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The visual system can represent multiple objects in a
compressed form of ensemble summary statistics (such
as object numerosity, mean, and feature variance/
range). Yet the relationships between the different types
of visual statistics remain relatively unclear. Here, we
tested whether two summaries (mean and numerosity,
or mean and range) are calculated independently from
each other and in parallel. Our participants performed
dual tasks requiring a report about two summaries in
each trial, and single tasks requiring a report about one
of the summaries. We estimated trial-by-trial
correlations between the precision of reports as well as
correlations across observers. Both analyses showed the
absence of correlations between different types of
ensemble statistics, suggesting their independence. We
also found no decrement (except that related to the
order of report explained by memory retrieval) in
performance in dual compared to single tasks, which
suggests that two statistics of one ensemble can be
processed in parallel.

Introduction

To overcome the severe restrictions of the processing
bottleneck associated with the limited capacity of
attention and working memory, the visual system has
to compress the big and often redundant amount of
visual information received from the environment. One
strategy to accomplish such a compressed representa-
tion is ‘‘to discriminate and to reproduce the statistical
moments’’ related to features and objects in the visual
field (Whitney & Leib, 2018, p. 8). This information is
often referred to as ensemble summary statistics
(Alvarez, 2011). The first statistical moment which can
be easily computed by the visual system is the mean.
Observers can extract the information about the
average (or central tendency) along a bunch of features
from low-level dimensions, such as orientation (Alvarez

& Oliva, 2009; Dakin & Watt, 1997; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001), hue (de
Gardelle & Summerfield, 2011; Maule & Franklin,
2015), brightness (Bauer, 2009), speed (Watamaniuk &
Duchon, 1992), spatial position (Alvarez & Oliva,
2008), and size (Ariely, 2001; Chong & Treisman,
2003), to high-level dimensions such as emotional
expression, gender, facial identity, gaze direction, and
head rotation of a crowd (Florey, Clifford, Dakin, &
Mareschal, 2016; Haberman & Whitney, 2007; Sweeny
& Whitney, 2014). The second statistical moment is the
variance (or diversity or range), which can also be
computed for low-level (Dakin & Watt, 1997; Morgan,
Chubb, & Solomon, 2008; Norman, Heywood, &
Kentridge, 2015; Solomon, Morgan, & Chubb, 2011;
Suárez-Pinilla, Seth, & Roseboom, 2018) and high-level
features (Haberman, Lee, & Whitney, 2015). Another
important and well-studied ensemble statistic is the
numerosity (or sample size, in conventional terms of
regular statistics), which is related to the ability to
coarsely estimate a number of objects (Burr & Ross,
2008; Chong & Evans, 2011; Halberda, Sires, &
Feigenson, 2006). Ensemble perception is not restricted
to visual modality: Some studies have shown that
people can represent averages in the auditory modality
(Albrecht, Scholl, & Chun, 2012; McDermott, Sche-
mitsch, & Simoncelli, 2013; Piazza, Sweeny, Wessel,
Silver, & Whitney, 2013). Susceptibility to adaptation
aftereffects (Burr & Ross, 2008; Corbett, Wurnitsch,
Schwartz, & Whitney, 2012; Norman et al., 2015), the
speed extraction of ensemble information (as quickly as
50–200 ms; Chong & Treisman, 2003; Whiting & Oriet,
2011), and the possibility of computing ensemble
summary statistics with limited or no conscious access
to individual objects (Alvarez & Oliva, 2008; Ariely,
2001; Corbett & Oriet, 2011; Parkes et al., 2001) all
support the idea that these statistics can be directly
encoded by the visual system along with basic
perceptual properties. This seems to be in agreement
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with neurophysiological studies in animals (Treue, Hol,
& Rauber, 2000), healthy subjects (Cant & Xu, 2012),
and individuals with vision conditions (Leib et al.,
2012).

The functional architecture of ensemble
perception

The described omnipresence of ensemble statistics
naturally raises the question of their functional
relatedness. Is the full range of ensemble computations
performed by a unitary cognitive system (‘‘the general
statistician’’) or are they provided by different mech-
anisms? How are several ensemble summaries coordi-
nated in gaining access to conscious perception—that
is, can they be calculated in parallel and without
mutual interference? Both these questions have been
previously addressed to some degree using two major
approaches to studying various domains in perception
and cognition. To answer the first question, an
individual-difference approach seems to be useful.
Here, testing correlations between performance scores
in a set of tasks can shed light on whether there can be a
common source of variance for any of these tasks
(Huang, Mo, & Li, 2012; Underwood, 1975; Wilmer,
2008). To answer the second question, a parallelism test
can be applied, originally coming from studies of
divided attention (Alvarez, Horowitz, Arsenio, Di-
Mase, & Wolfe, 2005; Kahneman, 1973; Sperling &
Melchner, 1978; Wickens, 2002). While the individual-
difference approach and the parallelism test were
mostly used in this study, some other approaches could
potentially be helpful in addressing these issues (e.g.,
Rodriguez-Cintron, Wright, Chubb, & Sperling, 2019;
Sun, Chubb, Wright, & Sperling, 2016).

Within the individual-difference (or correlational)
approach, several tests are run in a group of
participants and correlations between these tests are
estimated. If some test scores are correlated, it is
possible to infer that some overlap between underlying
mechanisms can exist. Otherwise, we conclude that
there is no common mechanism.

The parallelism test is often based on a precue/
postcue paradigm. Observers are presented with several
independent targets (e.g., two objects, two sets or
strings of objects), one of which is to be subsequently
reported. In a precue condition, participants are
informed before stimulus presentation which target will
be tested at the end of a trial. In a postcue condition, no
preliminary information is presented until the response
is requested. It is supposed that full attention can be
given to one target in the precue condition and that
attention should be divided between two or more
targets in the postcue condition. If performance stays
the same in both precue and postcue trials, it can be

concluded that processing of all targets is parallel. If
performance degrades under postcue, attention is
supposed to be divided imperfectly and the two
processes likely competing for the limited-capacity
bottleneck.

