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A B S T R A C T

In this paper, we propose a Vector Semiotic Model as a possible solution to the symbol grounding problem in
the context of Visual Question Answering. The Vector Semiotic Model combines the advantages of a Semiotic
Approach implemented in the Sign-Based World Model and Vector Symbolic Architectures. The Sign-Based
World Model represents information about a scene depicted on an input image in a structured way and
grounds abstract objects in an agent’s sensory input. We use the Vector Symbolic Architecture to represent
the elements of the Sign-Based World Model on a computational level. Properties of a high-dimensional space
and operations defined for high-dimensional vectors allow encoding the whole scene into a high-dimensional
vector with the preservation of the structure. That leads to the ability to apply explainable reasoning to answer
an input question. We conducted experiments are on a CLEVR dataset and show results comparable to the
state of the art. The proposed combination of approaches, first, leads to the possible solution of the symbol-
grounding problem and, second, allows expanding current results to other intelligent tasks (collaborative
robotics, embodied intellectual assistance, etc.).
1. Introduction

Visual question answering (VQA) is one of the most challenging
Artificial Intelligence (AI) tasks that attracts many researchers (Man-
madhan & Kovoor, 2020; Wu, et al., 2017). The task is to predict an
answer given an input image and a question about this image. VQA
is the basis for several complex AI applications relying on automatic
understanding of both off-line and real-time video streams, including
an assistant for visually impaired people (Gurari, et al., 2019), col-
laborative robotics, and embodied intellectual assistants (robots). VQA
is a multi-modal task requiring the interplay of fine-grained image
analysis techniques and advanced natural language models. The major
challenge to solve in VQA is the symbol grounding problem (Besold &
Kühnberger, 2015; Harnad, 1990; Osipov, 2015; Steels, 2008), which
is a fundamental but not yet fully resolved AI problem. In short,
the problem is how to relate symbols in an AI model to objects and
situations in real life. In the case of VQA, the problem is translated
into finding the mapping between the symbols of a natural language
processing (NLP) model for interpreting questions to the objects and
situations in a visual scene processed with a given computer vision
model. Apart from the fact that VQA and QA systems attract the atten-
tion of researchers, their practical, highly specialized application is also
of interest (Bongini, Becattini, Bagdanov, & Bimbo, 2020; Butt, Ashraf,
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Siddiqui, Sidorov, & Gelbukh, 2021; Gupta, Suman, & Ekbal, 2021; He,
Zhu, Zhang, Chen, & Caverlee, 2020; Lobry, Marcos, Murray, & Tuia,
2020; Manna, Das, & Gelbukh, 2021; Pathak, Manna, Partha Pakray,
Gelbukh, & Bandyopadhyay, 2021; Singh & Shekhar, 2020; Su, et al.,
2020; Vo, Phung, & Ly, 2020; Yu, Wu, et al., 2020; Zhang, Deng, Ma,
& Lam, 2020).

This paper contributes by proposing a possible solution to the
symbol grounding problem by co-modeling the natural language and
visual input using Vector Symbolic Architectures (VSA) as a common
information representation technique along the entire VQA pipeline.
This paper contributes by proposing a possible solution to the symbol
grounding problem by co-modeling the natural language and visual
input using Vector Symbolic Architectures (VSA) as a common infor-
mation representation technique along the entire VQA pipeline. To
the best of our knowledge, the proposed model is the first attempt
to solve the VQA benchmark dataset as CLEVR with Vector Symbolic
Architectures. VSA (Gayler, 1998b), also known as Hyperdimensional
computing (Kanerva, 2009), is a family of models for representing and
manipulating data in a high-dimensional space, originally proposed
in Cognitive Psychology and Cognitive Neuroscience as connectionist
models for symbolic reasoning. The proposed solution implements the
Semiotic Approach (Roy, 2005; Trifonas, 2015) that allows tracing
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the question answering process, which is infeasible in purely neural
network models. The model is specifically tailored for implementa-
tion on resource-constrained devices since the inference path of the
pipeline is implemented using integer vector operations only. The
trade-off between the model accuracy and implementation complexity
is controlled by appropriately tuning the dimensionality of the vector
representation. We support our findings by demonstrating that our
model performance matches the state of the art on the standard VQA
dataset — CLEVR (Johnson, et al., 2017).

The paper is organized as follows. Section 2 discusses VQA and
outlines the related solutions. The theories behind the proposed so-
lution are outlined in Section 3. We describe the main contribution,
i.e., the usage of VSA and the semiotic approach in the VQA pipeline,
in Section 4. Section 5 presents the evaluation results of the proposed
solution on the CLEVR dataset. We discuss our findings in Section 6.
The final conclusion appears in Section 7.

2. Visual question answering in the scope of related works

In VQA, the goal is to answer questions in natural language given
an image of interest. A typical VQA scenario in the area of robotics
could be ordering a robot to “bring the red box” and further specify the
location of the box as “the box to the left of the sofa”. The approaches
for solving VQA tasks fall into three main categories: (1) purely neural
network approaches (Anderson, et al., 2017; Chang, Yang, Park, &
Kwak, 2018; Kim, Jun, & Zhang, 2018; Li, Yatskar, Yin, Hsieh, &
Chang, 2019; Lu, Batra, Parikh, & Lee, 2019; Ma, Lu, & Li, 2015;
Malinowski, Rohrbach, & Fritz, 2015; Santoro, et al., 2017; Su, Zhu,
et al., 2020; Tan & Bansal, 2019; Yu, Yu, Cui, Tao, & Tian, 2019;
Zhou, Tian, Sukhbaatar, Szlam, & Fergus, 2015), including those that
use attention mechanisms of different kinds (Anderson, et al., 2017;
Kim et al., 2018; Yu et al., 2019) or a transformer architecture (Li
et al., 2019; Lu et al., 2019; Su, Zhu, et al., 2020; Tan & Bansal,
2019); (2) approaches using different additional external sources such
as knowledge bases, databases, or ontology for reasoning (Vo et al.,
2020; Wu, Shen, Wang, Dick, & v. d. Hengel, 2018; Wu, Wang, Shen,
Dick, & Van Den Hengel, 2016; Yu, et al., 2020); (3) solutions based on
a neural-symbolic approach that combines neural network models with
models that perform interpretable computations (Andreas, Rohrbach,
Darrell, & Klein, 2016; Mao, Gan, Kohli, Tenenbaum, & Wu, 2019; Yi,
et al., 2018).

