, respectively

μ = 1 and standard deviation σ0 = 0.5. The unnormalized
posterior probability distribution is defined for all x > 0 by

π(x |Y) ∝ exp(−U (x)) with U (x) = − logπ0(x)

+
T∑

i=1

(Yi − px (ti ))2

2σ 2 .

Clearly,U satisfies (LD1) and (LD3). To sample fromπ(x |Y)

we use the MALA algorithm. The quantity of interest is
the posterior mean

∫
R
xπ(x |Y) dx . In this example, we use

control variates up to degree 3. Results are presented in
Sect. 6—VRFs are summarized in Table 8 and boxplots for
the second-order control variates are given in Fig. 10. In this
problem, ESVM slightly outperforms EVM in terms of vari-
ance reduction factor.

Lotka–Volterra system The Lotka–Volterra model is a well-
known system of ODEs describing the joint evolution of
two interacting biological populations, predators and preys.
Denote the population of preys and predators at moment t
by u(t) and v(t) respectively, then the corresponding model
can be written as the following first-order system

⎧
⎪⎪⎨

⎪⎪⎩

du
dt = (α − βv)u,

dv
dt = (−γ + δu)v,

u(0) = u0, v(0) = v0.

(21)

The parameter vector is given by x = (α, β, γ, δ), with all
components being nonnegative due to the physical meaning

of the problem. The system was solved numerically with the
true parameters x� = (0.6, 0.025, 0.8, 0.025) and starting
populations u0 = 30.0, v0 = 4.0. The system is observed at
successive time moments ti = i , i = 1, . . . , T , with the log-
normal measurements Yi ∼ Lognormal(log u(ti ), σ 2), Zi ∼
Lognormal(log v(ti ), σ 2)with σ = 0.25. Aweakly informa-
tive normal prior π0(x) was used for the model parameters:
N (1, 0.5) for α and γ ,N (0.05, 0.05) for β and δ. The poste-
rior distribution is given byπ(x |Y,Z) ∝ exp(−U (x)), where

U (x) = − logπ0(x)

+
T∑

i=1

(
(log Yi − log u(ti ))2 + (log Zi − log v(ti ))2

2σ 2

+ log Yi + log Zi

)
.

We use the MALA algorithm to sample from π(x |Y,Z). The
quantity of interest is the posterior mean

∫
R4 xπ(x |Y,Z) dx .

VRFs are summarized in Table 5 and boxplots for the second-

Table 5 Estimation of the posterior mean in the Lotka–Volterra model

Estimated parameter α β δ γ

ESVM-1 10.5 6.5 6.2 8.3

EVM-1 6.6 4.2 4.9 6.0

ESVM-2 757.6 427.8 277.2 446.6

EVM-2 642.1 286.0 275.0 429.7

Bold indicates that our algorithms outperform existing
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Fig. 5 Estimation of the
posterior mean of β (left figure)
and δ (right figure) in the
Lotka–Volterra model

order control variates are given in Fig. 5 and Sect. 6, Fig. 11.
For some model parameters, ESVM significantly outper-
forms EVM in terms of VRF, for others the results are
comparable with slight superiority of ESVM.

5 Proofs

5.1 Proof of Proposition 1

Before we proceed to the proof of Proposition 1, let us refer
to a general result from Nickl and Pötscher (2007) which is
used below to bound the fixed point of a subset of a weighted
Sobolev space. First we need to introduce some notations.

Let μ be a (nonnegative) Borel measure. Given the two
functions l, u : X → R in Lp(μ), the bracket [l, u] is the
set of all functions in Lp(μ) with l ≤ f ≤ u. The Lp(μ)-
size of the bracket [l, u] is defined as ‖l − u‖Lp(μ). The
Lp(μ)-bracketing numberN [ ]

Lp(μ)(F, ε) of a (non-empty) set
F is the minimal number of brackets of Lp(μ)-size less than
or equal to ε > 0 necessary to cover F . The logarithm of
the bracketing number is called the Lp(μ)-bracketing metric
entropy H [ ]

Lp(μ)(F, ε).

Theorem 8 (Nickl and Pötscher 2007, Corollary 4) Let 1 <

p < ∞, β ∈ R, and s − d/p > 0. Let F be a (non-empty)
norm-bounded subset of Ws,p(Rd , 〈x〉β). Suppose M is a
(non-empty) family of Borel measures on R

d such that the
condition supμ∈M ‖〈x〉α−β‖Lr (μ) < ∞ holds for some 1 ≤
r ≤ ∞ and for some α > 0. Then

sup
μ∈M

H [ ]
Lr (μ)(F, ε) �

⎧
⎨

⎩

ε−d/s for α > s − d/p,

ε−(α/d+1/p)−1
for α < s − d/p.

Proof of Proposition 1 We first bound the metric entropy of
H by the bracketing metric entropy. If h ∈ H is in the 2ε-
bracket [l, u], l, u ∈ H, then it is in the ball of radius ε around
(l + u)/2. So,

HL2(π)(H, ε) ≤ H [ ]
L2(π)

(H, 2ε).

Now our aim is apply Theorem 8 to H which is a norm-
bounded subset ofWs,p(Rd , 〈x〉β) by assumption. For M =

{π} and r = 2, the condition supμ∈M ‖〈x〉α−β‖Lr (μ) < ∞
also holds by assumption. Hence,

HL2(π)(H, ε) �

⎧
⎨

⎩

ε−d/s for α > s − d/p,

ε−(α/d+1/p)−1
for α < s − d/p.

Now we turn to the bound for the fixed point γL2(π)(H, n)

[see (9)]. Consider first the case α > s − d/p. The solution

to the inequality ε−d/s � nε2 is ε � n− 1
2+d/s . Taking ε0 ∼

n− 1
2+d/s , where ∼ stands for equality up to a constant, yields

HL2(π)(H, ε0) � nε20, for α > s − d/p.

Since γL2(π)(H, n) is the infimum over all such ε > 0, it

holds γL2(π)(H, n) � n− 1
2+d/s . Repeated computations for

α < s − d/p give us γL2(π)(H, n) � n
− 1

2+(α/d+1/p)−1 . Com-
bining these two bounds, we have

γL2(π)(H, n) �

⎧
⎨

⎩

n− 1
2+d/s for α > s − d/p,

n
− 1

2+(α/d+1/p)−1 for α < s − d/p,

which is the desired conclusion. ��

5.2 Spectral variance estimator

We investigate properties of the spectral variance Vn(h)

defined in (5). Note that Vn(h) can be represented as a
quadratic form Zn(h)�An Zn(h), where Zn(h) = (h(X0),

. . . , h(Xn−1))
� and An is an n × n symmetric matrix.