In the existing literature on ensemble perception,
examples of studies addressing both independence and
parallelism can be found. For example, Haberman,
Brady, and Alvarez (2015) found evidence for inde-
pendence between averaging processes in ‘‘low-level’’
(color and orientation) and ‘‘high-level’’ (facial expres-
sion and identities) domains, although they found some
correlations within each of these levels. Emmanouil and
Treisman (2008) found that two different average
features could not be processed completely in parallel,
although the cost of dividing attention was not
dramatic. It appears that dividing attention between
different summaries (e.g., mean color and mean
orientation) is less demanding than dividing attention
between different ensembles, even when the same
summary is computed (Attarha & Moore, 2015;
Attarha, Moore, & Vecera, 2014; Chong & Treisman,
2005; Halberda et al., 2006; Huang, 2015; Poltoratski &
Xu, 2013; Utochkin & Vostrikov, 2017).

While most of the aforementioned studies were
concerned with parallelism and independence in
statistical computations of the same type (several
means or several numerosities), less is known about
summary statistics of different types. For example, are
the number of objects, their mean size, and their size
variance calculated by independent computational
mechanisms? Can attention be divided among all these
summaries in parallel? Only few studies have addressed
one or both of these questions. In one such study,
Yang, Tokita, and Ishiguchi (2018) demonstrated the
lack of correlation between the perception of mean and
the perception of variance. This suggests that these two
statistics can be computed quite independently, even
when applied to the same domain (size or orientation).
Lee, Baek, and Chong (2016) asked a similar question
about mean size, numerosity, and total area estimated
by participants in three separate tasks, trying to predict
performance on each of these tasks based on the other
two. They found that the total area could be predicted
from judgments of mean size and numerosity, but
neither mean size nor numerosity could be predicted by
the other two summaries. This suggests the relative
computational independence of mean and numerosity
(although the authors found a small correlation
between performance in these two statistics). Utochkin
and Vostrikov (2017) tested both parallelism and
independence for the perception of mean size and
numerosity. In three experiments, they compared the
precision of judgments of mean size and numerosity
under precue and postcue (parallelism test) and
estimated the correlation between these two tasks
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(individual-difference approach). In one experiment,
participants had to estimate the mean size and the
numerosity in one set of circles, which were found to be
not affected by the cue manipulation. In another
experiment, the observers had to estimate the mean size
in one subset and the numerosity in another, and a
postcue decrement was found. But the same postcue
decrement was found when the participants estimated
only one statistic (only mean or only numerosity) in
two subsets concurrently. The researchers concluded
that the mean and numerosity can be computed in
parallel within one ensemble but compete when they
belong to different ensembles (see also Duncan, 1984;
Huang, 2015). Importantly, they also found an absence
of correlation between the tasks that was consistent
with the conclusions of Lee et al. about independence.

Our study

Although testing the perception of two statistics in a
single precue/postcue task (Utochkin & Vostrikov,
2017) is advantageous over separate tasks (Haberman,
Brady, & Alvarez, 2015; Lee et al., 2016; Yang et al.,
2018) in terms of its capability to probe parallelism
along with independence, an important methodological
caveat can be put forward. Specifically, when a
correlation between tests is estimated across partici-
pants, each data point represents an average score that
does not take into account what happens in particular
trials. Yet this trial-by-trial picture can be important
for the interpretation of the averaged data points. In
fact, an absence of cross-observer correlation between
the mean size and the numerosity (Utochkin &
Vostrikov, 2017) could reflect genuinely parallel allo-
cation of independent resources to both tasks, but it
also could reflect a somewhat interdependent allocation
of resources fluctuating across trials. For example, if an
observer pays more attention to the mean on one half
of trials and to the number on another half of trials, his
or her average performance would be hard to
distinguish from parallel allocation. Although it is a
good tool for testing hypotheses about the division of
attention between two tasks, the precue/postcue task
lacks power to directly probe how attention is divided
in particular trials, because each trial measures
performance on only one of the tasks (e.g., only mean
size or only numerosity).

In the present study, we developed a paradigm
allowing us to test performance on two ensemble
statistics in each trial instead of testing only one. This
manipulation has a long history in the literature on
divided attention as a means to probe parallelism
(Sperling & Melchner, 1978). Most importantly, it has
been used to answer the question whether different
target features are represented independently within

each single trial (e.g., Bays, Wu, & Husain, 2011;
Fougnie & Alvarez, 2011). In terms of our main
research focus, the double report would allow us to
disentangle genuinely independent parallel processes in
representing various ensemble summaries from fluctu-
ating attentional reallocation to one statistic at the cost
of another. If the two representations are indeed
independent and served by parallel processes, then we
expect low correlation between the precision of
representing one statistic and the precision of estimat-
ing the other within a trial. Conversely, if attentional
reallocation occurs, then better precision at reporting
one statistic would entail worse precision at reporting
the other—that is, they should correlate negatively.
Apart from the absolute precision, systematic biases
can be a useful source of information about relation-
ships between the ensemble summaries. For example, if
the mean size is derived from the total area divided by
the number (as regular statistics defines the mean), then
underestimated numerosity should correlate with
overestimated mean size, and vice versa. Again, our
double-response method is appropriate for testing this
prediction due to its power to track trial-by-trial bias
fluctuations, whereas averaged scores can fail to detect
such correlations in scores collapsed across the
fluctuations.

As the double response requires dividing attention
between two target features (dual task), it should be
matched to baseline conditions that require focusing
attention on each of the target features (single tasks).
This is the gold standard of testing parallelism in a
dual-task paradigm (Sperling & Melchner, 1978). We
administered these single-task baseline tests and the
dual-task tests in separate blocks.

Finally, while previous studies have focused on
testing the links either between mean and numerosity
(Lee et al., 2016; Utochkin & Vostrikov, 2017) or
between mean and variance (Yang et al., 2018) and
used different approaches, here we tested both these
links using the same approach.