The neural-symbolic approach is of particular interest. It uses con-
nectionist models to work with raw data and symbolic computation
for interpretable reasoning. VSA is a suitable tool to bridge the gap
between connectionist and symbolic approaches as it treats numeric
vectors as symbols. There are works that apply VSA to the simplified
VQA task (Montone, O’Regan, & Terekhov, 2017)or tasks closely re-
lated to VQA (Kleyko, Osipov, Gayler, Khan, & Dyer, 2015; Yilmaz,
2015). In Montone et al. (2017), the authors used a simple synthesized
dataset with 2D scenes. Each scene contains two geometric figures
of four different shapes and colors. Figures can be in four different
positions in the image. The dataset contains all possible combinations of
those features (3072 images in total). A feedforward network with two
layers is used to predict the VSA description of the given image. The
authors used five question templates to query the system. The model
showed satisfactory results, but the simplicity of the test environment
makes it difficult to generalize these results to more complex tasks.
In Kleyko et al. (2015), VSA is used to represent stimuli, i.e., pattern
and color groups, in a maze in which honey bees are trained. The
proposed episode encoding is suitable for VQA as it takes into account
objects and their relationships. In Yilmaz (2015), the authors use VSA
operations for logical inference on HD representations of images from
the CIFAR-10 (Krizhevsky, 2009) dataset. The HD representations are
obtained from an autoencoder hidden layer by binarizing and feeding
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them to a cellular automaton. The cellular automaton evolution is
computed following the chosen rule. Concatenation of several automa-
ton states serves as a high-dimensional vector. The logical reasoning
performs by a series of VSA operations.

The symbol grounding problem (Harnad, 1990) is addressed in
Chen, Vondrick, and Lipson (2021), Schmidtke (2021a, 2021b), Shep-
pard and Lohan (2020) and Talbot, Dayoub, Corke, and Wyeth (2020).
In Chen et al. (2021), an observer (one agent) attempts to model the
behavior of an actor (another agent) only through visual data without
any prior symbolic information, by which the authors try to avoid the
symbol grounding problem. In Schmidtke (2018, 2021a, 2021b) the ab-
stract symbol grounding problem is discussed (how symbols that arise
as a result of reasoning or received from other agents can be grounded
in the environment of different nature) and proposed a solution based
on the atomic Context Logic and the Activation Bit Vector Machine (a
variation of VSA). In Talbot et al. (2020) a navigation system proposed
that uses a special data structure called abstract map that allows the
system to utilize the symbolic spatial information and raw, low-level
sensorimotor measurements.

The state-of-the-art solution we chose as a baseline is the NS-
VQA (Yi, et al., 2018) model. This model falls into the neural-symbolic
paradigm. NS-VQA processes visual and textual information separately.
The model uses neural networks to detect objects on a scene and extract
their attributes and coordinates. Then this is used to construct a tabular
(symbolic) representation of the scene. An encoder–decoder model
translates an input question to a sequence (a program) of elementary
functions. Each function either performs simple filtering, comparison,
logical, set, or other auxiliary operations. The program executor per-
forms deterministic symbolic reasoning by applying the program to the
tabular scene representation to obtain an answer.

Our solution relies upon the preliminary result from Kovalev, Panov,
and Osipov (2020). In Kovalev et al. (2020), the authors propose a
model that combines VSA and a semiotic approach. They demonstrate
the ability of such a combination to solve a simple VQA task. The
semiotic approach rests on the Sign-Based World Model (SBWM) pro-
posed in Osipov, Panov, and Chudova (2014), Panov (2017). SBWM is
a cognitive architecture that allows modeling cognitive tasks, i.e., hi-
erarchical planning for one agent (Aitygulov, Kiselev, & Panov, 2018;
Kiselev, Kovalev, & Panov, 2018; Kiselev & Panov, 2019), a group
of agents (Kiselev & Panov, 2017), goal setting (Panov, 2019), and
reasoning (Kiselev et al., 2018; Kovalev & Panov, 2019). The approach
founds on a uniform representation of objects, actions, and situations
as a sign.

3. Outline of the core theories: Vector Symbolic Architectures and
the semiotic approach

3.1. Vector symbolic architectures

Vector Symbolic Architectures, also known as hyperdimensional
computing (Kanerva, 2009), is a family of bio-inspired methods of
representing and manipulating concepts and their meanings in a high-
dimensional space. Vectors of high (but fixed) dimensionality (denoted
as 𝑑) are the basis for representing information in hyperdimensional
computing. These vectors are often referred to as high-dimensional
vectors or HD vectors. The information is distributed across HD vec-
tor positions, therefore, HD vectors use distributed representations.
Distributed representations are contrary to the localist representations
(which are conventionally used for computations) since any subset of
the positions can be interpreted. In other words, a particular position of
an HD vector does not have any interpretable meaning. Only the whole
HD vector can be interpreted as a holistic representation of some entity,
which, in turn, bears some information load. In this paper, the object’s
attributes in a scene are the atomic symbols of a system, and their HD
vectors are generated randomly. Atomic HD vectors are stored in the so-
called item memory (IM), which in its simplest form is a matrix. Denote

the item memory as 𝐇, where 𝐇 ∈ [𝑑 × 𝑎], and 𝑎 is a number of stored
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vectors. For a given symbol  its corresponding HD vector from 𝐇 is
denoted as 𝐇 . For the simplicity of the presentation, we describe the
functionality of VSA for the case of bipolar vectors (𝐇 ∈ {−1,+1}[𝑑×1])
randomly with equal probabilities for +1 and −1. To encode the symbol
 as the vector 𝐇 , we generate a random HD vector (draw a sample
from a vector space {−1,+1}[𝑑×1]) and store it in the item memory
𝐇. An important property of high-dimensional spaces is that with an
extremely high probability all random HD vectors are dissimilar to each
other (quasi orthogonal) (Kleyko, et al., 2021).

In order to manipulate atomic HD vectors, hyperdimensional com-
puting defines operations and a similarity measure on HD vectors. In
this paper, we use the cosine similarity for characterizing the similarity.
Three key operations for computing with HD vectors are bundling,
binding, and permutation.

The binding operation is used to bind two HD vectors together. The
result of binding is another HD vector. For example, for two symbols
1 and 2 the result of the binding of their HD vectors (denotes as 𝐛) is
calculated as: 𝐛 = 𝐇1 ⊙ 𝐇2 , where the notation ⊙ for the Hadamard
product is used to denote the binding operation since this paper uses
positionwise multiplication for binding. An important property of the
binding operation is that the resultant HD vector 𝐛 is dissimilar to the
HD vectors being bound, i.e., the cosine similarity between 𝐛 and 𝐇1
or 𝐇2 is approximately 0.

An alternative approach to binding, when there is only one HD
vector, is to permute (rotate) the HD vector positions. It is convenient
to use a fixed permutation (denoted as 𝜌) to bind the position of a
symbol in a sequence to an HD vector representing the symbol in that
position. Thus, for a symbol 1 the result of permutation of its HD
vector (denoted as 𝐫) is calculated as: 𝐫 = 𝜌(𝐇1 ). Similar to the binding
operation, the resultant HD vector 𝐫 is dissimilar to 𝐇1 .

