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Abstract. In recent years, the task of visual question answering (VQA)
at the intersection of computer vision and natural language processing
is gaining interest in the scientific community. Even though modern sys-
tems achieve good results on standard datasets, these results are far
from what is achieved in Computer Vision or Natural Language Process-
ing separately, for example, in tasks of image classification or machine
translation. One of the reasons for this phenomenon is the problem of
modelling the interaction between modalities, which is partially solved
by using the attention mechanism, as, for example, in the models used
in this paper. Another reason lies in the statement of the problem itself.
In addition to the problems inherited from CV and NLP, there are prob-
lems associated with the variety of situations shown in the picture and
the possible questions for them. In this paper, we analyze errors for the
state-of-the-art approaches and separate them into several classes: text
recognition errors, answer structure, entity counting, type of the answer,
and ambiguity of an answer. Text recognition errors occur when answer-
ing a question like “what is written in ..?” and associated with the rep-
resentation of the image. Errors in the answer structure are associated
with the reduction of the VQA to the classification task. Entity counting
is a known weakness of current models. A typical situation of errors in
the type of answer is when the model answers the “Yes/No” question
in a different way. Errors from the ambiguity of an answer class occur
when the model produces an answer that is correct in meaning but does
not coincide with the formulation of the ground truth. Addressing these
types of errors will lead to the overall improvement of VQA systems.
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1 Introduction

The Visual Question Answering (VQA) task was introduced in 2015 [1] by
Agrawal et al. by formalizing the problem and providing the dataset for learning
and evaluation. The task is to get an answer to a question on a given image. The
image and the open-ended question related to it are passed as an input of the
algorithm. The output should be a relevant answer to the question asked, which
takes into account information collected from the input image and common-
sense knowledge. The VQA task combines data processing tasks with visual and
linguistic processing to answer questions regarding image data. Therefore, VQA
can be called the multi-discipline Artificial Intelligence (AI) research problem,
which consists of three different tasks: Computer Vision, Natural Language Pro-
cessing, and Reasoning. In recent years, unimodal algorithms, that deal with
some of these three parts have achieved great quality performance. However
cross-modal tasks are more difficult because they require a simultaneous seman-
tic understanding of two or more unimodal tasks, as well as the interaction
between data of different modalities. The reasoning part of the problem is what
makes VQA task unique, as it requires deeper understanding of the context than
other cross-modal tasks such as image captioning. Machine learning for computer
vision and natural language processing accelerates the advancement of artificial
intelligence. Open-ended question answering entail a set of AI capabilities as it
requires common-sense knowledge. That is why building robust algorithms for
VQA that perform at near-human levels would be an important step towards
solving the Artificial Intelligence problem.

Recent years have witnessed a growing academic interest in solving VQA
task. That is why, VQA competitions, as well as an annual workshop dedicated
to the latest developments in this direction, [1] are held annually starting from
2016. A dataset, consisting of 265,016 images, each of which contains an average
of 5.6 relevant questions and 10 ground-truth answers, as well as 3 plausible (but
likely incorrect) answers per question, was presented for this competition. Since
annual VQA competition was launched, the development of the models can be
traced to the winners and runners-up of the competitors.

There are number of approaches of solving VQA task, such as neural-symbolic
[16,22], graph-based [13] or attention-based [2,24]. Despite the variety of possible
approaches, an approach based on the attention mechanism is the most popular.
The key idea of attention in artificial neural networks is to weigh object features
based on a query, which can be a question, a word, or even the image itself.
In this article, we review the most successful attention-based approaches and
propose some modifications to improve model quality.

2 Base Models

Winner (Deep Modular Co-Attention Networks [23]) and runner-up (Bilinear
Attention Networks [9]) solutions of VQA Challenge 2019 were chosen as base
models.
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2.1 Bilinear Attention Networks

Bilinear Attention Networks (BAN) [9] were introduced as an efficient way to
utilize multimodal attention, maintaining the interaction between inputs of dif-
ferent modality. The architecture achieved state-of-the-art on VQA 2.0 dataset
at the time of publication, and a runner-up solution for VQA 2019 Challenge
was generated by a modified Bilinear Attention Network.