Experiment 1

Methods

Participants

To determine the number of participants, we used
the statistical tool G*Power 3.0.10 (Faul, Erdfelder,
Lang, & Buchner, 2007) for a priori power analysis. We
set the required statistical power at 0.8, Type I error at
0.05, and an expected effect size at 0.6 (this value was
based on the previous research of cue effects on
perception of numerosity and mean size; Emmanouil &
Treisman, 2008; Halberda et al., 2006; Poltoratski &
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Xu, 2013). Considering a power issue related to
correlational analyses, we used the parameters of
Utochkin and Vostrikov’s (2017) study, which had a
similar design. All these parameters led us to a
minimum sample size of 19 participants. Considering
the possibility of technical problems or poor perfor-
mance in some participants, we increased the number
of recruited observers by one to five participants in
each experiment. Twenty-four undergraduate students
at the Higher School of Economics participated in
Experiment 1 (20 female, four male; mean age ¼ 18.3
years) for extra course credits. All had normal or
corrected-to-normal vision and no neurological prob-
lems. At the beginning of the experiment, the partic-
ipants gave written informed consent.

Apparatus and stimuli

Stimuli were developed and presented through
PsychoPy for Linux (Pierce, 2007). They were presented
on a standard VGA monitor with a refresh frequency
of 75 Hz and a spatial resolution of 1,0243 768 pixels.
Viewing distance was approximately 50 cm, and the
width and height of the screen were 36.6 and 27.4 cm,
respectively. From this viewing distance, one pixel
subtended approximately 0.048 of visual angle. A 22.648
3 22.648 square at the center of the screen was used as a
working field for presenting stimuli; the rest of the
screen space remained empty. The working field was
divided into 73 7¼ 49 cells by an imaginary grid (each
cell 3.288 on a side). Each cell could be used for
positioning a single item of a stimulus set. Within the
cell, an item could be randomly jittered within 60.828
along both the horizontal and vertical directions.

We used white circles as items in a sample set.
Individual circle diameters in a trial were randomly
chosen from a uniform distribution. The minimum
value of the distribution was randomly chosen from the
interval from 0.498 to 0.948 with a step of 0.048 (one
pixel); the maximum value was the minimum multiplied
by 1.6. Thus, some circles in a set could have identical
sizes. The mean diameter could vary from 0.578 to
1.318. The physical diameters were scaled to fit
Teghtsoonian’s (1965) perceived size scale, which has

been shown to be used by some observers for
estimating mean size (Chong & Treisman, 2003; Lee et
al., 2016). The correct response for a report of mean
size, therefore, was defined as an average of individual
sizes in the units of Teghtsoonian’s scale. The number
of circles varied from seven to 36, with each particular
number presented three times per block of trials. The
mean size and numerosity were assigned independently
of each other in every trial.

Procedure

Each trial (Figure 1) started with the presentation of
a fixation point for 500 ms, followed by a sample
display for 500 ms. At 200 ms after the sample offset, a
probe item (a random integer from 1 to 45 or a circle
with a random size from 0.258 to 2.058) appeared.
Using this probe item, the participants had to report
either the number of presented elements in the sample
display (numerosity), the mean size of circles, or both
(sequentially one after another). The observers set their
answers by rotating a mouse wheel upward or
downward to increase or decrease the numeral or the
diameter of the circle. Allowed ranges for responses
were the same as the aforementioned limits for probe
items. As soon as observers set an appropriate value,
they had to press the space bar on a keyboard to enter
the answer. No feedback was provided about the
precision of answers. The next trial started upon a
repeated press of the space bar, so observers could
progress at a comfortable pace and take a rest
whenever they wanted.

There were three tasks in the experiment. In the first
task, participants had to report the mean size of all
presented circles (Mean task). In the second task, they
had to report the number of presented circles (Nu-
merosity task). In the third task, they had to
sequentially recall both the mean and the number (Both
task). The serial order of mean and number reports was
balanced across trials within the Both task and treated
as a fixed factor in subsequent analyses. As the
manipulation with the serial order of responses
duplicated the necessary number of trials, the Both task
was presented in two blocks of 90 trials preceded by

Figure 1. The time course of a typical trial in Experiment 1.
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eight practice trials. Therefore, there were four blocks
(90 3 4¼ 360 trials per observer) in total, whose serial
order was counterbalanced across participants. Each
participant completed a unique sequence of blocks out
of 24 possible serial orders.

Design and data analysis

For each of the tested ensemble summaries, we
obtained the measures of baseline single-task perfor-
mance in the Mean or the Numerosity task and dual-
task performance in the Both task. The latter measures
were split based on the serial order of report (Mean–
Numerosity vs. Numerosity–Mean). Therefore, we
compared performance in three different conditions for
each of the summaries. Our primary measure of interest
was the normalized absolute error (Error), which is
inversely related to precision. The Error was calculated
in each trial as Error ¼ jParticipant’s Response�
Correct Responsej/Correct Response. Normalized
signed Error (Signed Error) was additionally calculated
for the trial-by-trial analysis of biases: Signed Error ¼
(Participant’s Response � Correct Response)/Correct
Response.

We applied three different analyses of Errors. The
first analysis was related only to the Both task, where
participants had to report two different statistics in
each trial. For each participant, we calculated a trial-
by-trial correlation between an error in the mean
judgment and an error in the numerosity judgment.
Second, we estimated correlations across participants,
like previous researchers did (e.g., Haberman, Brady, &
Alvarez, 2015; Utochkin & Vostrikov, 2017; Yang et
al., 2018). Specifically, we were interested in autocor-
relations of each of the summary statistics under three
different conditions (e.g., mean size at baseline, mean
size when reported first, and mean size when reported
second) and in cross-correlations between the mean and
numerosity under similar conditions (e.g., mean base-
line with numerosity baseline and mean when reported
first with numerosity when reported first). The auto-
correlations aimed to test the reliability of the measured
ensemble representations across conditions. The cross-
correlations aimed to provide estimates of indepen-
dence or interdependence between mean and numer-
osity on the macro level (based on scores averaged
within each observer, like in previous studies; Haber-
man, Brady, & Alvarez, 2015; Utochkin & Vostrikov,
2017; Yang et al., 2018). Third, in order to estimate
parallelism in the dual task we compared performance
in this task with corresponding single-task performance
using t tests (e.g., mean when reported first vs. mean
baseline, mean when reported second vs. mean
baseline, and mean when reported first vs. mean when
reported second).These analyses were run using stan-
dard significance tests and Bayes factors. In the