Namely, let In be the identity n × n matrix and 1n =
(1, . . . , 1)� ∈ R

n . Given the lag window wn , we denote the
weight matrix by Wn = (wn( j − i))ni, j=1. By rearranging
the summations in (5), we have

Vn(h) = n−1
n−1∑

k=0

n−1∑

j=0

wn(k − j)

(
h(Xk) − πn(h)

)(
h(X j ) − πn(h)

)
,
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Hence the spectral variance can be represented as

Vn(h) = Zn(h)�An Zn(h) for

An = 1

n

(
In −1

n
1n1

�
n

)�
Wn

(
In −1

n
1n1

�
n

)
. (22)

In the following lemma, we provide an upper bound on the
operator norm of An .

Lemma 9 If the truncation point bn of the lag window wn

satisfies bn ≤ n, then ‖An‖ ≤ 2bn/n.

Proof Denote P = In −n−11n1�
n . Since P is an orthonormal

projector, we get

‖An‖ = 1

n
‖PWnP‖ ≤ 1

n
‖Wn‖.

To bound the operator norm of Wn (which is a Toeplitz
matrix), we use the standard technique based on the discrete-
time Fourier transform of the sequence w : [−bn, bn] →
[0, 1], defined, for λ ∈ [−π, π) by

ŵn(λ) =
bn∑

k=−bn

wn(k)e
−ikλ.

Obviously, |ŵn(λ)| ≤ 2bn . We have ‖Wn‖ = sup‖x‖=1 x
�

Wnx . Moreover, for any unit vector u = (u1, . . . , un)� it
holds

u�Wnu =
n∑

k, j=1

(
1

2π

∫ π

−π

ei(k−j)λŵn(λ)dλ

)
uku j

= 1

2π

∫ π

−π

∣
∣∣∣

n∑

k=1

eik˘uk

∣
∣∣∣

2

ŵn(λ)dλ ≤ 2bn .

Hence ‖Wn‖ ≤ 2bn and ‖An‖ ≤ 2bn/n. The lemma is
proved. ��
In the next lemma, we prove several technical results on
expectation of the operator norm of Zn(h) and Vn(h) which
hold under (GE) assumption.

Lemma 10 Under (GE), it holds for any h, h′ ∈ H

Ex0
[
‖Zn(h)‖2

]
≤ n‖h‖2L2(π)

+ςW (x0)

1 − ρ
‖h‖2W 1/2 ,

and

Ex0
[
‖Zn(h) − Zn(h

′)‖2
]

≤ n‖h − h′‖2L2(π)

+ςW (x0)

1 − ρ
‖h − h′‖2W 1/2 .

Moreover, for any h ∈ H, this bound implies

Ex0
[
Vn(h)

] ≤ 2bn‖h‖2L2(π)
+ 2‖h‖2

W 1/2ςW (x0)

1 − ρ

bn
n

.

Proof We first observe that

Ex0
[
‖Zn(h)‖2

]
= Ex0

[∑n−1

k=0
h2(Xk)

]

=
∑n−1

k=0
‖h‖2L2(Pk (x0,·)).

Now each summand can be bounded in the following way,

‖h‖2L2(Pk (x0,·)) = ‖h‖2L2(π)
+
(
‖h‖2L2(Pk (x0,·)) − ‖h‖2L2(π)

)

≤ ‖h‖2L2(π)
+
∫

|h(x)|2|Pk(x0, ·) − π |(dx)
≤ ‖h‖2L2(π)

+ ‖h‖2W 1/2‖Pk(x0, ·) − π‖1=W .

This inequality and (GE) together imply

Ex0
[
‖Zn(h)‖2

]
≤ n‖h‖2L2(π)

+ ‖h‖2
W 1/2ςW (x0)

1 − ρ
,

which proves the first inequality. Repeated computations for
Zn(h) − Zn(h′) yield

Ex0
[
‖Zn(h) − Zn(h

′)‖2
]

≤ n‖h − h′‖2L2(π)

+ ςW (x0)

1 − ρ
‖h − h′‖2W 1/2 .

The first statement is proved. To prove the second statement
we note that

Ex0
[
Vn(h)

] = Ex0
[
Zn(h)�An Zn(h)

]

≤ ‖An‖Ex0
[
‖Zn(h)‖2

]
.

By Lemma 9 we have ‖An‖ ≤ 2bn/n. Substituting this we
deduce our claim. ��

It is known that the spectral variance Vn(h) is a biased
estimate of the asymptotic variance V∞(h). In the following
proposition, we show how close is the expected value of
Vn(h) to V∞(h).

Proposition 11 Assume (GE). Then for any h ∈ H and any
x0 ∈ X,

∣∣∣Ex0
[
Vn(h)

] − V∞(h)

∣∣∣ ≤ ς1/2π(W )‖h̃‖2
W 1/2

1 − ρ1/2
(

9ςW (x0)

(1 − ρ)π(W )

bn
n2

+ 9bn
n

+ 2ρbn/2
)

,
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where h̃ = h − π(h). Moreover, if n ≥ ςW (x0)/((1 −
ρ)π(W )) then

∣∣∣Ex0
[
Vn(h)

] − V∞(h)

∣∣∣

≤ 20ς1/2π(W )‖h̃‖2
W 1/2

1 − ρ1/2

(
bn
n

∨ ρbn/2
)

,

where a ∨ b
def= max{a, b}.

Proof Recall that the asymptotic variance V∞(h) may be
written as V∞(h) = ∑

|s|≥0 ρ
(h)
π (|s|) with ρ

(h)
π (s) =

Eπ

[
h̃(X0)h̃(Xs)

]
and, by definition, Vn(h) = ∑

|s|<bn

wn(s)ρ̂
(h)
n (|s|) , where the lag s empirical autocovariance

coefficient ρ̂(h)
n (s) is given in (4). We have

∣∣∣Ex0
[
Vn(h)

] − V∞(h)

∣∣∣

≤ 2
bn−1∑

s=0

wn(s)
∣
∣Ex0

[
ρ̂(h)
n (s)

] − ρ(h)
π (s)

∣
∣

+ 2
bn−1∑

s=0

|1 − wn(s)||ρ(h)
π (s)| + 2

∞∑

s=bn

|ρ(h)
π (s)| . (23)

To bound each summand in this decomposition, we need the
following lemma.

Lemma 12 Assume (GE). Then for any h ∈ H, x ∈ X , and
s ∈ Z+,
∣∣∣Ex

[
h̃(X0)h̃(Xs)

]∣∣∣ ≤ ς1/2ρs/2W (x)‖h̃‖2W 1/2 , (24)

and

∣∣ρ(h̃)
π (s)

∣∣≤ ς1/2ρs/2π(W )‖h̃‖2W 1/2 . (25)

Proof The proof is straightforward. Sinceπ(h̃) = 0, we have

∣∣
∣Ex

[
h̃(X0)h̃(Xs)

]∣∣
∣

≤ ∣∣h̃(x)
∣∣
∣∣∣∣

∫

X
h̃(y)

(
Ps(x, ·) − π

)
(dy)

∣∣∣∣

≤ ‖h̃‖2W 1/2W
1/2(x)

∫

X
W 1/2(y)

∣∣Ps(x, ·) − π
∣∣(dy) .