One of the core concepts of the proposed architecture is low-rank bilinear
pooling, where the modified bilinear form that takes two inputs (for instance,
question and word embeddings) and returns single output vector of fixed length.
Replacing a single weight matrix of a bilinear form by multiplication of two
smaller matrices significantly reduces the computational cost of the operation,
and the pooling matrix provides a way to encode rich features without inflating
the number of model parameters.

The aforementioned operation is used on the question and word embeddings
to create a two-dimensional attention matrix A, where Aij is the attention weight
for an i-th word in question and j-th object in the image. Then another low-
rank bilinear pooling is applied to question and word embeddings, considering
attention weights provided by previously calculated bilinear attention matrix.

The proposed block can be effectively stacked with similar blocks if the output
of the low-rank bilinear pooling is set to question embedding vector length.
Residual connections between the start and the end of each block are added for
signal preservation.

The image features are extracted using bottom-up attention Faster R-CNN
[2], which is a slight modification of Faster R-CNN [18] with added “attribute
of the object” loss term, which enforces rich image feature encoding. The object
detection model is pretrained on Visual Genome [11] dataset.

The words of a question are encoded using GloVe [17] embeddings, and are
fed into one-layer unidirectional GRU [4].

2.2 Deep Modular Co-Attention Networks

The next model is Deep Modular Co-Attention Networks (MCAN) [23]. It is the
winner solution for VQA 2019 Challenge. This method is the development of
the idea of attention, inspired by the Transformer [20] – translation model with
multi-head attention.

The input image is represented by the set of region proposals features
obtained in a bottom-up manner [2]. This method is based on ResNet [6] as
backbone and Faster R-CNN [18] object detection model, trying to focus on the
objects from Visual Genome dataset [11]. The input question is encoded using
300-D GloVe [17] embeddings pretrained on large scale corpus. The sequence of
embedded words then passes through one-layer LSTM [7].

The authors came up with a new layer of modular co-attention between the
regions of the image and the words of the question. They implemented two new
attention units: Self-Attention and Guided-Attention. Self- Attention learns pair-
wise attention between paired input samples (between words in the question) and
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Guided-Attention learns pairwise attention between paired input samples from
different inputs (between words in question and image regions). Furthermore,
they have invented deep encoder-decoder architecture to get a better represen-
tation of attention weights. Input features from image regions passed through 6
cascaded Self-Attention units, the last layer output is used in 6 cascaded Guided-
Attention with inserts of Self-Attention under question features. The resulting
feature matrices contain rich information about attention weights. Attention
weights are obtained as two-layer MLP fed to a softmax layer. The attended
feature is the dot product of attention weights and encoded features.

3 Modification of Base Models

To extract more information from experiments and address the lack of error
analysis of current model and its further modifications, we implemented a more
detailed evaluation, where the VQA accuracy is calculated for three categories
of questions based on the type of an answer - a “Yes/No” question, a “number”
question and other questions.

Image and question representations have a huge impact on the final perfor-
mance. In this paper, we propose to improve the performance of base models by
extracting more powerful visual and text features. Due to the inherent modular-
ity of base models, modifications implemented in the form of replacing default
modules for images and question representations with new ones.

The modified models in the following experiments were compared by official
VQA metric.

Image Features. Faster R-CNN, which is used in the base model to obtain
visual features of objects, is already outdated and does not show competitive
quality in solving the Object Detection problem. Cascade Mask R-CNN [3] is
the current state-of-the-art for the task. Its main difference from Faster R-CNN
is that after predicting the areas and classes of objects, the signs are sent to
another network in which the mask of the objects is predicted. Moreover, the
architecture is improved further by stacking three ResNet models for usage as a
backbone. Cascade Mask R-CNN, pre-trained on ImageNet is used as a visual
features extractor in the following experiments.