Bayesian statistical inference, the Bayes factor (BF10) is
the odds showing the relative likelihood of H1

compared to H0 given the data. The Bayes factors were
calculated in JASP statistical software (JASP 0.9.0.1;
JASP, Amsterdam, the Netherlands). Jeffreys’s (1961)
scale, with Kass and Raftery’s (1995) adjustment, was
used to interpret the Bayes factors. For t tests, Bayes
factors were calculated using the Bayesian t test; we
used a prior width set at r¼ 0.707 (Rouder, Speckman,
Sun, Morey, & Iverson, 2009), which is recommended
as the default value for this test (JASP; Wagenmakers
et al., 2018). For calculating Bayes factors for
correlation (Ly, Marsman, & Wagenmakers, 2018), we
used a default uniform prior (JASP; Wagenmakers et
al., 2018).

In this experiment, we used slightly different displays
for reporting the numerosity (a numeral having a
symbolic nature) and the mean size (a single circle
having a more visual nature). We chose these displays
because they have been often used in previous studies
for the measurement of numerosity (e.g., Halberda et
al., 2006) and mean size (e.g., Utochkin & Vostrikov,
2017). Although the differences in report formats could
affect how our observers calibrated their judgment
scales for each of the tasks, we did not consider it as a
substantial problem, since we did not directly compare
these scales (for example, we did not ask whether mean
size was estimated more precisely than numerosity).
Rather, we compared judgment errors only within each
task, asking how these errors change as a function of
the division of attention (dual vs. single task) or of
another task’s performance (correlation analysis).

Results and discussion

The data of one participant were excluded from
analysis because the average Error exceeded three
group standard deviations in two out of six conditions.
Therefore, the data of 23 participants were analyzed.
As response ranges were limited by the experimental
procedure, it could yield floor and ceiling effects on
responses. To diminish these effects, we excluded trials
with ceiling and floor responses along at least one
dimension (1 and 45 for numerosity; 0.258 and 2.058 for
the mean) from analysis. In total, 0.3% trials were
excluded from analysis based on this restriction.

Data from this and all the other experiments have
been deposited on OSF (https://osf.io/g5rwy/).

Trial-by-trial mean–numerosity correlations within the
dual task

We found that, in 20 participants, correlation
coefficients between Errors in reporting the mean size
and the numerosity did not reach significance (rs ,
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0.12, ps . 0.108, BF10s , 0.338), and only three
participants showed a small or moderate positive
correlation (rs . 0.155, ps , 0.033). Bayes factors for
two of them provided bare evidence in favor of the
absence of correlation (BF10 ¼ 0.769 and 0.923), and
only one participant had a strong value (BF10¼ 491.3).
The distribution of correlation coefficients is plotted in
Figure 2A; note that concerning false negative results,
we compare the correlation coefficient not only with the
Bonferroni-corrected value of alpha (a¼0.002) but also
with the classical one (a ¼ 0.05). For Signed Errors
(Figure 2B), the results were similar: Most of the
observers showed weak and nonsignificant correlations
(rs , 0.225, ps . 0.002, BF10s , 0.287), but three of
them showed moderate correlations (rs . 0.114, ps ,
0.131, BF10s . 2.631).

Note that the trial-by-trial correlation analysis over
180 trials per participants is quite a large sample,
potentially inflating the statistical power and the
probability of Type I error. Considering this point, the
lack of correlations in this case strongly favors
unrelatedness between judgments of numerosity and
mean size.

Correlations across participants

The conclusion about nonoverlapping mechanisms
for computing different ensemble statistics can be also
supported by cross-correlation data between average
data points obtained from individual participants
(Figure 3). We found that the Error in reporting mean
size in all experimental conditions (baseline, Mean–
Numerosity, and Numerosity–Mean) did not correlate
with the Error in reporting numerosity in the corre-
sponding conditions (rs , 0.269, ps . 0.215, Bonfer-
roni-corrected a¼ 0.006, BF10s , 0.532; Figure 3A). At
the same time, the autocorrelations between judgments

of mean size under different conditions were high (rs .

0.649, ps , 0.001, Bonferroni-corrected a¼ 0.006,
BF10s . 51.52; Figure 3B), as were the autocorrelations
for numerosity judgments (rs . 0.502, ps , 0.016,
Bonferroni-corrected a ¼ 0.006, BF10s . 4.308; Figure
3C).

Dual-task versus single-task performance

Pairwise comparisons between the single task (base-
line) and the two report orders in the dual task showed
that the dual-task estimates of both mean size and
numerosity were as precise as their baselines when
reported first, ts(22) , 2.504, p . 0.02, Bonferroni-
corrected a ¼ 0.008, Cohen’s ds , 0.523, confidence
interval (CI) [�0.261, 0.954]; Bayesian analysis showed
strong evidence for this result for mean calculations
(BF10¼0.278) but bare evidence for better performance
at baseline for the numerosity task (BF10 ¼ 2.746).
However, when a tested statistic was reported second,
the Errors were much greater compared to the baseline
and to the report in the first place, ts(22) . 2.946, p ,

0.008, Bonferroni-corrected a¼ 0.008, BF10 . 6.287,
Cohen’s ds . 0.614, CI [0.162, 1.514]. We conclude,
therefore, that the dual task per se did not impair (or
only slightly impaired) performance in any of the tasks
(Figure 4 depicts the Errors in the form of attention
operating characteristics; Sperling & Melchner, 1978),
although the order of report had an effect. It turns out,
therefore, that there was no substantial cost of dividing
attention between the two summaries, which is in line
with parallelism. The effect of the second report order
can likely be explained by memory interference at recall
rather than by problems that could arise from the
division of attention at encoding.