The last operation is bundling. It is denoted by + and implemented
via a positionwise addition with a threshold. If the summation result
exceeds the threshold, then it is replaced by the threshold value. The
bundling operation combines several HD vectors into a single HD
vector. For example, for 1 and 2 the result of the bundling of their HD
vectors (denoted as 𝐚) is simply: 𝐚 = 𝐇1 +𝐇2 . In contrast to binding
and permutation operations, the resultant HD vector 𝐚 is similar to all
bundled HD vectors, i.e., the cosine similarity between 𝐛 and 𝐇1 or
𝐇2 is more than 0.

An important application of a combination of bundling and binding
is when we represent an object as a collection of attribute-value pairs.
Consider an example where the object has two attributes 𝐴1, 𝐴2 hat
may take the values 𝑉𝐴1

and 𝑉𝐴2
correspondingly. We can represent

the object as a vector 𝐨 = 𝐇𝐴1
⊙𝐇𝑉𝐴1

+𝐇𝐴2
⊙𝐇𝑉𝐴2

. When we want to
get the value of a particular attribute, we apply unbinding operation
(binding with desirable attribute HD vector) 𝐨 ⊙ 𝐇𝐴1

= 𝐇𝐴1
⊙ 𝐇𝑉𝐴1

⊙
𝐇𝐴1

+𝐇𝐴2
⊙𝐇𝑉𝐴2

⊙𝐇𝐴1
= 𝐇𝑉𝐴1

+ 𝑛𝑜𝑖𝑠𝑒 = 𝐇̃𝑉𝐴1
and get a noisy version

𝐇̃𝑉𝐴1
of an HD vector 𝐇𝑉𝐴1

. Then we can find a clean version of a vector
𝐇𝑉𝐴1

by searching an item memory 𝐇 for a vector closest to the noisy
vector 𝐇̃𝑉𝐴1

.
While basic VSA operations were presented above for bipolar ran-

dom vectors, other numerical systems are also used for construct-
ing VSA. HD vectors can be with real, complex, or binary compo-
nents. These flavors of VSA come under many different names: Holo-
graphic Reduced Representation (HRR) (Plate, 2003), Multiply-Add-
Permute (MAP) (Gayler, 1998a; Gayler & Wales, 1998), Binary Spat-
ter Codes (Kanerva, 1997), Sparse Binary Distributed Representations
(SBDR) (Rachkovskij, 2001), Sparse Block-Codes (Laiho, Poikonen,
Kanerva, & Lehtonen, 2015). All these different models target specific
computing hardware but have similar computational properties. In
what follows we use MAP (Gayler, 1998a; Gayler & Wales, 1998) VSA
on dense bipolar vectors. In Schlegel, Neubert, and Protzel (2020), cho-
sen VSA is denoted as MAP-B. It provides commutative and associative
binding and unbinding compare to such variants as HRR. It is also more
computationally efficient than HRR as it uses only integer numbers but
provides more capacity than BSC that uses binary vectors.
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Fig. 1. Sign is the main component of the Sign-Based World Model cognitive architec-
ture. This four-component structure is used to represent the agent’s knowledge about
the environment, other agents, and itself.

3.2. Sign-based world model

The Sign-Based World Model (SBWM) (Osipov et al., 2014; Panov,
2019) is a framework for modeling cognitive tasks. It relies on the
concept of a sign representing the agent’s knowledge about the en-
vironment it operates in, other agents it interacts with, and itself.
The signs are organized in a hierarchical semantic network, which is
called a semiotic network. Conceptually, the sign is a four-component
structure illustrated in Fig. 1. The four components are image, meaning,
significance, and name. They represent different aspects of the agent’s
knowledge; the meaning component implies the agent’s experience;
the significance component stands for commonsense knowledge; the
image component is used to distinguish signs; the name possesses
a nominative function. The sign components by themselves compose
semantic networks on meanings, significances, images, and names.

Depending on the task solving one component of the sign may play
a more or less important role than the others. For example, in solving
planning tasks (Aitygulov et al., 2018; Kiselev et al., 2018; Kiselev
& Panov, 2019), role distribution tasks (Kiselev & Panov, 2017) in a
group of agents, or goal setting (Panov, 2019) significance and meaning
components come to the fore since it is necessary to take into account
the agents’ experience and the rules of the environment. In a reasoning
task (Kiselev et al., 2018; Kovalev & Panov, 2019), the significance and
image components play the main role. In this paper, we use only the
name and image components of the sign to demonstrate the ability of
SBWM with VSA to solve the VQA task. The name component links
symbols to corresponding words in the question. In the context of the
symbol grounding problem and VQA, the image component, which
implements the recognition function and allows an association of the
signs with the agent sensor outputs, plays a crucial role. The questions
in the dataset ask about external features, the number of objects, or
their relationships. The network of images encodes that information,
so it is necessary and sufficient to answer such questions. To answer
other types of questions, for example, “What is this object used for?”,
we have to use other causal networks, the network on significances in
this case.

Let us discuss a causal matrix — the structure representing the
significance, meaning, and image components of a sign on a low level
(the name component is represented as a finite string over a finite
alphabet).

A causal matrix 𝑧 is defined as a tuple of length 𝑡 of events 𝑒𝑖: 𝑧 =
⟨𝑒1, 𝑒2,… , 𝑒𝑡⟩. Each event 𝑒𝑖 represents the appearance of a particular
feature 𝑓𝑗 at time step 𝑖 and is a binary vector of length ℎ. The nature
of the feature 𝑓𝑗 may be different and depends on the type of the sign
component but in the general case, it is represented by a tuple of causal
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Fig. 2. Causal matrix is a binary matrix [ℎ × 𝑡]. The event 𝑒𝑖 corresponds to the 𝑖th
column of the matrix. The 1 in the position 𝑧𝑗𝑖 means that a feature 𝑓𝑗 appeared in the
event 𝑒𝑖. In the general case, a feature 𝑓𝑗 is a tuple of causal matrices 𝑧𝑓𝑗1 , 𝑧𝑓𝑗2 ,… , 𝑧𝑓𝑗𝑘 .

matrices that form a causal tensor. Thus a causal matrix is a binary ℎ
by 𝑡 matrix (Fig. 2).

The 1 in the position 𝑧𝑗𝑖 in a causal matrix serves as a link to other
matrices that correspond to the feature 𝑓𝑗 and means that the feature 𝑓𝑗
is included in the corresponding component of the sign. Thereby causal
matrices are organized into a hierarchical semantic network where the
tuples of causal matrices are the nodes and the links are the relations
between these tuples.

Several features may appear in the same event consequently, several
1 appear in the corresponding column that complicates the hierarchical
structure. But without loss of generality, we can bring matrices in a
form where each column contains only one filled position by adding
new levels of hierarchy.

