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Abstract. In this paper, we propose an HISNav VQA dataset – a chal-
lenging dataset for a Visual Question Answering task that is aimed at the
needs of Visual Navigation in human-centered environments. The dataset
consists of images of various room scenes that were captured using the
Habitat virtual environment and of questions important for navigation
tasks using only visual information. We also propose a baseline for a
HISNav VQA dataset, a Vector Semiotic Architecture, and demonstrate
its performance. The Vector Semiotic Architecture is a combination of a
Sign-Based World Model and Vector Symbolic Architectures. The Sign-
Based World Model allows representing various aspects of an agent’s
knowledge, and Vector Symbolic Architectures serve on a low compu-
tational level. The Vector Semiotic Architecture addresses the symbol
grounding problem that plays an important role in the Visual Question
Answering Task.

Keywords: Visual question answering · Semiotic approach · Vector
symbolic architecture · Habitat · Visual Navigation

1 Introduction

In recent years, models that work with unimodal data have achieved significant
results in computer vision (CV) and natural language processing (NLP). And
nowadays, researchers have started paying attention to multimodal tasks espe-
cially at the intersection of CV and NLP: Image Captioning [19], Visual Question
Answering (VQA) [6], Visual Dialog [4], Visual Commonsense Reasoning [32],
and Vision-and-Language Navigation (VLN) [2,18].

The advance in virtual assistants requires further development within the
framework of embodied Artificial Intelligence (AI). Embodied AI is the study of
intelligent systems with a physical or virtual embodiment (robots and egocentric
personal assistants). The embodiment hypothesis is the idea that “intelligence
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emerges in the interaction of an agent with an environment and as a result
of sensorimotor activity” [20]. As a testbed, the task of Visual Navigation in
human-centered environments might be used as it is possible to supplement
it with an ability to interact with humans in the natural language. In VLN,
the agent has to navigate the environment following instructions in the natural
language, and in VQA, the system has to answer questions about the content
of a given image. The combination of VLN and VQA gives an agent that can
answer (and, potentially, ask) questions about the environment an opportunity
to replenish its scene understanding and clarify instructions.

When an agent faces such tasks, the symbol grounding problem (how symbols
get their meanings) [9] arises. We approach this problem from the semiotic point
of view by applying Vector Semiotic Architecture, which is a combination of the
Sign-Based World Model [22,26] and Vector Symbolic Architecture [12].

The goal of our work is to take one more step toward creating an embodied
AI assistant system that will improve human-machine interaction by using a
natural language question, which, in the future, can help to set tasks or refine
them for AI agents in the simplest way.

The contribution of this paper is twofold: first, a challenging dataset for a
Visual Question Answering task that aims to address the needs of Visual Navi-
gation in human-centered environments is proposed. The HISNav VQA dataset
is simpler than VQA [6], but more complex than CLEVR [11], and focuses on
questions about positions and relations of objects. It also does not suffer from
disembodiedness, as images are taken from the robot’s camera, and unsituated-
ness, as scenes resemble environments a robot is supposed to operate in. Second,
the Vector Semiotic Architecture baseline is proposed, and its performance is
demonstrated on the HISNav VQA dataset. The advantages of Vector Semiotic
Architecture are the interpretability of an answering process and the grounding
of semiotic representation of objects in robot sensory inputs.

2 Related Works

The research interest in multimodal tasks in the intersection of CV and NLP
leads to the emergence of VQA datasets that cover commonsense knowledge and
are general-purpose [6], that use synthetic image-question pairs [11], and that
are based on questions asked by vision-impaired people [8]. Despite that fact,
the area of Visual Navigation in human-centered environments is not covered by
VQA datasets, although the ability of an intelligent agent to answer questions
about the environment it operates in and, by that, adjust its action is very
promising.