Figure 2. The distribution of correlation coefficients between (A) normalized absolute errors and (B) normalized signed errors in

reporting the mean size and numerosity in Experiment 1 (trial-by-trial analyses of responses in Both task separate for each observer).

The blue and red lines represent the values of Pearson’s r, after which correlations become significant at 0.05 and 0.002 (*Bonferroni-

corrected for 23 comparisons) levels correspondingly (for df ¼ number of paired observations � 2 ¼ 178).
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Experiment 2A

To test whether our conclusion about parallelism
and independence between various ensemble summa-
ries can be generalized beyond mean and numerosity,
we introduced the variance (range) perception in

Experiment 2A. There is ongoing discussion whether
people can estimate the variance of sizes or just use the
range information (e.g., Lau & Brady, 2018), so in our
study we manipulated the range (but note that range is
strongly correlated with variance in our manipula-
tions). Specifically, we tested parallelism and indepen-
dence between averaging and range estimates.

Figure 3. (A) The cross-correlations between reports of different summaries in the same report conditions (baseline, first- and second-

order reports in dual task) and (B) the autocorrelations of mean estimation and (C) numerosity estimation under different report

conditions (baseline, first- and second-order reports in dual task). The gray regions denote 95% confidence intervals.
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However, a few potential issues must be addressed
before designing the dual task for these two summaries.
Combining mean reports with range reports in a single
paradigm can be potentially tricky within a dual task. It
is a requirement for such a paradigm that range be
manipulated independently from mean at test. If an
observer has to report both the mean size and the range
of the same sample set, the test set of items for the
range report (there is no way to probe range/variance
perception of a set other than in another set; Haber-
man, Lee, & Whitney, 2015, Yang et al., 2018) should
have a mean size randomly differing from the true
mean size of the sample; otherwise the range test would
unambiguously inform the observer about the mean.
While some studies have shown that observers can
transfer their impression of range/variance from a set
with one mean to a set with another mean (e.g.,
Haberman, Lee, & Whitney, 2015; Solomon et al.,
2011), there is an empirical question whether observers’
error of reporting range/variance changes with in-
creasing distance between the mean sizes of sample and
test sets.

It is also important that manipulations of the mean
sizes between sample and test sets entails a potential
confound with relative density. If the mean size of all
items is changed, then mean spacing between them
changes in an opposite direction. It is another empirical
question whether this relative density plays a role in

range perception. Experiment 2A aimed to answer
these two questions. Here our participants performed
only a range-adjustment task. We systematically
manipulated the difference between mean sizes of a
sample set and a test set and the absolute and relative
density of these sets in order to see whether the
precision of range perception is immune to these
manipulations.

Methods

Participants

Sixteen undergraduate students at the Higher School
of Economics (11 female, five male; mean age¼ 19.1
years) participated in the experiment for extra course
credits. All had normal or corrected-to-normal vision
and no neurological problems. At the beginning of
experiment, the participants gave written informed
consent.

Apparatus and stimuli

We used the same apparatus as in Experiment 1.
Both sample and test screens always consisted of 16
white circles presented within an imaginary square (43
4¼ 16 cells) with a center at fixation. Each cell
contained one circle positioned at the center of the cell
with a random jitter of 610% of a side length. The side
length of each cell, in turn, could be fixed or scaled. In
the fixed condition, a side of a cell was always 4.098 for
both sample and test sets regardless of their difference
in mean size. In the scaled condition, the side length
was the mean size multiplied by a factor of 2.5. These
two conditions were used to control for potentially
complicated interactions between variations in mean
size and spatial density that inevitably correlate. In the
fixed layout, the absolute density (number of circles per
degree of visual angle) was constant but the relative
density (ratio between mean circle size and mean
between-circles space) changed depending on the mean
size. By contrast, the scaled layout provided stability of
relative density with variable absolute density.

The mean diameter of a sample set of circles was
randomly chosen from the narrow interval between
1.468 and 1.568, whereas the mean diameter of the test
set differed from the sample mean on average by the
percentage from the interval [�60%, 60%] with a step
equal to 10% along Teghtsoonian’s (1965) perceived
size scale. The size distribution always consisted of four
sizes equally spaced along Teghtsoonian’s size scale,
with each size assigned to four circles in a set (therefore,
it was always a uniform equally spaced distribution).
The range was measured as a distance between the
biggest and the smallest sizes in units of the mean and
could be drawn from the interval between 0.20 and 1.60

Figure 4. Attention operating characteristics for precision

(normalized absolute error) in Experiment 1. Average errors in

numerosity estimates are on the x-axis, while those in mean

size estimates are on the y-axis. Black horizontal and vertical

lines represent the average error in baseline conditions (Mean

and Numerosity tasks, respectively). The red data point denotes

the Error in the Both task when participants reported the mean

size first; the blue data point denotes the Error in the Both task

when participants reported numerosity first. Error bars around

the data points and gray shaded areas around the baselines

denote 695% confidence intervals.
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in a sample and between 0 and 1.80 in a test. For
example, in the range of 0.20, the biggest circle was 1.10
of the mean size and the smallest circle was 0.90 of the
mean size; in the range of 1.60, the biggest circle was
1.80 of the mean size and the smallest circle was 0.20 of
the mean size. In other words, the biggest and the
smallest sizes were 61/2 of the range away from the
mean. Two middle sizes were 61/6 of the range away
from the mean. Importantly, the same coefficients
defined the speed of size changes during range
adjustments, thus preserving the equally spaced uni-
form distribution with a stable mean.

Procedure

The time course of a typical trial in the experiment
was similar to that of a typical trial in Experiment 1.
The only difference concerned the response (see Figure
5). Participants had to adjust the range of a test set to
match the range of a sample set. To do this, they had to
rotate a mouse wheel that changed the range of the size
distribution (rotating upward increased the range,
rotating downward decreased it).

In the instruction, we explained the concept of range
as ‘‘a general impression of the diversity of sizes’’ and
also as ‘‘the degree of contrast between big and small
circles.’’ This provided participants a clear under-
standing of the task.