By Hölder’s inequality,

∫

X
W 1/2(y)

∣∣Ps(x, ·) − π
∣∣(dy)

≤ ∣∣Ps(x,X)−π(X)
∣∣1/2

(∫

X
W (y)

∣∣Ps(x, ·)−π
∣∣(dy)

)1/2

≤ ‖Ps(x, ·) − π‖1/2W .

Combining these bounds and using (GE), we conclude

∣
∣∣Ex

[
h̃(X0)h̃(Xs)

]∣∣∣ ≤ ς1/2ρs/2W (x)‖h̃‖2W 1/2 ,

and (24) is proved. Integrating this relation with respect to
the stationary distributionπ , we obtain the second inequality.
The lemma is proved. ��

Let us first bound the last two summands in the decomposi-
tion (23). By definition,wn(s) = 1 for all s ∈ [−bn/2, bn/2].
From (25) we have the second summand

bn−1∑

s=0

|1 − wn(s)||ρ(h)
π (s)| ≤

bn−1∑

s=�bn/2�
|ρ(h)

π (s)|

≤ ς1/2π(W )‖h̃‖2W 1/2

ρbn/2

1 − ρ1/2 .

(26)

where �bn/2� is the nearest integer greater than or equal to
bn/2. Similar arguments apply to the last summand in (23),

∞∑

s=bn

|ρ(h)
π (s)| ≤ ς1/2π(W )‖h̃‖2W 1/2

ρbn

1 − ρ1/2

≤ ς1/2π(W )‖h̃‖2W 1/2

ρbn/2

1 − ρ1/2 . (27)

It remains to bound the first summand in (23). We note that
lag s empirical autocovariance coefficient satisfies ρ̂

(h)
n (s) =

ρ̂
(h̃)
n (s). Moreover, for any s < n, it may be decomposed as

ρ̂
(h̃)
n (s) = ∑3

i=1 An,i (s), where

An,1(s)
def= 1

n

n−s−1∑

k=0

h̃(Xk)h̃(Xk+s),

An,2(s)
def= πn(h̃)

n

{n−s−1∑

k=0

h̃(Xk) +
n−1∑

k=s

h̃(Xk)

}
,

and An,3(s)
def= (1 − s/n)π2

n (h̃). Since |wn(s)| ≤ 1 by defi-
nition, it holds by the triangle inequality

bn−1∑

s=0

wn(s)
∣
∣Ex0

[
ρ̂(h̃)
n (s)

] − ρ(h)
π (s)

∣
∣

≤
bn−1∑

s=0

∣∣Ex0
[
An,1(s)

] − ρ(h)
π (s)

∣∣

+
bn−1∑

s=0

∣∣Ex0
[
An,2(s)

]∣∣ +
bn−1∑

s=0

∣∣Ex0
[
An,3(s)

]∣∣ . (28)
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For any s ∈ {0, . . . , n − 1}, by the Markov property, (GE),
and (24) we obtain

∣∣∣Ex0
[
h̃(Xk)h̃(Xk+s)

] − ρ(h)
π (s)

∣∣∣

=
∣∣∣
∣

∫
Ex
[
h̃(X0)h̃(Xs)

]
(Pk(x0, ·) − π)(dx)

∣∣∣
∣

≤ ς1/2ρs/2‖h̃‖2W 1/2

∥∥∥Pk(x0, ·) − π

∥∥∥W

≤ ς3/2ρs/2+kW (x0)‖h̃‖2W 1/2 . (29)

Therefore by (25) and (29),

bn−1∑

s=0

∣
∣∣Ex0

[
An,1(s)

] − ρ(h)
π (s)

∣
∣∣

≤ n−1
bn−1∑

s=0

n−s−1∑

k=0

∣∣∣Ex0
[
h̃(Xk)h̃(Xk+s)

] − ρ(h)
π (s)

∣∣∣

+ n−1
bn−1∑

s=0

s|ρ(h)
π (s)|

≤ ς3/2W (x0)‖h̃‖2
W 1/2

n

bn−1∑

s=0

n−s−1∑

k=0

ρs/2+k

+ ς1/2π(W )‖h̃‖2
W 1/2

n

bn−1∑

s=0

sρs/2

≤ ς3/2W (x0)‖h̃‖2
W 1/2

n(1 − ρ)(1 − ρ1/2)
+ bnς1/2π(W )‖h̃‖2

W 1/2

n(1 − ρ1/2)
.

Note that (29) also yields

Ex0
[
π2
n (h̃)

] ≤ 2n−2
n−1∑

k=0

n−k−1∑

s=0

∣∣Ex0
[
h̃(Xk)h̃(Xk+s)

]∣∣

≤ 2n−2
n−1∑

k=0

n−k−1∑

s=0

ς3/2ρs/2+kW (x0)‖h̃‖2W 1/2

+ 2n−2
n−1∑

k=0

n−k−1∑

s=0

∣∣ρ(h)
π (s)

∣∣

≤ 2ς3/2W (x0)‖h̃‖2
W 1/2

n2(1 − ρ)(1 − ρ1/2)
+ 2ς1/2π(W )‖h̃‖2

W 1/2

n(1 − ρ1/2)
.

(30)

We now turn to An,2(s). By the Cauchy–Schwarz inequality
and similar argument to (30),

∣∣Ex0
[
An,2(s)

]∣∣ ≤
√
2

n

{
Ex0

[
π2
n (h̃)

]}1/2

{

Ex0

[(∑n−s−1

k=0
h̃(Xk)

)2
]

+ Ex0

[(∑n−1

k=s
h̃(Xk)

)2
]}1/2

≤ 4
√
2ς3/2W (x0)‖h̃‖2

W 1/2

n2(1 − ρ)(1 − ρ1/2)

+ 4
√
2ς1/2π(W )‖h̃‖2

W 1/2

n(1 − ρ1/2)
.

This gives

bn−1∑

s=0

∣∣Ex0
[
An,2(s)

]∣∣ ≤ 4
√
2bnς3/2W (x0)‖h̃‖2

W 1/2

n2(1 − ρ)(1 − ρ1/2)

+ 4
√
2bnς1/2π(W )‖h̃‖2

W 1/2

n(1 − ρ1/2)
.