The event index 𝑡 may serve as a discrete time whenever we
represent entities with a dynamic nature. In the scope of an image
component, it does not matter in what sequence the features appear. It
follows that causal matrices in the tuple differ only in the permutation
of the columns, which in the worst case will lead to the need to
store 𝑡! matrices for an image component. Further, we show how HD
representation helps eliminate this need and leaves with the only 𝑡 of
them.

In this paper, we use a causal network built on images (the simpli-
fied version is shown in Fig. 3) to represent the scenes in a structured
way.

3.3. Vector Semiotic Model: The realization of the Sign-Based World Model
using Vector Symbolic Architectures and an approach to symbol grounding

In this section, we propose the Vector Semiotic Model (VSM), in
which we use VSA operations to represent SBWM structures as HD vec-
tors. We also show how this representation relates to symbol grounding.
We use bold font to denote an HD vector of a corresponding SBWM
structure (typed in italics) and 𝐇 with a corresponding subscript to show
that this HD vector is stored in the item memory.

We can represent a causal matrix as a set of events and use bundling
to construct an HD representation from separate events (Fig. 4). First,
we have to map every event 𝑒𝑖 to a corresponding HD vector 𝐇𝑒𝑖 and
then apply bundling to the collection of vectors 𝐇𝑒1 ,𝐇𝑒2 ,… ,𝐇𝑒𝑡 :

𝐳 =
𝑡

∑

𝐇𝑒𝑖 (1)
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𝑖=1
In the case of the image component, the mapping to the HD vector
solves the problem of storing 𝑡! causal matrices for each sign as HD
representation does not consider the order of events.

To represent a link from a causal matrix 𝑧1 to a causal matrix 𝑧2
(Fig. 5) we, first, transform 𝑧2 to an HD vector 𝐳2, second, split 𝑧1 into
events 𝑒𝑧1𝑖 , and map them to HD vectors 𝐇𝑒𝑧1𝑖

, and then bind 𝐳2 with a
corresponding HD vector 𝐇𝑒𝑧1𝑖

:

𝐳1 =
𝑡

∑

𝑖=1
𝐇𝑒𝑧1𝑖

⊙ 𝐳𝑖 (2)

Thus, the scene description on a causal network of images (Fig. 3)
is represented as an HD vector preserving a hierarchical structure and
grounding each current level of a hierarchy in all the previous levels
up to a sensory input:

𝐳𝑠𝑐𝑒𝑛𝑒 =
ℎ
∑

𝑖=1
𝐇𝑧𝑜𝑏𝑗𝑒𝑐𝑡𝑖

⊙
𝑘
∑

𝑗=1
𝐇𝑧𝑎𝑡𝑡𝑟𝑗

⊙𝐇𝑧𝑣𝑎𝑙𝑗
(3)

where attr states for the attributes (Size, Shape, Color, Material, etc.) and
val states for the attribute values (Large, Cube, Red, Rubber, etc.).

3.4. Combination of the semiotic approach and Vector Symbolic Architec-
ture provides a possible solution to the symbol grounding problem

Recall that we use only the part of SBWM, i.e., a causal network
built on images, to represent the scene and answer questions. The
causal network allows representing scenes in a structured way. A scene
is viewed as a collection of objects and an object as a collection
of attribute-value pairs. The name component of the sign plays an
auxiliary role, linking the sign and the corresponding word from the
question. The symbol grounding in the vector semiotic model comes
due to the two properties, i.e., the hierarchical nature of the causal
network and the fact that the lowest level image component is mapped
to the raw input signal. Thus, the entire scene and every included causal
matrix are grounded in the sensory input stream.

From the perspective of VSA, each symbol – the word in the context
of VQA – is a high-dimensional vector. Therefore, we can operate
on these symbols using vector operations and easily switch between
representations using the item memory 𝐇. In SBWM, each sign has a
name and, in the context of VQA, the name of the sign corresponds
to the name of the sign image component. Thus we can connect
separate vectors from the item memory 𝐇 (which are stored in it in
an unstructured form) using a causal network on image components
into a structure defined by SBWM.

Thus, the joint use of approaches allows not only grounding symbols
in the agent’s sensory inputs. It also allows operating directly with
symbols in their vector representation, preserving connections to these
inputs.

4. Visual question answering with Vector Semiotic Model

In this section we present our main contribution — the solution to
the VQA task using the Vector Semiotic Model presented in the previous
section.

4.1. Encoding spatial relations via high-dimensional vectors

Assume the situation when the agent is asked a question like “What
is the object to the right of the red circle?”. To answer such kind of
questions the system have to have a notion of “to the right”. The simplest
way to obtain such a notion is to exploit the exact coordinates of objects
in terms of pixels extracted directly from the image. Then just by
comparing the coordinates of objects, integer numbers, the system can
answer questions of such types as “to the right/left”, “above/below” etc.
Thus, the next step is to generate an HD vector for the coordinates for
each object. Wherein the process of generation must preserve ordering
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Fig. 3. Simplified version of a scene representation on a causal network of images. The scene is viewed as a collection of objects, and an object is a collection of attribute-value
pairs. The lowest level of the hierarchy is mapped to the sensory input of an agent. 𝑧 denotes a causal matrix.
Fig. 4. Mapping from a causal matrix 𝑧 to an HD vector 𝐳. First, a matrix 𝑧 is split
into events 𝑒𝑖. Second, for each event 𝑒𝑖 a corresponding HD vector 𝐇𝑒𝑖 is sampled
from {−1,+1}[𝑑×1]. Third, vectors 𝐇𝑒𝑖 are bundled to form a resulting vector 𝐳.

corresponding to integer representation. Let us consider that an image
depicted in Fig. 6 is shown to the system and the question “What is the
object to the right of the red cylinder?’’” is asked and let our system scan
the picture from left to right and from the top to bottom.