Design and data analysis

In this experiment, we parametrically varied the
difference between mean sizes of a sample set and a test
set in a broad range from�60% to 60% (13 points in
total including 0%), providing the uniform distribution
of all values across trials. The second fixed factor was
layout (two conditions: fixed vs. scaled). Each observer
was exposed to 2 (layout) 3 13 (differences in mean
size) 3 12 repetitions ¼ 312 trials preceded by 26
practice trials. For data analysis, we merged trials with
equal absolute differences in mean size but opposite
signs. This yielded 24 trials per data point in each
observer. For the 0 difference in mean size, we merged
trials from the fixed and scaled layouts, as these two
layouts were metameric under this difference in mean
size. This also yielded 24 trials per data point (it is easy
to note that the same subset trials were used as an input

to an analysis of variance [ANOVA] for both layouts
under this particular difference in mean size).

For the precision of range estimates, we calculated
normalized absolute error using the same formula as in
Experiment 1. There is no strong consensus among
researchers (e.g., Haberman, Lee, & Whitney, 2015;
Suárez-Pinilla et al., 2018) whether the error in range/
variance adjustment should be normalized (like we did
in Experiment 1, adding the correct answer as a
denominator) or not by the reference range/variance
(correct answer). However, as it has been shown that
the error tends to increase with the reference in a
fashion according to Weber’s law (Haberman, Lee, &
Whitney, 2015), we consider our normalized formula to
be justified by the nature of the measured property.

We applied two analyses to our data. First, the
correlation between correct responses and observers’
absolute responses was estimated to test whether
participants could perform the task at all. Second, a 2
(layout: fixed vs. scaled) 3 7 (absolute difference in
mean size: 10, 20, 30, 40, 50, 60) repeated-measures
ANOVA was applied to values of Error to test whether
observers transferred their range impressions from the
mean size of a sample to the mean size of the test and to
estimate the effect of layout. For the Bayesian
ANOVA, the width r of a prior Cauchy distribution of
effect sizes was set at 0.5, following the default settings
recommended by Wagenmakers et al. (2018) and the
JASP Team for fixed-effects models.

Results and discussion

To diminish the floor and ceiling effects of the
adjustment range, we removed all extreme answers (0
and 1.80 ranges) from analysis, meaning 3% of
responses were not taken into analysis. We found that
participants could report the range of a sample rather
precisely, which is supported by a highly positive
correlation between correct and observer responses (r¼
0.624, p , 0.001, BF10 . 1025; Figure 6A).

The ANOVA model (Figure 6B) showed no signif-
icant effect of layout according to frequentist statistics,
F(1, 15) ¼ 16.563, p ¼ 0.144, g2p ¼ 0.137), although
Bayesian statistics showed an inconclusive result (BF10

¼ 1.013). Also, we found no effect of the absolute
difference in mean size, F(6, 90)¼ 0.843, p¼ 0.54, g2p¼
0.053, BF10 ¼ 0.042, nor of the interaction of the two

Figure 5. The time course of a typical trial in Experiment 2A.
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factors, F(6, 90)¼ 1.565, p¼ 0.166, g2p¼ 0.094, BF12¼
6.286 (where BF12 is a ratio of BF10 for a model taking
into account only the main effects to BF10 for a model
taking into account the main effects and interaction).

Overall, our results show that the participants could
report range with constant precision regardless of the
manipulations with mean difference between the
sample and the test and with layout. The results of
Experiment 2A suggest that it is possible to adjust
range on a probe set not informing observers about the
mean size of a sample set. Therefore, we conclude that
the mean and range can be estimated independently
within a single trial of a dual task.

Experiment 2B

In Experiment 2B, we basically replicated the design
of Experiment 1. However, the pair of tested ensemble
statistics was different, namely, mean and range.

Methods

Participants

Nineteen undergraduate students at the Higher
School of Economics participated in the experiment (18
female, one male; mean age ¼ 21.4 years) for extra
course credits. All had normal or corrected-to-normal
vision and no neurological problems. At the beginning
of experiment, the participants gave written informed
consent.

Apparatus, stimuli, and procedure

We used the same apparatus as in Experiments 1 and
2A. However, the numerosity task was replaced by a
range task similar to that used in Experiment 2A.
Sample sets were made in the same way as in the fixed
condition of Experiment 2A. Specifically, there were
always 16 circles, each having one of four sizes drawn
from a uniform equally spaced distribution along
Teghtsoonian’s (1965) scale. The circles were located
within a 43 4 grid with a fixed cell side of ;4.098. The
mean size of a sample set could be taken from the
interval between 0.688 and 1.78. The range of the
sample set could be 0.3, 0.6, 0.9, 1.2, or 1.5 (see the
explanation of units in Experiment 2A), which were
uniformly distributed across the experiment. The mean
size and range were assigned independently from each
other in every trial.

The adjustment of the perceived mean size was
performed on a single test circle at fixation (like in
Experiment 1), whose diameter was randomly drawn
from the interval between 0.258 and 2.058 and changed
within the same interval by rotating a mouse wheel.
The adjustment of perceived size range was performed
on a set of 16 circles (like in Experiment 2A) with a
fixed mean size of 1.258. The range could be changed by
rotating a mouse wheel that increased or decreased the
diversity of the test distribution between 0 and 1.80
with a step of 0.02.

The procedure was the same as in Experiment 1 in
terms of timing and events, except that the numerosity
task was replaced by the range task from Experiment
2A (see Figure 7). As in Experiment 1, we ran two
single tasks for each statistic and a dual task with a
varying order of report.

Figure 6. The results of Experiment 2A. (A) Trial-by-trial correlation between correct and observer responses. (B) Error as a function of

layout and difference in mean size. Error bars (B) and gray region (A) denote 695% confidence intervals.
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Design and data analysis

The design, data analysis, and dependent variables
were the same as in Experiment 1. The only difference
is that instead of the Numerosity task we had a Range
task. As in Experiment 1, we argue that the difference
in report displays (a single probe item in the mean size
task and a set in the range task) could not influence our
results (see earlier for these arguments).