Finally, for An,3(s), it follows from (30) that

bn−1∑

s=0

∣∣Ex0
[
An,3(s)

]∣∣ ≤ 2bnς3/2W (x0)‖h̃‖2
W 1/2

n2(1 − ρ)(1 − ρ1/2)

+ 2bnς1/2π(W )‖h̃‖2
W 1/2

n(1 − ρ1/2)
.

Substituting these bounds into (28) we obtain

bn−1∑

s=0

wn(s)
∣∣Ex0

[
ρ̂(h̃)
n (s)

] − ρ(h)
π (s)

∣∣

≤ 9bnς3/2W (x0)‖h̃‖2
W 1/2

n2(1 − ρ)(1 − ρ1/2)
+ 9bnς1/2π(W )‖h̃‖2

W 1/2

n(1 − ρ1/2)
.

(31)

Collecting the estimates (26), (27), (31) and substituting them
into (23), we conclude

∣
∣
∣Ex0

[
Vn(h)

] − V∞(h)

∣
∣
∣

≤ ς1/2π(W )‖h̃‖2
W 1/2

1 − ρ1/2

(
9ςW (x0)

(1 − ρ)π(W )

bn
n2

+ 9bn
n

+ 2ρbn/2
)

,

is our claim. If additionally n ≥ ςW (x0)/((1 − ρ)π(W ))

then

∣∣
∣Ex0

[
Vn(h)

] − V∞(h)

∣∣
∣

≤ 20ς1/2π(W )‖h̃‖2
W 1/2

(1 − ρ1/2)

(
bn
n

∨ ρbn/2
)

,

and the proof is complete. ��

5.3 Proof of Theorem 3

For simplicity of notation, without loss of generality, we
assume that functions h ∈ H are zero mean, since, by defi-
nition, Vn(h) = Vn(h − π(h)) and hence h may be replaced
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by h̃ = h − π(h) which also satisfies assumptions imposed
on h. Further, we write V n(h) = Ex0

[
Vn(h)

]
and set

H
def= sup

h∈H
‖h‖L2(π) and M

def= sup
h∈H

‖h‖W 1/2 . (32)

Without loss of generality, we may assume that M < ∞
since otherwise the statement of the theorem is obviously
true.
It follows from Proposition 11 that if n ≥ ςW (x0)/((1 −
ρ)π(W )) then

sup
h∈H

∣
∣V∞(h) − V n(h)

∣
∣

� G

(
bn
n

∨ ρbn/2
)

, where G
def= ς1/2M2π(W )

1 − ρ1/2 .

Hence

V∞(̂hε) − inf
h∈H

V∞(h) ≤ V n (̂hε) − inf
h∈H

V n(h)

+2G

(
bn
n

∨ ρbn/2
)

. (33)

We are reduced to bounding the difference V n (̂hε) −
infh∈H V n(h). Let us denote by h∗ a function in H mini-
mizing V n(h), that is,

h∗ def= argmin
h∈H

V n(h). (34)

We assume that such a minimizer exists [a simple modifica-
tion of the proof is possible if h∗ is an approximate solution
of (34)]. Let also h∗

ε ∈ Hε be the closest point to h∗ ∈ H
in L2(π). By the definition of ĥε, Vn (̂hε) − Vn(h∗

ε) < 0. We
have

V n (̂hε) − V n(h
∗) ≤ V n (̂hε) − V n(h

∗) − (
Vn (̂hε)

− Vn(h
∗
ε)
)

= V n (̂hε) − V n(h
∗) − (

Vn (̂hε) − Vn(h
∗)
)

+ (
Vn(h

∗
ε) − Vn(h

∗)
)

≤ sup
h∈Hε

{
V n(h) − Vn(h)

}

+ (
Vn(h

∗) − V n(h
∗)
) + (

Vn(h
∗
ε) − Vn(h

∗)
)
. (35)

It remains to bound each summand in the right-hand side
of the decomposition (35). To do this, we need an exponen-
tial concentration for Vn(h). Let us remind that we consider
two cases, Lipschitz and bounded functions h ∈ H. Depend-
ing on the case we consider, it follows from Theorem 19
[Eq. (52)] or Theorem 20 that, for a fixed τ > 0, for all

t < τ , and all h ∈ H,

Px0
(∣∣Vn(h) − V n(h)

∣∣ > t
)

≤ 2 exp

(
− t2n

cK 2
τ b

2
n

)
, (36)

where c > 0 is an absolute constant and

K 2
τ

def= αL2

(1 − r)2

(
H2 + ςM2W (x0)

1 − ρ
+ τ

bn

)

or K 2
τ

def= β2B4

in the Lipschitz and bounded cases correspondingly. Note
that Kτ does not depend on τ in the bounded case. The value
of τ > 0 is specified later. For the first summand in the
decomposition (35), using the union bound and the concen-
tration inequality (36), we obtain

Px0

(

sup
h∈Hε

{
V n(h) − Vn(h)

}
> t

)

≤ |Hε| sup
h∈Hε

Px0
(
V n(h) − Vn(h) > t

)

≤ 2|Hε| sup
h∈Hε

exp

(
− nt2

cK 2
τ b

2
n

)
.

For any ε ≥ γL2(π)(H, n) it holds |Hε| ≤ enε2 .We can select
t = √

cKτbn
(
ε + n−1/2 log1/2(8/δ)

)
to obtain

Px0

(

sup
h∈Hε

{
V n(h) − Vn(h)

}
> t

)

≤ δ/4 . (37)

In the same manner, we can bound the second term in
the right-hand side of the decomposition (35). For t =√
cKτbnn−1/2 log1/2(8/δ), it holds

Px0
(
Vn(h

∗) − V n(h
∗) > t

) ≤ δ/4 . (38)

It remains to estimate the last summand in (35). This term is
small since h∗

ε is ε-close to h∗ in L2(π). We represent this
summand in the following way

Vn(h
∗) − Vn(h

∗
ε) = Vn(h

∗) − Vn(h
∗
ε)

−
[
V n(h

∗) − V n(h
∗
ε)
]

+
[
V n(h

∗) − V n(h
∗
ε)
]
.

Now we have by the union bound and the concentration
result (36),

Px0
(
Vn(h

∗)−Vn(h
∗
ε)−V n(h

∗)−V n(h
∗
ε)> t

)
≤ δ

2
(39)
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for t = √
cKτbnn−1/2 log1/2(8/δ). Furthermore, let us

represent Vn(h) as a quadratic form Zn(h)�An Zn(h) with
‖An‖ ≤ 2bn/n, see Sect. 5.2 for details. It holds by the
Cauchy–Schwarz inequality

V n(h
∗) − V n(h

∗
ε)

= Ex0
[
Zn(h

∗)�An Zn(h
∗) − Zn(h

∗
ε)

�An Zn(h
∗
ε)
]

= Ex0
[
Z
]
n(h

∗)�An
(
Zn(h

∗) − Zn(h
∗
ε)
)

+ (
Zn(h

∗) − Zn(h
∗
ε)
)�

An Zn(h
∗
ε)

≤ ‖An‖
(
Ex0

[‖Zn(h
∗) − Zn(h

∗
ε)‖2

])1/2

· 2 sup
h∈H

(
Ex0‖Zn(h)‖2

)1/2
.