Since Mask R-CNN struggles to find all the objects in the image, for example,
the background, the Panoptic Feature Pyramid Network [10] was selected as the
second option of the image features extraction model. In this model, the authors
combine Mask R-CNN to select objects with a semantic segmentation model, to
split the entire image into objects. It is proposed to add semantic segmentation
to each FPN layer [14]. At the output of the model is an image, each pixel
of which corresponds to a class. The model is pre-trained on ImageNet. Due
to the combination of semantic segmentation with the selection of objects, it
is impossible to obtain the attributes of objects in a standard way, therefore,
ResNet-152 without the last layer is used to obtain 2048-D embedding. For
each image segment found in the Panoptic model, all pixels except the pixels
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included in the mask of the found object are used, then ResNet-152, pre-trained
on ImageNet, is applied to the resulting image with one object.

During experiments we noticed that models without pre-training on Visu-
alGenome dataset show worse results, that is why we tried one more object
extraction model - Faster R-CNN with ResNetXt101 backbone [8] pre-trained
on VisualGenome.

Question Features. BERT [5], a multi-layer bidirectional Transformer based
on [21], is currently widely used in Natural Language Processing due to superior
performance on almost every NLP task, compared to more dated alternatives,
such as GRU or LSTM. The model consists of embedding layers, 12 Transformer
blocks with a dimension of 768, and 12 Self-Attention Heads. Contextual BERT
embeddings of words in question are used as input features of the final model.
The maximum question length is increased from 14 to 36 since at the input the
model requires words tokenized using WordPiece [19], in which unknown words
are replaced with a combination of several tokens.

BERT, as well as its recent improvements, such as RoBERTa [15] and
ALBERT [12], were used as a question feature extractor in the following
experiments.

Counting Module. In the base model, the soft-attention mechanism is used,
which limits the model’s ability to count. That is why in [25] proposed a new
Counting module. The input of this module is soft-attention weights and bound-
ing boxes. Weights and boxes are converted into a graph representation, thus
counting task is reduced to the task of finding duplicate edges. The output is a
one-hot-encoded array that is sent to the linear layer with ReLU activation and
sum with previous attention weight.

The results are presented in Table 1 and 2 of Sect. 4.

4 Results and Error Analysis

After a series of experiments, we concluded that “number” questions are the
ones that the model has the most trouble with, even though this issue is already
addressed by a counting module.

Table 1. BAN. Experiment results on VQA v2.0 validation split.

Object Detection Backbone Question features Counter Accuracy Yes/No Number Other

Faster R-CNN (baseline) ResNet101 GloVe + GRU + 66.60 79.00 49.56 55.73

Faster R-CNN ResNet101 BERT + 61.85 74.70 42.85 51.54

Faster R-CNN ResNet101 RoBERTa + 62.90 75.10 44.41 52.86

Faster R-CNN ResNet101 ALBERT + 54.61 68.01 37.07 44.11

Faster R-CNN ResNet101 ALBERT − 55.20 68.38 37.80 44.77

Faster R-CNN ResNeXt-101 ALBERT − 54.64 67.32 36.22 44.91
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Table 2. MCAN. Experiment results on VQA v2.0 validation split

Object Detection Backbone Question features Counter Accuracy Yes/No Number Other

Faster R-CNN (baseline) ResNet-101 GloVe + LSTM − 67.38 83.81 48.78 59.88

Faster R-CNN ResNet-101 BERT − 67.85 83.89 48.63 60.82

Cascade Mask R-CNN ResNetXt-152-32x8d GloVe + LSTM − 58.37 76.91 46.91 47.38

Cascade Mask R-CNN ResNetXt-152-32x8d BERT − 58.42 76.24 47.31 47.80

Cascade Mask R-CNN ResNetXt-152-32x8d BERT + 58.20 75.93 46.70 47.83

Panoptic FPN ResNet-101 GloVe + LSTM − 59.43 78.22 42.32 49.75

Panoptic FPN ResNet-101 BERT − 59.78 78.31 41.34 50.66

Faster R-CNN ResNet-101 RoBERTa − 66.78 82.86 47.49 59.24

Faster R-CNN ResNet-101 ALBERT − 68.29 84.47 49.84 60.95

Faster R-CNN ResNeXt-101 ALBERT − 68.57 84.57 49.78 61.45

Changing image features yields a positive effect only when the model is pre-
trained on the VisualGenome dataset. Probably the reason is that VisualGenome
has 3000 classes while ImageNet pre-trained models have only 300.