Results and discussion

Like in the two previous experiments, we excluded
trials with ceiling and floor responses along at least one
dimension (0.258 and 2.058 for the mean) from analysis.
In total, 3.8% of trials were excluded from analysis
based on this restriction.

Trial-by-trial Mean–Range correlations within the dual
task

We found that most of the participants (Figure 8A)
showed no evidence of trial-by-trial correlation be-
tween Error values in reporting the mean size and the

range (rs , 0.143, ps . 0.053, BF10s , 0.573 ), but two
showed a small or moderate positive correlation (rs .

0.144, ps , 0.044, BF10 ¼ 0.68 and 2.066). We can
conclude that there is no interrelation between the
precision of mean and range computations, which can
suggest their independence. As in Experiment 1, we also
tested whether systematic biases (Signed Error) corre-
lated between the mean and range judgments. We did
not find strong evidence for such a correlation: All
participants showed weak and nonsignificant correla-
tion (rs , 0.17, ps . 0.02, BF10s , 1.384; Figure 8B),
except for two who showed small to moderate positive
correlations (rs . 0.15, ps , 0.037, BF10 ¼ 0.779 and
1.383).

Correlations across participants

The computational independence of mean and range
perception can be also supported by auto- and cross-
correlations of observers’ averaged scores (Figure 9).
We found no cross-correlations between reported mean
size and range regardless of the task or report order (rs
, 0.36, ps . 0.141, Bonferroni-corrected a ¼ 0.006,
BF10s , 0.775; Figure 9A). At the same time, the

Figure 7. The time course of a typical trial in Experiment 2B.

Figure 8. The distribution of correlation coefficients between (A) normalized absolute errors and (B) normalized signed errors in

reporting the mean size and numerosity in Experiment 2B (trial-by-trial analyses of responses in the Both task separate for each

observer). The blue and red lines represent the values of Pearson’s r, after which correlations become significant at 0.05 and 0.002

(Bonferroni-corrected for 23 comparison) levels correspondingly (for df ¼ number of paired observations � 2 ¼ 178).
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autocorrelations were strong for both the mean (rs .

0.698, ps , 0.001, Bonferroni-corrected a¼ 0.006,

BF10s . 47.326; Figure 9B) and the range (rs . 0.692,

ps , 0.001, Bonferroni-corrected a ¼ 0.006, BF10s .

43.306; Figure 9C), suggesting the cross-task consis-

tency of the measurements.

Dual-task versus single-task performance

We found that dual-task performance in both mean
and range judgments did not differ from their single-
task baselines when these statistics were reported in the
first place, ts(18) , 1.199, ps . 0.246, Bonferroni-
corrected a¼ 0.008, BF10s , 0.444, Cohen’s ds , 0.514,

Figure 9. (A) The cross-correlations between reports of different summaries in the same report conditions (baseline, first- and second-

order reports in dual task) and the autocorrelations of (B) mean estimation and (C) range estimation under different report conditions

(baseline, first- and second-order reports in dual task). The gray regions denote 95% confidence intervals.
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CI [�0.304, 0.729]. However, when these summaries
were reported in the second place, the responses were
less precise than the corresponding baselines and first
responses, ts(18) . 4.133, ps , 0.001, Bonferroni-
corrected a ¼ 0.008, BF10s . 55.773, Cohen’s ds .

0.947, CI [0.395, 2.3]. This pattern is very similar to that
in Experiment 1 and leads to a similar principal
conclusion, that attention can be divided between the
mean size and range in the dual task without any
substantial cost (Figure 10). Therefore, the processing
of mean and range are likely parallel. However, the cost
associated with the second order of report suggests that
there can be memory interactions that can lead to decay
or interference for the second response.

General discussion

Summarizing the results of the experiments, we can
conclude that the mean size and numerosity (Experi-
ment 1) or mean size and range (Experiment 2B) can be
extracted from one ensemble by computationally
independent mechanisms; the results of these calcula-
tions do not mutually interfere in accessing the limited
capacity of conscious processing. This finding supports
previous reports of independence (Haberman, Brady &
Alvarez, 2015; Yang et al., 2018) and parallelism

(Utochkin & Vostrikov, 2017) but at a deeper level of
evidence. Specifically, we asked our participants to
report both tested statistics in the same trial and were
able to track whether a change in one representation
(e.g., mean size) was responsive to the change in
another (e.g., numerosity or range). This analysis
allowed us to dissociate between genuinely independent
and parallel processes and those ‘‘pretending’’ to be
independent and parallel on the macro level of average
scores across participants but being in fact negatively
related (for example, due to fluctuating allocation of
attention between one or another statistic from trial to
trial). We discuss the evidence we obtained in more
detail.

Different statistical summaries are computed
independently

The claim about independent processing comes
mainly from the results of correlational analyses which
have the following logic of interpretation. If two
different computations are done by independent
mechanisms, these calculations should have two
different sources of variance, thus predicting zero or
very weak correlations between tests measuring these
computational processes. In contrast, strong positive
correlations would likely indicate some considerable
source of variance, probably suggesting commonality
in computational mechanisms (like those we naturally
observed as autocorrelations of each summary statis-
tic). Haberman, Brady, and Alvarez (2015) have also
pointed out that some small correlation might be
explained by general factors, such as working-memory
capacity or motivation: They obtained a correlation of
;0.2 between ensemble and digital memory-span tasks
(but they used much bigger samples of participants).
Negative correlations could also reflect some common
mechanism for both computations but acting in a
different way: Computing one property is carried out at
the cost of another, which directly addresses the issue
of parallelism. (Note, however, that a strong conclusion
about parallelism cannot be made on the basis of
correlation alone, and control for the division of
attention is necessary).