Let R2 def= ςM2W (x0)(1 − ρ)−1. Then Lemma 10 yields

V n(h
∗) − V n(h

∗
ε) ≤ 4bn

(

ε +
√
2R√
n

)(
H + R√

n

)
. (40)

Combining the bounds (37), (38), (39), and (40) for all sum-
mands and substituting them into (35), we can assert that for
ε ≥ γL2(π)(H, n), with probability at least 1 − δ,

V n (̂hε) − V n(h
∗) �

(
Kτ + H + R√

n

)
bnε

+ bn R√
n

(
H + R√

n

)

+ Kτ

bn log1/2( 8δ )√
n

,

where� stands for inequality up to an absolute constant.Now
we can set τ to be an upper bound for the chosen t , namely,
τ = √

cKτbn
(
ε + n−1/2 log1/2(8/δ)

)
. In the bounded case,

Kτ does not depend on τ , but in the Lipschitz case this choice
leads to a quadratic equation

K 2
τ = αL2

(1 − r)2

(
H2 + R2

n
+ Kτ

√
c

(
ε + log1/2(8/δ)√

n

))
,

For a large c > 0, this quadratic equation always has a solu-

tion which may be written as Kτ �
√

αL
1−r

(
H + Rn−1/2 +(

ε + n−1/2 log1/2(8/δ)
))
. Let n ≥ n0, where n0 satisfies

n0 ≥ ςW (x0)

(1 − ρ)π(W )
,

n0 ≥ max{R2, log(8/δ)}
H2 , and γL2(π)(H, n0) ≤ H .

Then Kτ � √
αHL/(1 − r) (in the Lipschitz case) and

H + Rn−1/2 � H . We set ε = γL2(π)(H, n) and obtain

V n (̂hε) − V n(h
∗) � (Kτ + H)bnγL2(π)(H, n)

+ (Kτ + HR)
bn log(1/δ)√

n
.

Substituting this into (33) and taking bn = 2(log(1/ρ))−1

log(n), we conclude

V∞(̂hε) − inf
h∈H

V∞(h)

� (log(1/ρ))−1(Kτ + H) log(n)γL2(π)(H, n)

+ (log(1/ρ))−1
(
Kτ + ς1/2MHW (x0)

(1 − ρ)1/2

+ς1/2M2π(W )√
n(1 − ρ1/2)

)
log(n) log(1/δ)√

n
,

Note that H � L or H � B in the Lipschitz and bounded
cases correspondingly, and H � H2 � Kτ in both cases.
Taking K 2 = Kτ and simplifying last expression, we get the
desired conclusion.

5.4 Proof of Theorem 4

As above, we assume that functions h ∈ H are zero mean
and set V n(h) = Ex0

[
Vn(h)

]
. It follows from Proposition 11

that if n ≥ ςW (x0)/((1 − ρ)π(W )) then

sup
h∈H

∣∣V∞(h) − V n(h)
∣∣

� G

(
bn
n

∨ ρbn/2
)

, where G
def= ς1/2M2π(W )

1 − ρ1/2 ,

where M is defined in (32). Hence

V∞(̂hε) ≤ V n (̂hε) + G

(
bn
n

∨ ρbn/2
)

. (41)

We are reduced to bounding V n (̂hε). Let us denote by h∗
a constant function in H existing by assumption. Let also
h∗

ε ∈ Hε be the closest point to h∗ in Hε in L2(π). By the
definition of ĥε, Vn (̂hε) − Vn(h∗

ε) < 0. We have for any
c > 0,

V n (̂hε) ≤ V n (̂hε) − (1 + c)
(
Vn (̂hε) − Vn(h

∗
ε)
)

= V n (̂hε) − (1 + c)Vn (̂hε) + (1 + c)Vn(h
∗
ε)

≤ sup
h∈Hε

{
V n(h) − (1 + c)Vn(h)

}

+ (1 + c)Vn(h
∗
ε). (42)
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We take c = 1 and bound the two summands in the right-hand
side of (42) separately. To do this, we need an exponen-
tial concentration for Vn(h). It follows from Theorem 19
(Eq. (51)) that, for all t > 0 and for all h ∈ H,

Px0
(∣∣Vn(h) − V n(h)

∣∣ > t
)

≤ 2 exp

(
− nt2

cK 2 bn
(
V n(h) + t

)
)

, (43)

where c > 0 is some universal constant, K 2 = αL2/(1−r)2,
and bn is the size of the lag window. For the first summand
in the right-hand side of the decomposition (42), using the
union bound and the concentration inequality (43), we obtain

Px0

(
sup
h∈Hε

{
V n(h) − 2Vn(h)

}
> t

)

≤ |Hε| sup
h∈Hε

Px0

(
V n(h) − 2Vn(h) > t

)

≤ 2|Hε| sup
h∈Hε

exp

(
−n (t + Vn(h))

cK 2bn

)

≤ 2|Hε| exp
(

− nt

cK 2bn

)
,

where the last inequality holds since Vn(h) ≥ 0. For any
ε ≥ γL2(π)(H, n) it holds |Hε| ≤ enε2 . Hence we can select
t = cK 2bn

(
ε2 + n−1 log(4/δ)

)
to obtain

Px0

(
sup
h∈Hε

{
V n(h) − 2Vn(h)

}
> t

)
≤ δ/2. (44)

The second term in (42) is small since h∗
ε is ε-close to h∗ in

L2(π). First we note that

Vn(h
∗
ε) = Vn(h

∗
ε) − 2V n(h

∗
ε) + V n(h

∗
ε).