The objects on the image are detected in the following order: a
yellow cylinder, a red cylinder, and a cube. The coordinates of the
objects are sorted in ascending order. The left-most 𝑥 coordinate viewed
𝑥0 and the top-most coordinate 𝑦 as 𝑦0. We are not interested in the
exact values of 𝑥0 and 𝑦0 but we associate them with random HD
vectors 𝐇𝑥0 and 𝐇𝑦0 respectively. Then the coordinates of the yellow
cylinder are (𝑥0, 𝑦2) and for the red cylinder they are (𝑥1, 𝑦0). We want
to map every coordinate to an HD vector, and this mapping must
56
preserve ordering. It can be obtained by using a special case of the
permutation operation – a circular shift. Let 𝜌𝑛(𝐇) be a vector obtained
from vector 𝐇 by circular shifting its components to the right by 𝑛
positions. Then we can encode 𝑦1 as 𝐲1 = 𝜌1(𝐇𝑦0 ). Following this
procedure, we obtain HD vectors for all the object coordinates in the
image:

1. Yellow Cylinder (YC): 𝑥0 ∶= 𝐇𝑥0 , 𝑦2 ∶= 𝜌2(𝐇𝑦0 )
2. Red Cylinder (RC): 𝑥1 ∶= 𝐱1 = 𝜌1(𝐇𝑥0 ), 𝑦0 ∶= 𝐇𝑦0
3. Cube (C): 𝑥2 ∶= 𝐱2 = 𝜌2(𝐇𝑥0 ), 𝑦1 ∶= 𝜌1(𝐇𝑦0 )

For each object in an image, an HD vector is sampled and stored in
the item memory, these vectors are used as identifiers and denoted as
𝐇𝑌 𝐶 , 𝐇𝑅𝐶 , 𝐇𝐶 . The item memory, a vector corresponding to the color
attribute 𝐇𝑐𝑜𝑙𝑜𝑟 (we assume that thr objects have only one attribute for
simplicity), vectors corresponding to its values 𝐇𝑦𝑒𝑙𝑙𝑜𝑤, 𝐇𝑟𝑒𝑑 , 𝐇𝑏𝑙𝑢𝑒, and
vectors 𝐇𝑥, 𝐇𝑦 that are identifiers for the coordinates are also stored.

The full description of the scene depicted in Fig. 6 will be:

𝐳𝑠𝑐𝑒𝑛𝑒 = 𝐇𝑌 𝐶 ⊙ [𝐇𝑐𝑜𝑙𝑜𝑟 ⊙𝐇𝑦𝑒𝑙𝑙𝑜𝑤] +𝐇𝑅𝐶 ⊙ [𝐇𝑐𝑜𝑙𝑜𝑟 ⊙𝐇𝑟𝑒𝑑 ]

+𝐇𝐶 ⊙ [𝐇𝑐𝑜𝑙𝑜𝑟 ⊙𝐇𝑏𝑙𝑢𝑒] +

𝐇𝑥 ⊙ [𝐇𝑌 𝐶 ⊙𝐇𝑥0 +𝐇𝑅𝐶 ⊙ 𝐱1 +𝐇𝐶 ⊙ 𝐱2] +

𝐇𝑦 ⊙ [𝐇𝑌 𝐶 ⊙ 𝐲2 +𝐇𝑅𝐶 ⊙𝐇𝑦0 +𝐇𝐶 ⊙ 𝐲1] (4)

4.2. Complex operations on a vector scene representation

In this section, we explore complex operations on a vector represen-
tation of a scene that we will use to answer questions. There are three
main types of complex operations on HD representation, first, how to
obtain an arbitrary attribute value of a given object, second, how to
obtain an object with an exact attribute value, and third, how to find
objects that are left to, right to, behind, or in front of a given object.
For simplicity, we assume that exactly one object in the scene has a
queried attribute value.

When we ask to obtain an object with value 𝐇𝑣𝑎𝑙 of the attribute
𝐇 on the scene 𝐳 we have to perform three operations:
𝑎𝑡𝑡𝑟 𝑠𝑐𝑒𝑛𝑒
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Fig. 5. Representation of a link from a causal matrix 𝑧1 to a causal matrix 𝑧2. First, a matrix 𝑧2 is represented as an HD vector 𝐳2. Second, a matrix 𝑧1 is split into events 𝑒𝑖 and
HD vectors 𝐇𝑧1

𝑒𝑖 are sampled for each event. Then, a vector 𝐳2 is bound with a corresponding 𝐇𝑧1
𝑒𝑖 vector and added to the bundle to form an HD vector 𝐳1.
Fig. 6. Example image from the CLEVR training split. To illustrate the spatial relation
encoding we consider only the 𝑥 and 𝑦 axes, and assume that the objects have only a
color attribute. An agent perceives the image left to right and from top to bottom. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

1. Construct a temporary vector of an attribute-value pair:

𝐭 = 𝐇𝑎𝑡𝑡𝑟 ⊙𝐇𝑣𝑎𝑙;

2. Obtain a noisy version of the object vector: 𝐇̃𝑜𝑏𝑗𝑒𝑐𝑡 = 𝐳𝑠𝑐𝑒𝑛𝑒 ⊙ 𝐭;
3. Pass 𝐇̃𝑜𝑏𝑗𝑒𝑐𝑡 vector through the item memory, find the closest

vector and return it as a clean vector 𝐇𝑜𝑏𝑗𝑒𝑐𝑡 for the object.

If there are objects with the same attribute values, instead of search-
ing for the closest vector in step 3, we could return a list of object vec-
tors with distance to the query vector less than the specified threshold
𝑡ℎ𝑟.

The detailed version of this algorithm that works for several objects
with the same attribute value is represented in Algorithm 1.

The procedure 𝑔𝑒𝑡_𝑣𝑎𝑙𝑢𝑒(𝐳𝑠𝑐𝑒𝑛𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡) that returns a value
of a given object attribute is:

1. Construct a temporary vector of an object-attribute pair:

𝑡 = 𝐇𝑜𝑏𝑗𝑒𝑐𝑡 ⊙𝐇𝑎𝑡𝑡𝑟;

2. Obtain a noisy version of the value vector: 𝐇̃𝑣𝑎𝑙 = 𝐳𝑠𝑐𝑒𝑛𝑒 ⊙ 𝐭;
3. Pass 𝐇̃𝑣𝑎𝑙 vector through the item memory, find the closest

vector and return it as a clean vector 𝐇 for the value.
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𝑣𝑎𝑙
Algorithm 1: Get objects with a specific attribute value.
1: procedure get_objects(z𝑠𝑐𝑒𝑛𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒, 𝑡ℎ𝑟)
2: Get HD vector H𝑎𝑡𝑡𝑟 for an attribute from H
3: Get HD vector H𝑣𝑎𝑙 for a value from H
4: Assign a value to an attribute: t = H𝑎𝑡𝑡𝑟 ⊙H𝑣𝑎𝑙
5: Get a noisy bundle with objects: H̃𝑜𝑏𝑗𝑒𝑐𝑡𝑠 = z𝑠𝑐𝑒𝑛𝑒 ⊙ t
6: Query H with a vector H̃𝑜𝑏𝑗𝑒𝑐𝑡𝑠
7: if 𝑠𝑖𝑚(H̃𝑜𝑏𝑗𝑒𝑐𝑡𝑠,H𝑜𝑏𝑗𝑒𝑐𝑡𝑖 ) > 𝑡ℎ𝑟 then ⊳ 𝑠𝑖𝑚() - a similarity metric
8: Add H𝑜𝑏𝑗𝑒𝑐𝑡𝑖 to a list of objects 𝑟𝑒𝑠𝑢𝑙𝑡