As far as modifications are concerned, replacing question feature extractor
with the BERT-style language model does not lead to improvements in all cases.
One possible explanation for this could be a lack of question feature extractor
finetuning for the task, yet the solution for this problem is not trivial - attempts
to train BAN while finetuning BERT-style backbones in the end-to-end fashion
led to degraded performance compared to frozen models.

To gain useful insights from model predictions, we performed an error analysis
on a set of baseline model predictions, where the predicted answer does not
match any of the 10 assessors’ answers provided in the dataset. We further refer
to it as an “error set”. The analysis was performed manually - given a subset of
1000 image-question pairs from an error set, each prediction was categorized as
a member of one of 6 common mistakes categories, which were derived from a
quantitative analysis of error sets:

– Text recognition errors. Such errors occur when the question requires
extracting the text from the image. Since the current solution only extracts
features of known objects, text regions are not taken into account.

– Answer structure. The main purpose of the model is to make classification
on a known set of answers. That is why errors often occur in syntax structure
of an answer such as statement of prepositions or pluralizing.

– Type of the answer errors. There are cases when the type of answer does
not match the type of question. For example, in Fig. 1.c Appendix I, to a
yes/no question corresponds ’answer ’answer.

– Entity counting. In Table 1 and Table 2 there is common trend in models.
All current VQA models have difficulties with counting. Furthermore, this
category includes questions about telling time on a clock.

– Ambiguity of an answer. This type of error is independent with model
answers. Language is a complex structure and the answers of 10 people may
not cover all possible correct answers. Errors of the model on precisely such
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questions fell into this category, where it gives the correct answer, which does
not coincide with the answers given by the assessors.

– Wrong answer. This category is for wrong predictions that do not fall into
any of the 5 categories described above, and is most likely due to a genuine
lack of reasoning.

As shown in Table 3, around the half of mistakes are made without a clear reason,
a small percentage of ambiguity errors are troublesome to fix, but other types of
errors can be fixed by modifications of the model. Text recognition failures can
be fixed by making use of the latest advances in Optical Character Recognition
by extracting the text from the image and using it to answer to the question.
Answer structure errors appear due to a limited number of answers-classes used
for solving the task. Consequently using a language model to generate final
answer based on the output of the main model can be helpful. To solve the type-
of-the-answer errors, a simple classifier on top of the model prediction completely
fix the problem. The idea is to only look at the probabilities which correspond
to the answers of the current category.

Table 3. Error analysis on validation set for MCAN and BAN models. Errors are
divided into 6 categories.

Model Text recognition Answer structure Type of the answer Number Ambiguity Wrong answer

MCAN 12.6% 9.4% 4.8% 15.6% 8.4% 49.2%

BAN 9.01 % 4.1% 4.9% 14.8% 6.6% 49.2%

5 Conclusion

Visual Question Answering task requires understanding of both the given image
and a question on that image. Recent advancements in Natural Language Pro-
cessing and Computer Vision as separate disciplines help solve most of the prob-
lems that researchers can meet on their path. Nevertheless, questions that need
sophisticated reasoning, such as counting of a specific type of objects, demand
new techniques involving modality interaction.

The error analysis gave insight into possible shortcomings in current state-of-
the-art VQA models, its struggles with entity counting, text recognition, answer
structure and type. We hope that the analysis coupled with the proposed ways
to solve these problems will help aspiring researchers to improve the existing
VQA systems.

Acknowledgement. The reported study was supported by RFBR, research Projects
No. 19–37-90164 and 18–29-22047.
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6 Appendix I: Samples of Wrong Answers by Error
Categories

(a) Sample of structure
error.
Question: What is in the
corner?
Model answer: bag;
Real answer: bags;

(b) Sample of classification
error.
Question: What has two
blue doors?
Model answer: yes;
Real answer: toilet;

(c) Sample of number error.
Question: How many blue
benches are visible in the photo?
Model answer: 3;
Real answer: 2;

(d) Sample of text recognition.
Question: What is in the word written on
the field?
Model answer: tennis court;
Real answer: polo or jp morgan;

(e) Sample of ambiguity error.
Question: Why is there a fire extinguisher
in the kitchen?
Model answer: safety;
Real answer: prevent fire;
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