By the union bound and the concentration inequality (43),
we have

Px0
(
Vn(h

∗
ε) − 2V n(h

∗
ε) > t

)

≤ 2 exp

(
−n

(
t + Vn(h∗

ε)
)

cK 2bn

)
≤ 2 exp

(
− nt

cK 2bn

)
. (45)

Hence for t = cK 2bnn−1 log(4/δ) this probability is
bounded by δ/2. Furthermore, let us represent Vn(h) as a

quadratic form Zn(h)�An Zn(h) (see Sect. 5.2 for details).
Byassumption,h∗ is a constant function, andhence An Zn(h∗)
is the zero vector. Since ‖An‖ ≤ 2bn/n (see Lemma 9), it
holds

V n(h
∗
ε) = Ex0

[
Zn(h

∗
ε)

�An Zn(h
∗
ε)
]

= Ex0
[
(Zn(h

∗
ε) − Zn(h

∗))�An(Zn(h
∗
ε) − Zn(h

∗))
]

≤ 2bn
n

Ex0
[‖Zn(h

∗
ε) − Zn(h

∗)‖2]. (46)

Let R2 def= ςM2W (x0)(1 − ρ)−1. Then Lemma 10 yields

V n(h
∗
ε) ≤ 2bnε

2 + 8R2 bn
n

. (47)

Combining the bounds (44), (45) and (47) for all summands
and substituting them into (42), we can assert that for ε ≥
γL2(π)(H, n), with probability at least 1 − δ, we have

V n (̂hε) � K 2bnε
2 + (K 2 + R2)

bn log( 4δ )

n
.

Substituting this bound into (41) with ε = γL2(π)(H, n) and
bn = 2(log(1/ρ))−1 log(n) yields

V∞(̂hε) � K 2

log(1/ρ)
log(n)γ 2

L2(π)
(H, n)

+ K 2 + R2 + G

log(1/ρ)
· log(n) log( 1

δ
)

n

� αL2

(1 − r)2 log(1/ρ)
log(n)γ 2

L2(π)
(H, n)

+
(

αL2

(1 − r)2 log(1/ρ)
+ ςM2(π(W ) + W (x0))

(1 − ρ)1/2 log(1/ρ)

)

log(n) log( 1
δ
)

n
,

which is the desired conclusion.

6 Tables and figures

See Tables 6 , 7 and Figs. 6, 7, 8, 9, 10, 11.
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Table 6 Experimental setup
details

Experiment nburn ntrain ntest γULA γMALA γRWM bn

GMM, Eπ [X2], � = I 104 105 105 0.1 1.0 0.5 50

GMM, Eπ [X2], � = �0 104 105 105 0.1 0.2 0.1 50

GMM, Eπ [X2
2], � = I 104 105 105 0.1 1.0 0.5 50

GMM, Eπ [X2
2], � = �0 104 105 105 0.1 0.1 0.1 50

Banana shape, d = 2 105 106 106 0.01 0.5 0.5 300

Banana shape, d = 8 105 106 106 0.01 0.2 0.1 300

Logistic and probit regression, Pima 103 104 104 0.1 0.5 0.5 10

Logistic regression, EEG 103 104 104 0.1 1.0 0.1 10

Probit regression, EEG 103 104 104 0.1 0.5 0.1 10

Van der Pol oscillator 102 103 103 − 10−3 − 10

Lotka–Volterra model 103 104 104 − 5 × 10−6 − 10

Table 7 Variance reduction
factors in probit regression,
average test likelihood

Method PIMA dataset EEG dataset

ULA MALA RWM ULA MALA RWM

ESVM-1 263.2 419.7 251.4 1317.0 1515.0 938.5

EVM-1 270.1 430.1 261.6 1331.6 1572.7 948.1

ESVM-2 26,835.7 55,373.7 28,905.0 45,059.2 45, 964.5 34,957.1

EVM-2 6660.7 29710.4 14187.1 29620.4 71,095.6 6340.1

Bold indicates that our algorithms outperform existing

Table 8 Variance reduction factors for Van der Pol oscillator, posterior
mean estimation

Method 1st order CV 2nd order CV 3rd order CV

ESVM 30.7 49.1 243.2

EVM 33.9 44.1 183.7

Bold indicates that our algorithms outperform existing

Fig. 6 Estimation of Eπ [X2
2] in GMM with � = I. Left figure: boxplot for ULA estimates compared to the corresponding boxplots for EVM and

ESVM estimates. Next three figures: boxplots for EVM and ESVM estimates for ULA, MALA, and RWMwith second-order control variates being
used
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Fig. 7 Estimation of Eπ [X2
2] in GMM with � = �0. Left figure: boxplot for ULA estimates compared to the corresponding boxplots for EVM

and ESVM estimates. Next three figures: boxplots for EVM and ESVM estimates for ULA, MALA, and RWM with second-order control variates
being used

Fig. 8 Estimation of the average test likelihood in probit regression for
the Pima dataset. Left figure: boxplot for ULA estimates compared to
the corresponding boxplots for EVM and ESVM estimates. Next three

figures: boxplots for EVM and ESVM estimates for ULA, MALA, and
RWM with second-order control variates being used

Fig. 9 Estimation of the average test likelihood in probit regression for
the EEG dataset. Left figure: boxplot for ULA estimates compared to
the corresponding boxplots for EVM and ESVM estimates. Next three

figures: boxplots for EVM and ESVM estimates for ULA, MALA, and
RWM with second-order control variates being used

Fig. 10 Estimating the mean of the posterior distribution in the Van
der Pol model. From left to right: boxplots for vanilla estimates and
the corresponding EVM and ESVM estimates with third-order poly-

nomials being used as control variates, EVM and ESVM comparison
for second-order polynomials, and EVM and ESVM comparison for
third-order polynomials
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Fig. 11 Estimating the mean of the posterior distribution in the Lotka–Volterra model. From left to right: posterior mean for parameters α, β, γ ,
and δ
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A Appendix

A.1 Concentration of the spectral variance estimator
for Lipschitz functions

The proof of a concentration inequality for Lipschitz func-
tions falls naturally into three steps. First we show, using a
result from Djellout et al. (2004), that the joint distribution
of (Xk)

n−1
k=0 satisfies T2(α) model. Then we note that T2(α)

implies Gaussian concentration for all Lipschitz functions.
And, finally, this Gaussian concentration property implies a
concentration inequality for quadratic forms fromAdamczak
(2015),whichwe apply to the spectral variance estimator. For
the sake of completeness we provide all necessary details
below.

Tensorization of T2(α) for Markov chains. Let Pnx0 be the

joint distribution of the Markov chain (Xk)
n−1
k=0 with the

Markov kernel P under Px0 . Since here we consider dis-
tributions on the product space Xn−1, additional definitions
are needed. We define the distance between points xn−1 =
(x1, . . . , xn−1) ∈ Xn−1 and yn−1 = (y1, . . . , yn−1) ∈ Xn−1

by

d2(x
n−1, yn−1)

def=
(n−1∑

j=1

‖x j − y j‖2
)1/2

, (48)

The L p-Wasserstein distance between probability measures
μ and ν on Xn−1 with respect to the metric d2 is given by

W d2
p (μ, ν)

def= inf
ζ

(∫

Xn−1×Xn−1
dp
2 (x, y) dζ(x, y)

)1/p

,

where the infimum is taken over all probability measures ζ

on the product spaceXn−1×Xn−1 withmarginal distributions

μ and ν. And finally, we say that the probability measure μ

on Xn−1 satisfies Tp(α) if there is a constant α > 0 such that
for any probability measure ν on Xn−1

W d2
p (μ, ν) ≤ √

2αKL(ν‖μ).