9: Return 𝑟𝑒𝑠𝑢𝑙𝑡

With these procedures, we can answer such simple questions as “Is
there an object with a given attribute value?” or “What is the attribute value
of a given object?”. The detailed version of this algorithm is represented
in Algorithm 2.
Algorithm 2: Get the value of a specific attribute of a given object.
1: procedure get_value(z𝑠𝑐𝑒𝑛𝑒, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡)
2: Get HD vector H𝑎𝑡𝑡𝑟 for an attribute from H
3: Get HD vector H𝑜𝑏𝑗𝑒𝑐𝑡 for an object from H
4: Assign attribute to an object : 𝑡 = H𝑜𝑏𝑗𝑒𝑐𝑡 ⊙H𝑎𝑡𝑡𝑟
5: Get a noisy vector with a value: H̃𝑣𝑎𝑙 = z𝑠𝑐𝑒𝑛𝑒 ⊙ t
6: In H find a closest vector to a H̃𝑣𝑎𝑙
7: Return it as 𝑟𝑒𝑠𝑢𝑙𝑡

To answer positional questions (‘‘What objects are to the left of a
given object?’’) we have to:

1. Query position of a given object 𝐱;
2. Construct bundle 𝐳𝑟𝑒𝑙𝑎𝑡𝑒 of the shifted versions of vector 𝐱;
3. Find the object in the item memory with similarity to 𝐳𝑟𝑒𝑙𝑎𝑡𝑒

greater than a threshold 𝑡ℎ𝑟.

A detailed version of this algorithm is represented in Algorithm 3.
The difference between 𝑟𝑒𝑙𝑎𝑡𝑒𝑙𝑒𝑓 𝑡(𝐳𝑠𝑐𝑒𝑛𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑟) and
𝑟𝑒𝑙𝑎𝑡𝑒𝑟𝑖𝑔ℎ𝑡(𝐳𝑠𝑐𝑒𝑛𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑟) is in line 9 where 𝐱𝑡𝑒𝑚𝑝 is constructed as
𝐱𝑡𝑒𝑚𝑝 = 𝜌𝑖(𝐇𝑥𝑜𝑏𝑗𝑒𝑐𝑡 ).

4.3. CLEVR example

Consider a scene depicted in Fig. 7 and the question ‘‘There is a small
gray block; are there any spheres to the left of it?’’.

As CLEVR question annotations contains programs from which they
are generated the following steps are applied:
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Algorithm 3: Get objects to the left of a given object.
1: procedure relate_left(z𝑠𝑐𝑒𝑛𝑒, 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑡ℎ𝑟)
2: Get HD vector H𝑥 for an attribute x_coordinate from H
3: Get HD vector H𝑜𝑏𝑗𝑒𝑐𝑡 for an object from H
4: Assign x_coordinate to an object : t = H𝑜𝑏𝑗𝑒𝑐𝑡 ⊙H𝑥
5: Get a noisy vector of an 𝑥 of an object: H̃𝑥𝑜𝑏𝑗𝑒𝑐𝑡 = z𝑠𝑐𝑒𝑛𝑒 ⊙ t
6: In H find the closest vector to a H̃𝑥𝑜𝑏𝑗𝑒𝑐𝑡 . It is an 𝑥 of an object –
H𝑥𝑜𝑏𝑗𝑒𝑐𝑡

7: Create a list for shifted vectors 𝑡𝑒𝑚𝑝_𝑐𝑜𝑜𝑟𝑑
8: while 𝑖 ≤ 𝑛 do ⊳ 𝑛 - number of objects in the scene
9: Shift H𝑥𝑜𝑏𝑗𝑒𝑐𝑡 on 𝑖 to the left: x𝑡𝑒𝑚𝑝 = 𝜌−𝑖(H𝑥𝑜𝑏𝑗𝑒𝑐𝑡 )

10: Append x𝑡𝑒𝑚𝑝 to 𝑡𝑒𝑚𝑝_𝑐𝑜𝑜𝑟𝑑
11: 𝑖+ = 1
12: Bundle all vectors in 𝑡𝑒𝑚𝑝_𝑐𝑜𝑜𝑟𝑑 and get z𝑟𝑒𝑙𝑎𝑡𝑒
13: H̃𝑜𝑏𝑗𝑒𝑐𝑡 = z𝑠𝑐𝑒𝑛𝑒 ⊙ z𝑟𝑒𝑙𝑎𝑡𝑒
14: Query H with H̃𝑜𝑏𝑗𝑒𝑐𝑡
15: if 𝑠𝑖𝑚(H̃𝑜𝑏𝑗𝑒𝑐𝑡,H𝑜𝑏𝑗𝑒𝑐𝑡𝑖 ) > 𝑡ℎ𝑟 then
16: Add H𝑜𝑏𝑗𝑒𝑐𝑡𝑖 to the list of objects 𝑟𝑒𝑠𝑢𝑙𝑡

17: Return 𝑟𝑒𝑠𝑢𝑙𝑡

Fig. 7. Example image from the CLEVR validation split. The question is ‘‘There is a
small gray block; are there any spheres to the left of it?’’. The answer is ‘‘Yes’’.

out = reas . f i l t e r _ s m a l l ( scene )
out = reas . f i l t e r _ g r a y ( scene , prev=out )
out = reas . f i l t e r _ c u b e ( scene , prev=out )
out = reas . unique ( out )
out = reas . r e l a t e _ l e f t ( out , scene )
out = reas . f i l t e r _ s p h e r e ( scene , prev=out )
out = reas . e x i s t ( out )

Where reas is an instance of a VSM Reasoner Class, filter_smth
methods that use get_objects(SCENE, attribute, value, thr) as a subroutine,
and unique, exist are auxiliary methods.

4.4. Architecture

The overall model structure of the Vector Semiotic Model for VQA is
represented in Fig. 8. The model consists of three parts: a scene parser,
a question parser, and a VSM reasoner.

The scene parser uses Mask R-CNN (He, Gkioxari, Dollár, & Girshick,
2017) to extract object proposals for scene objects, then the proposals
feed into a ResNet-34 attribute network that outputs the attributes of
the detected objects and their 3D coordinates. The main assumption of
the model is that there is a known number of object attributes 𝑛 (Color,
Shape, etc.) and the values of each attribute are from a discrete range
𝑚𝑎𝑡𝑡𝑟𝑖 , 𝑖 = 1...𝑛 (Red, Blue, Square, etc.), not necessarily the same for
each attribute. Before processing any image–question pair, HD vectors
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for each attribute and its value are generated and stored in the item
memory 𝐇. Every HD vector in the item memory is stored with a
corresponding label — name, which allows easy transferring from the
symbolic to the vector representation and vice versa. The position
vectors for each detected object 𝐇𝑥, 𝐇𝑦, 𝐇𝑧 are also stored in the
item memory. At the next stage, the results of the object proposal
attribute classifications are fed into the SBWM module. This module
stores a hierarchical representation of an abstract scene and considers
every classified attribute-value pair as an event 𝑒𝑗 in a causal matrix
𝑧𝑜𝑏𝑗𝑒𝑐𝑡𝑖 of a corresponding object 𝑖. Then using the resultant semiotic
representation of the objects and scenes, and extracting appropriate
high-dimensional vectors from the item memory, the SBWM module
constructs a vector representation 𝐳𝑠𝑐𝑒𝑛𝑒 of a scene causal matrix 𝑧𝑠𝑐𝑒𝑛𝑒.