We obtained unambiguous evidence in favor of
independently computed ensemble summaries in Ex-
periments 1 and 2B. The ensemble summaries did not
correlate on either the trial-by-trial micro level or the
individual-difference macro level. On the micro level,
the absence of a positive correlation provides evidence
against a common computational mechanism (e.g., a
more precise number estimate is not associated with a
more precise average estimate, although they are
related in regular mathematical statistics), and the
absence of a negative correlation makes it unlikely that

Figure 10. Attention operating characteristics for precision

(Error) in Experiment 3. Average errors in range estimates are

on the x-axis, average errors in mean size estimates are on the

y-axis. Black horizontal and vertical lines represent the average

Error in baseline conditions (Mean and Range tasks, respec-

tively). The red data point denotes the Error in the Both task

when participants reported the mean size first; the blue data

point denotes the Error in the Both task when participants

reported range first. Error bars around the data points and gray

shaded areas around the baselines denote 695% confidence

intervals.
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one computation is run at the cost of another.
Moreover, this conclusion about precision is corrobo-
rated by the lack of correlation between the systematic
biases (e.g., an overestimated number of items is not
associated with an overestimated mean size of those
items, which might be predicted based on the regular
mathematical method of averaging). On the macro
level, we replicated previous demonstrations of un-
correlatedness between mean and numerosity precision
(Utochkin & Vostrikov, 2017) and between mean and
variance (or range) precision (Yang et al., 2018),
showing that observers who are better at estimating one
statistic are not necessarily better at estimating another.

An additional argument for independence comes
from Experiment 2A, which was initially designed to
ensure that mean size and range could be manipulated
and tested independently in a dual task and that these
manipulations kept the task doable. Our finding that
participants did not show any loss in the precision of
reported range, despite rather big differences between
mean sizes of a sample and a test, supports the idea that
range is indeed an independently processed ensemble
property that can be transferred across different mean
sizes. In a different experimental design, Norman et al.
(2015) came to a similar conclusion about the transfer
of a variance (range) impression across ensembles with
different mean orientations. Also, Tong, Ji, Chen, and
Fu (2015, experiment 2) found basically the same for
the brightness domain. Their participants had to report
which of two sequential displays had higher variance,
and the accuracy of the variance report in a condition
where the mean brightness was stable between two
displays was identical to that in the condition where the
mean brightness changed between two displays.

Note that our results do not imply that there is no
link between the representations of various statistical
summaries. As an example of such a link, a lot of
studies have shown that the precision of judgments of
mean size usually decreases with an increase in the
physical variance of a display (Corbett et al., 2012,
experiment 4; Im & Halberda, 2013; Maule & Franklin,
2015; Tong et al., 2015; Utochkin & Tiurina, 2014). It is
important, however, that the claims based on the
manipulations of physical variance in these studies
concern mostly the role of the external, stimulus noise
in the representation of the mean. In our study, we were
focused on the correlations between errors produced by
observers when they estimated each of the summaries.
The lack of correlations we observe between the errors
could reflect the uncorrelatedness of internal noise
sources for each of the judgments. Prospective psy-
chophysical and neuroscientific research can be focused
on probing these sources of internal noise to better
understand the nature of ensemble representations.

Different statistical summaries are computed in
parallel

Our conclusion about parallelism is based on the
finding that dual-task performance was as precise as
single-task performance, at least when a given summary
was reported first, which is the same temporal position
as in the single task. This finding corroborates the claim
about parallelism of mean and numerosity computa-
tions made by Utochkin and Vostrikov (2017) based on
the precue/postcue paradigm. The converging evidence
we report here is a valuable addition because of slightly
different ways to manipulate the division of attention.
Specifically, we diminished a potential cost of switching
between different statistics from trial to trial that could
blur differences between Utochkin and Vostrikov’s
precue and postcue performance scores. Here, we
measured single-task and dual-task performance in
separate blocks, encouraging participants to dedicate
their attention to each task without switches. More-
over, the obligatory requirement to report both
statistics in each trial of the dual task also encouraged
our observers to compute both properties. Therefore,
with this additional control for task switching and the
replicated pattern from Utochkin and Vostrikov, we
provided a stronger conclusion about parallel process-
ing of mean and numerosity. The evidence for parallel
processing of mean and range is a new conclusion that
generalizes this parallelism to a broader range of
ensemble properties. It is also in line with earlier
reports of no or minor costs of dividing attention
between same-type statistics of different visual dimen-
sions within the same ensemble (Emmanouil & Treis-
man, 2008; Huang, 2015). In a broader perspective, our
finding is in accordance with a classical idea that it is
easier to divide attention between different properties
of a single object than between the properties of
different objects (Duncan, 1984).

Implications for the architecture of ensemble
perception

These results lead to two theoretical consequences.
First, we can view computational processes leading to
the extraction of mean size, numerosity, and range as
relatively nonoverlapping. Therefore, it is unlikely that
there is a general ‘‘statistical processor’’ for different
ensemble properties, even if they belong to the same set
of objects. Second, none of these computational
processes uses the results of the work of another
process, unlike in regular statistics. Although it may be
tempting to expand this logic of regular statistics
(where, for example, mean is calculated based on the
number) to the visual domain, our and other previous
studies (Lee et al., 2016; Utochkin & Vostrikov, 2017;
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Yang et al., 2018) provide evidence against such
expansion. The conclusion about independence also
provides an important direction of investigation of
neural mechanisms beyond ensemble representations.
Specifically, the independence may suggest that differ-
ent neural populations can be involved in representing
different ensemble properties. For example, there is
neurophysiological evidence that different brain re-
gions can be involved in numerosity perception and in
the perception of statistics of internal properties of
multiple objects, such as color or shape (Cant & Xu,
2012; Dehaene, Piazza, Pinel, & Cohen, 2003). Al-
though mean and range (variance) can originate from
the same early representation (e.g., Khayat & Hoch-
stein, 2018), their computations can be also affected by
nonoverlapping sources of later noise (Solomon et al.,
2011), which could explain our and previously reported
findings (Utochkin & Vostrikov, 2017; Yang et al.,
2018) about the lack of correlation between averaging
and range (variance) estimation. In future research,
these speculations should be addressed thoroughly.

Keywords: ensemble statistics, numerosity, mean,
range, dual task
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