The following theorem provides sufficient conditions for the
measure Pnx0 to satisfy T2(α).

Theorem 13 (Djellout et al. 2004, Theorem 2.5)Assume that
there exists α > 0, such that P(x, ·) ∈ T2(α) for any x ∈ X,
and there exists 0 < r < 1, such that for any x, y ∈ X,

W2(P(x, ·), P(y, ·)) ≤ r‖x − y‖.

Then for any probability measure Q on Xn−1, the product
measure Pnx0 satisfies T2(α/(1 − r)2), i.e.

W d2
2 (Q,Pnx0) ≤ 1

1 − r

√
2αKL(Q ‖Pnx0).

Gaussian concentration for Lipschitz functionsAprobability
measure which satisfies T2(α) inequality is known to satisfy
Gaussian concentration inequality for all Lipschitz functions.
Together with Theorem 13, this implies the following result.

Theorem 14 Assume that P satisfies (CW). Then for any L-
Lipschitz function φ : Xn−1 → R with respect to the metric
d2 from (48), it holds

Px0
(∣∣φ(X0, . . . , Xn−1) − Ex0

[
φ(X0, . . . , Xn−1)

]∣∣ ≥ t
)

≤ 2 exp

(
− t2

2αL2/(1 − r)2

)
. (49)

Proof It follows from Bakry et al. (2013, Section 9.2) that
T2(α) implies T1(α) with the same constant α > 0 and with
respect to the same metric d2. In its turn T1(C) imply the
Gaussian concentration (49) due to the result of Bobkov and
Götze (1999). It remains to note that Pnx0 satisfies T2(α/(1−
r)2) by Theorem 13. ��
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Gaussian concentration for quadratic forms Once we have
proved the Gaussian concentration for Lipschitz functions,
we can obtain the Bernstein-type inequality for quadratic
forms. This idea is due to Adamczak (2015), but since we use
a modified version of the inequality, we provide the details
for readers convenience.

Definition 15 (Concentration property) Let Z be a random
vector in R

n . We say that Z has the concentration property
with constant K if for every 1-Lipschitz function φ : Rn →
R, we have E|φ(X)| < ∞ and for every t > 0,

P
(∣∣φ(Z) − E1=

[
φ(Z)

]∣∣ ≥ t
)

≤ 2 exp
(
−t2/K 2

)
.

The following theorem shows that the concentration property
implies a concentration inequality for quadratic forms.

Theorem 16 Let Z be a random vector in R
n. If Z has the

concentration property with constant K , then for any n × n
matrix A and every t > 0,

P
(∣∣Z�AZ − E1=

[
Z�AZ

]∣∣ > t
)

≤ 2 exp

(
− t2

cK 2
(
E1=

[‖AZ‖2] + t‖A‖)
)

,

where c > 0 is a universal constant.

Proof Without loss of generality one may assume that A is

symmetric and positively semidefinite. Let ϕ(z)
def= z�Az,

z ∈ R
n . Define ψ(z)

def= ‖∇ϕ(z)‖. Since ‖∇ϕ(z)‖ ≤
2‖A‖‖z‖, the function ψ is (2‖A‖)-Lipschitz. By the con-
centration property

P
(∣∣ψ(Z) − E1=

[
ψ(Z)

]∣∣ ≥ t
) ≤ 2 exp

(
− t2

4K 2‖A‖2
)

.

Note that E1=
[
ψ(Z)

] = 2E1=
[‖AZ‖] and set for t > 0,

Bt
def= {

z ∈ R
n : ψ(z) ≤ 2E1=

[‖AZ‖] + √
t‖A‖}.

It holds

P(Z /∈ Bt ) ≤ 2 exp

(
− t

4K 2‖A‖
)

.

Define ϕ̃(z)
def= supy∈Bt (〈∇ϕ(y), z − y〉 + ϕ(y)). This func-

tion is Lipschitz, since for any z, x ∈ Bt , |ϕ̃(z1) − ϕ̃(z2)| ≤
supy∈Bt ‖∇ϕ(y)‖‖z1 − z2‖ ≤ M‖z1 − z2‖ with M

def=
2E1=

[‖AZ‖] + √
t‖A‖. Hence, again by the concentration

property, for any s > 0,

P
(∣∣ϕ̃(Z) − E1=

[
ϕ̃(Z)

]∣∣ ≥ s
)

≤ 2 exp

(
− s2

K 2(2E1=
[‖AZ‖] + √

t‖A‖)2
)

≤ 2 exp

(
− s2

4K 2(E1=
[‖AZ‖] + √

t‖A‖)2
)

.

Moreover, by convexity of ϕ, we have ϕ̃(z) ≤ ϕ(z) and
for z ∈ Bt , ϕ̃(z) = ϕ(z). Consider two random variables
Y = ϕ(Z) and Ỹ = ϕ̃(Z). We have proved that Y and Ỹ
coincide on the set Bt of large probability and Ỹ has the
concentration property. It follows from Lemma 17 (given
below) that in this case we have the Gaussian concentration
for Y around median Med Y of the form

P
(∣
∣Z�AZ − Med[Z�AZ ]∣∣ ≥ t

)

≤ 2 exp

(
− t2

cK 2(E1=
[‖AZ‖] + √

t‖A‖)2
)

≤ 2 exp

(
− t2

2cK 2(E1=
[‖AZ‖2] + t‖A‖)

)
.

By a standard argument [see, for example, Adamczak (2015,
Lemma 3.2)], we replace the median by the mean at the cost
of a universal factor. This completes the proof for a new
absolute constant c > 0. ��

Lemma 17 Assume that there exist positive constants a, b, t >

0 such that for any s > 0 random variables Y , Ỹ satisfy

P
(∣∣Ỹ − EỸ

∣∣ ≥ s
) ≤ 2 exp

(
−s2/(a + b

√
t)2

)

and P
(
Ỹ �= Y

) ≤ 2 exp
(−t/b

)
. Then for some positive con-

stant c > 0 and all t > 0,

P(|Y − Med Y | ≥ t) ≤ 2 exp

(
−t2/{c(a + b

√
t)2}

)
.

Proof This lemma is proved in Adamczak (2015, Lemma
3.2).We just note that the quantity−min

(
t2/a2, t/b

)
, which

appears in the result of Adamczak (2015), is bounded by the
quantity −t2/(a + b

√
t)2. ��

We have arrived at the following concentration result for
quadratic forms of Lipschitz function of a Markov chain.
This result is of independent interest.