The question parser uses an attention-based seq2seq model (Bah-
danau, Cho, & Bengio, 2015; Luong, Pham, & Manning, 2015) with
LSTM (Hochreiter & Schmidhuber, 1997) cells. It translates an input
question in the natural language into a sequence of procedures. Each
procedure serves to answer a simple question like “What is a color of a
given object?”, “What objects are to the left of a given object?”, etc., and
perform HD operations on an input HD vector guided by a semiotic
representation of a question. The sequence of procedures constitutes a
program  that the question parser outputs.

The question parser consists of an encoder (which in turn consists of
an embedding layer that converts the question to a sequence of vectors,
and an LSTM module), a decoder (which consists of an embedding layer
that converts the procedure tokens to vectors, an attention layer on
encoder outputs (without learnable attention weight matrix), and also
an LSTM module initialized by the hidden vectors of an encoder with
concatenated respective vectors for different directions), and a classifier
layer (which takes an output vector from a decoder and outputs the
probabilities for each procedure token on a current step).

To reduce the number of the tokens required for program encoding,
we decided to separate the prediction of the function and the argument
by making a separate classification head for each of these. This helps to
reduce the size of a dictionary of programs without a negative impact
on the performance.

The parser’s learning scheme is as follows: firstly, we pretrain the
seq2seq part on a small set of question–program pairs in a super-
vised manner without using a reasoner; after that, we use the REIN-
FORCE (Williams, 1992) algorithm to finetune the parser on question–
answer pairs.

The VSM Reasoner receives a vector scene representation 𝐳𝑠𝑐𝑒𝑛𝑒 and
a program  . It sequentially executes procedures from  on 𝐳𝑠𝑐𝑒𝑛𝑒 in
the manner that the output of a current procedure is fed together with
𝐳𝑠𝑐𝑒𝑛𝑒 into the next procedure. The output of the last procedure serves
as the answer to the input question.

The REINFORCE part was done as follows: the output program is
executed by NS-VQA or VSA executor, and the reward for the episode is
binary – whether or not the answer generated by the program matches
the ground truth answer; the reward is then averaged between all the
episodes in a batch, and the baseline – a weighted mean of all previous
rewards – is subtracted before calculating the loss function for variance
reduction. The baseline is calculated as:

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ⋅ 𝑟𝑒𝑤𝑎𝑟𝑑_𝑑𝑒𝑐𝑎𝑦 + 𝑟𝑒𝑤𝑎𝑟𝑑 ⋅ (1 − 𝑟𝑒𝑤𝑎𝑟𝑑_𝑑𝑒𝑐𝑎𝑦), (5)

where the reward is calculated as a mean of binary rewards across the
batch, and the reward decay is chosen as a means of stabilizing the
baseline. The loss on each step is calculated as:

𝐿𝑜𝑠𝑠𝑡 = − log𝜋𝜃(𝑠𝑡, 𝑎𝑡) ⋅ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, (6)

where 𝜋𝜃 is our current policy network (a question parser), 𝑠𝑡 is the
state – a decoder hidden state at the time step t, and 𝑎𝑡 is the action –
procedure sampled from the predicted distribution at the time step t.
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Fig. 8. Vector Semiotic Model for VQA. Before processing any image–question pair, high-dimensional vectors for each attribute and its value are generated and stored in the item
memory 𝐇. The objects’ regions detected in the input image are sent to classifiers to extract the attribute-value pairs. Based on the scene representation on the causal network
the HD vector 𝐳𝑠𝑐𝑒𝑛𝑒 is built. At the same time, the input question is translated into a sequence of atomic VSA procedures (a program ). Then program  is executed with an
input vector 𝐳𝑠𝑐𝑒𝑛𝑒 and the result is sent to the output as an answer.
Fig. 9. Pipeline for the question parser training with REINFORCE. The embedded question is passed through an encoder, then the encoder outputs are sent to an attention module,
and the decoder outputs are sent to a classifier (single or multi-head) that outputs the vectors of the probabilities for the procedure tokens. During the training, we sample the token
from the categorical distribution based on these probabilities, and greedily choose the token with the highest probability during inference. These tokens are sent to a reasoner, the
generated answer is compared to the ground truth answer, and the result is considered the reward for the episode — program. The reward is then used to compute the gradients
for our policy, which consists of an entire question parser.
5. Experiments

5.1. Dataset

We demonstrate the performance of the proposed model on a di-
agnostic dataset CLEVR (Johnson, et al., 2017). CLEVR is a synthetic
dataset that was proposed as a test-bed for VQA systems. Its main
advantages are the simple visual scenes and complex long questions.
The dataset is balanced that reduces any bias towards one or another
possible answer. In the context of VQA, the bias means that the model
can answer “White” to the question “What color is the plate?” even
without looking at the image as there are mostly white plates in the
dataset. An example of an image and the corresponding questions are
shown in Fig. 10. It consists of 100,000 images and about a billion ques-
tions. The dataset is split into training (70,000 images, about 700,000
questions), validation (15,000 images, about 150,000 questions), and
test (15,000 images, about 150,000 questions) parts. The answers are
provided for all training and validation questions, thus performance is
measured on a validation split. The questions in the natural language
are generated from a functional program for each image and for each
question a corresponding program is provided. Depending on the last
functional block of a program, all questions are divided into five types:
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exist, count, compare integer, query attribute, and compare attribute.
The examples for all types of questions are shown in Fig. 10.

5.2. Training details

We inherit the learning scheme from the NS-VQA paper: first, we
pretrain the question parser in a supervised manner using 270 question-
program pairs (these were parsed from the CLEVR dataset and adapted
to our function space). Then, we use REINFORCE for further training
of the model (Fig. 9).

We encode the question words to vectors of size 300. The encoder
recurrent module is a 2-layer bidirectional LSTM with the hidden size
of 256. The procedure tokens are also encoded to vectors of size 300
and are passed through a unidirectional 2-layer LSTM with the hidden
size of 512.

We used the Adam optimizer with learning rate 7 ⋅ 10−4 for the
pretraining part and 10−5 for the REINFORCE part.

We experimented with using different batch sizes for REINFORCE
and discovered that the batch size 2 is sufficient for gradient estimation
and yields the same final performance as the batch size 64 within
roughly the same number of iterations, while significantly reducing the
computational cost. The reward decay was chosen as 0.9.
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Fig. 10. Example image and the corresponding questions from the CLEVR validation
split. All types of questions are shown. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Dependence of answer accuracy on the size of HD vectors.

5.3. Results

The main hyperparameter of any VSA system is the size of HD
vectors. With an increase in the vector size on the one hand, we
can store more vectors in one bundle, and on the other hand, we
increase the accuracy of extracting vectors from the item memory 𝐇. In
Fig. 11, we can see how accuracy changes depend on the vector size.
As expected accuracy increases with an increase of the size, archives a
maximum at 50,000 and then plateaus.

Another tuned hyperparameter is the threshold in the thresholded
sum used for bundling. We evaluated the impact of the threshold for
15,000-dimensional vectors. The results are shown in Fig. 12. The
increase in the threshold allows keeping more objects in a bundle, and
thus more accurately extract them. It is seen from the plot that the best
result achieved around the threshold 13, and a further increases do not
affect the overall performance.
60
Fig. 12. Accuracy vs. Threshold in the thresholded sum.

Table 1
Accuracy metric is used. Results of fine-tuning the question parser with a VSM reasoner
in the RL part. “Dim” stands for HD dimension. “CompN” and “CompA” stand for
“Compare number”and “Compare attribute”, respectively.

Dim Count Exist CompN CompA Query Overall

15k 91.2 94.2 95.4 95.5 94.1 94.0
30k 91.5 92.9 95.9 97.6 95.0 94.5

Table 2
Accuracy metric is used. Our model achieves comparable results to the state-of-the-
art results. “MH” stands for multi-head version of the question parser. “CompN” and
“CompA” stand for “Compare number” and “Compare attribute”, respectively.

Model Count Exist CompN CompA Query Overall

Ours 99.2 99.8 98.9 99.6 99.5 99.4
MH 97.9 99.0 88.9 98.8 98.6 97.7
NS-VQA (Yi, et al., 2018) 99.7 99.9 99.9 99.8 99.8 99.8
NS-CL (Mao et al., 2019) 98.2 98.8 99.0 99.1 99.3 98.9
RN (Santoro, et al., 2017) 90.1 97.8 93.6 97.1 97.9 95.5
multiRN (Chang et al., 2018) 94.9 99.2 97.2 98.3 98.7 97.7

We fine-tuned the question parser (pretrained on 270 question–
program pairs) with a VSM reasoner in the RL part and achieved
results presented in Table 1. The random nature of VSA encoding
increases variance and leads to difficulties in training. Changing the
question parser to the parser trained without a VSM reasoner and using
a VSM reasoner only on the evaluation phase leads to an accuracy
increase (Table 2). We also demonstrate results for the multi-head (MH)
version of the parser, while performance is slightly decreased it allows
generalizing better for new combinations of attributes and values. Since
NS-VQA (Yi, et al., 2018) provides results on a validation split we also
evaluate our model on the validation split in Table 2. The results of
other models (Chang et al., 2018; Mao et al., 2019; Santoro, et al.,
2017) on a test split are added for a comparison.

6. Discussion

We have proposed a combination of a semiotic approach and VSA
and apply it to VQA. The model combines neural computation, i.e., ob-
ject detection and question parsing, with symbolic reasoning by VSA
guided by SBWM representation.

In this work, we have used only part of the SBWM – an image com-
ponent of a sign – that allows constructing a hierarchical representation
of a scene and grounding scene objects in the agent’s sensory inputs.
The questions from CLEVR ask about external features, counting, or
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relations. As the causal network on images encodes this information, it
is necessary and sufficient for question answering. Other multi-modal
tasks, such as Visual Dialog (Das, et al., 2017) and Visual Commonsense
Reasoning (Zellers, Bisk, Farhadi, & Choi, 2018), require more elabo-
rate reasoning and understanding of the context. In this case, the image
component is no longer enough. Thus we have to use a significance
component of a sign that represents the commonsense knowledge of an
agent and a meaning component that stores the context of the dialog.

We use a multi-head classifier after the decoder network to pre-
dict the procedure and its arguments separately. That decreases the
number of atomic procedures as the model predicts notfilter_red() but
ilter_color(red) there red stands for any available color. It also simplifies
he generalization to the new values of attributes compare to NS-VQA.

The proposed model processes images and questions separately, and
ll the information obtained from the image is considered in the vector
escription of the scene. On the one hand, this approach allows using
f the same scene representation to answer different questions. On the
ther hand, it is ineffective for complex scenes. By complex scenes,
e mean scenes with a large number of objects, which correspond to

eal-life images and not synthesized ones. Considering all objects, we
ncounter a limitation in the capacity of HD vectors. The vector bundles
llow the storing of a finite number of vectors. Exceeding this number,
e lose the ability to confidently extract vectors from the memory.

ncreasing the dimension of vectors, in theory, solves this problem (but
e still cannot increase the dimension unboundedly). In practice, it also

ncreases the computation time. To eliminate this problem, the model
an process images and questions together and compose a description
f the scene, guided by the information from the question. This can
e achieved by using only the appropriate image components since the
uestion tokens are treated as signs names.

Another limitation of the proposed approach for complex scenes is
hat it extracts objects based on annotated classes. Thus, scanty anno-
ations lead to poor performance. As a solution, we can use an instance
egmentation model trained on datasets with many categories (Gupta,
ollar, & Girshick, 2019).

. Conclusion

In this paper, we have proposed the Vector Semiotic Model. It is
possible solution to the symbol grounding problem from a semiotic

iewpoint. We applied the proposed solution to Visual Question An-
wering and demonstrated its performance on the CLEVR dataset. The
btained results are comparable to the state of the art.

We used the combination of the Sign-Based World Model cogni-
ive architecture and Vector Symbolic Architectures. The Sign-Based

orld Model architecture allows representing scenes hierarchically
nd grounding symbols involved in reasoning in the agent’s sensory
nput. We used Vector Symbolic Architectures as a computational and
epresentational tool. Vector Symbolic Architectures allow preserving
omplex structures in a high-dimensional vector and extracting their
arts via operations defined for these vectors. Thus, Vector Symbolic
rchitectures allow operating with these symbols as with numerical
ectors. This combination of approaches allows bridging the gap be-
ween symbolic and neural (numerical) computations. The proposed
olution might be applied to other tasks, such as a Visual Dialog (Das,
t al., 2017), Visual Commonsense Reasoning (Zellers et al., 2018), and
oop Closure problem in simultaneous localization and mapping.
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