Corollary 18 Assume that there exists α > 0, such that
P(x, ·) ∈ T2(α) for any x ∈ X, and there exists 0 < r < 1,
such that for any x, y ∈ X,

W2(P(x, ·), P(y, ·)) ≤ r‖x − y‖.
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Let also h : X → R be a L-Lipschitz function. Denote

Zn(h)
def= (h(X0), . . . , h(Xn−1))

�. Then for any n×n matrix
A and any t > 0,

Px0
(∣∣Zn(h)�AZn(h) − Ex0

[
Zn(h)�AZn(h)

]∣∣ > t
)

≤ 2 exp

(
− t2

cK 2
(
Ex0

[‖AZn(h)‖2] + t‖A‖)
)

, (50)

where c > 0 is some universal constant and K 2 = αL2/(1−
r)2.

Proof The statement follows from the fact Zn(h) has the
concentration property with K = 2αL2/(1 − r)2. Indeed,

for any 1-Lipschitz function φ : Rn → R and any xn−1 def=
(x1, . . . , xn−1) ∈ Xn−1, yn−1 def= (y1, . . . , yn−1) ∈ Xn−1, it
holds

∣
∣φ(h(x0), . . . , h(xn−1)) − φ(h(y0), . . . , h(yn−1))

∣
∣

≤
( n−1∑

j=1

(h(x j ) − h(y j ))
2
)1/2

≤ Ld(xn−1, yn−1).

Hence the concentration property follows from Theorem 14.
Application of Theorem 16 to Zn(h) finishes the proof. ��

Gaussian concentration of the spectral variance estimator
The main result of this section is the following.

Theorem 19 Assume that functions h ∈ H and the Markov
kernel P satisfy (L) and (CW)with parameters L > 0,α > 0,
and 0 < r < 1. Then for all t > 0,

Px0
(∣∣Vn(h) − Ex0

[
Vn(h)

]∣∣ > t
)

≤ 2 exp

(
− nt2

cK 2 bn
(
Ex0

[
Vn(h)

] + t
)
)

, (51)

where c > 0 is some universal constant, K 2 = αL2/(1−r)2,
and bn is the size of the lag window. Moreover, if additionally
(Xk)

n−1
k=0 satisfies (GE) with parameters ς , ρ, and function

W, then for all t < τ ,

Px0
(∣∣Vn(h) − Ex0

[
Vn(h)

]∣∣ > t
)

≤ 2 exp

(
− nt2

cK 2
τ b

2
n

)
, (52)

where

K 2
τ

def= αL2

(1 − r)2

(

‖h‖2L2(π)
+ ςW (x0)‖h‖2

W 1/2

1 − ρ
+ τ

bn

)

.

Proof The proof is straightforward. We have showed that the
spectral variance estimator can be represented as a quadratic
form Vn(h) = Zn(h)�An Zn(h) with ‖An‖ ≤ 2bn/n, see
Sect. 5.2 and Lemma 9 therein. Now Corollary 18 yields for
K 2 = αL2/(1 − r)2 and all t > 0, that

Px0
(∣∣Vn(h) − Ex0

[
Vn(h)

]∣∣ > t
)

≤ 2 exp

(
− t2

cK 2
(
Ex0

[‖An Zn(h)‖2] + t‖An‖
)
)

≤ 2 exp

(
− nt2

2cK 2bn
(
Ex0

[
Vn(h)

] + t
)
)

,

which establishes (51) for a new absolute constant c > 0. To
prove the second inequality, we note that by Lemmas 9 and
10,

Ex0
[
Vn(h)

] ≤ ‖An‖Ex0
[‖Zn(h)‖2]

≤ 2bn‖h‖2L2(π)
+ 2ςW (x0)‖h‖2

W 1/2

1 − ρ

bn
n

.

Hence for any 0 < t < τ , we have

Ex0
[
Vn(h)

] + t

≤ bn

(

2‖h‖2L2(π)
+ 2ςW (x0)‖h‖2

W 1/2

1 − ρ

1

n
+ τ

bn

)

.

Substituting this into (51) we deduce

Px0
(∣∣Vn(h) − Ex0

[
Vn(h)

]∣∣ > t
)

≤ 2 exp

(
− nt2

cK 2
τ b

2
n

)

for a new absolute constant c > 0 and

K 2
τ

def= αL2

(1 − r)2

(

‖h‖2L2(π)
+ ςW (x0)‖h‖2

W 1/2

1 − ρ
+ τ

bn

)

,

which completes the proof. ��

A.2 Concentration of the spectral variance estimator
for bounded functions

Theorem 20 Assume that P satisfies (GE) and (BR) with
parameters ς, ρ, l > 0, function W, and set S. Assume also
that functions h ∈ H satisfy (B) with parameter B > 0. Then
for x0 ∈ S, for all functions h ∈ H, and all t > 0,

Px0
(∣∣Vn(h) − Ex0

[
Vn(h)

]∣∣ > t
)

≤ 2 exp

(
− t2n

cK 2b2n

)
, (53)
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where bn is the size of the lag window, K = βB2, and β is
given by

β = ςl

1 − ρ

(
1

log u
+ Jςl

1 − ρ

)
. (54)

Proof The main idea of the proof is to show that the spectral
variance satisfies the bounded difference property. First we
rewrite the lag s sample autocovariance function as

ρ̂(h)
n (s) = 1

n

n−s−1∑

k=0

(
h(Xk) − πn(h)

)(
h(Xk+s) − πn(h)

)

= 1

n

n−s−1∑

k=0

h(Xk)h(Xk+s) − πn(h)

n

n−s−1∑

k=s

h(Xk).

Let ρ̂
(h,i)
n (s) and V (i)

n (h) be the sample autocovariance
function and the spectral variance determined on another
sample X0, . . . , Xi−1, X ′

i , Xi−1, . . . , Xn−1, where we have
replaced Xi by X ′

i . It holds

∣∣ρ̂(h)
n (s) − ρ̂(h,i)

n (s)
∣∣ ≤ 2B2 + 2(n − 2s + n)

n2
B2 ≤ 6B2

n
,

and since |wn(s)| ≤ 1 by definition,

∣∣Vn(h) − Vn([)(i)]h
∣∣ ≤ 2bn sup

s
|wn(s)|

·|ρ̂(h)
n (s) − ρ̂(h,i)

n (s)| ≤ 12bn B2

n
.

The bounded differences inequality for Markov chains from
Douc et al. (2018, Theorem 23.3.1) with explicit constants
from Havet et al. (2019) yields

Px0
(∣∣Vn(h) − Ex0

[
Vn(h)

]∣∣ > t
)

≤ 2 exp

(
− t2n

144βB4b2n

)
,

with β = ςl

1 − ρ

(
1

log u
+ Jςl

1 − ρ

)
.

which completes the proof. ��
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