These needs are partially satisfied by VLN works [2,18]. But the features
of the problem formulation (the agent has to follow linguistic instruction to
navigate across the environment based on visual information) do not imply that
the agent asks or answers questions to clarify these instructions. That said, this
ability is important in situations where the environment can change dynamically
and the agent has to re-plan to complete the task.
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Most VQA models reduce the task to the classification problem and use neu-
ral networks to solve it [1]. Other research directions include the use of external
knowledge [31] and neural-symbolic approach [30]. The latter is of particular
interest as it combines the advantages of connectionism and symbolism while
compensating for their drawbacks. The approach allows obtaining interpretable
answering procedures and using rich and efficient tools of deep neural networks.
In this work, we use [30] as a starting point. In [30], the scene is represented
in the form of the data frame listing objects and their attributes. The process
of answering a question is performed by applying a deterministic program that
filters the scene data frame and outputs the result as the answer. The disadvan-
tage of representing a scene as a table (data frame) is the loss of structure. We
address that problem by applying the scene representation proposed in [17]. In
[17], a model that combines a Sign-Based World Model [23,24] and Vector Sym-
bolic Architectures [12] was proposed. Binary Spatter Codes [12] were used to
represent causal matrices as vectors. In this work, we applied Spatial Semantic
Pointers [15] that provide a convenient way to work with continuous coordinates.

The Sign-Based World Model (SBWM) is a cognitive architecture that allows
representing different aspects of agent knowledge. The main information unit in
this architecture is a sign – a four-component structure. The meaning compo-
nent represents the agent’s experience of interaction with a concept related to a
sign. Knowledge shared across the group of agents is represented by the signifi-
cance component. The image component serves to distinguish one concept from
another. The fourth component is a name that serves a nominative function.
SBWM was used for various applications, such as goal setting [25], reasoning
[13,16], and hierarchical planning [14]. Each sign component is represented by
a binary matrix of a special form, where columns are events and rows are the
appearance of a particular feature in the particular event. These matrices are
called causal matrices. In [17], causal matrices are encoded using Vector Sym-
bolic Architectures.

Vector Symbolic Architectures (VSA), or hyperdimensional computing [12], is
a family of methods that use vectors of high dimensionality to encode concepts
and use vector operations to manipulate them. The concept representation is
holistic, which means that no particular position in a vector is interpretable.
That representation allows reducing symbolic manipulation to vector operations.
VSA is instantiated by many variations [5,12,27] that differ in vector space and
operations but follow the same computational properties.

3 HISNav VQA Dataset

We present a challenging dataset that consists of images of various room scenes
(captured using the Habitat virtual environment [21]) and questions to these
images. Our dataset tests the ability of VQA systems to answer questions impor-
tant for navigation tasks using only visual information. Among the tasks that
need to be solved to correctly answer the questions are recognition of objects,
the correct determination of their properties, and counting. To answer spatial
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questions, it is necessary to determine the position of objects relative both to the
observation point and to each other. Thus, a model that can accurately answer
such questions can be effectively used to solve navigation problems for robotic
platforms, and our dataset is a way to check the necessary visual reasoning abil-
ities. Various samples of image-question pairs from the proposed dataset are
demonstrated in Fig. 1. Our HISNav VQA dataset is publicly available.1

Fig. 1. Examples of image-question pairs from the HISNav VQA dataset

3.1 Images

We used the HISNav dataset [28] as a source of images, which was assembled in
the virtual environment Habitat [21]. Habitat is a highly efficient photorealistic
3D simulation for research in embodied AI, that is a great platform for our
purposes. For more closeness of synthetic images to images from real cameras,
Gaussian noise was added to some of them. All HISNav dataset includes 135,962
images, each RGB image has a resolution 640 × 320, and ground truth instance
labels of 40 classes (wall, floor, chair, door, table, sofa, etc.) correspond to each
image. The original dataset includes pictures of 49 unique scenes that present
different rooms with various content.

In HISNav, each subsequent image is too close to the previous one, which is
undesirable for the dataset purposes. We want the images to be so different from
each other that the answers to the same question differ in most cases (or the
reason for the answer should be different in the case of the same answer). For
this reason, we used only one in thirty image from the initial data. In addition,

1 https://bit.ly/2XR5OUc.

https://bit.ly/2XR5OUc


Question Answering for Visual Navigation in Human-Centered Environments 35

images with a small amount of content on them (less than five objects on the
image) were removed. Images that had strong visual artifacts are also discarded.

3.2 Human-Asked Questions

The crowdsourcing service Yandex.Toloka2 was used to collect questions and
answers to them. The collection of questions and answers had two stages, which
were performed by different groups of participants.

First, we asked performers to ask questions about the images (Appendix A).
We limited the types of asked questions to the following four main ones: ques-
tions about mutual arrangement of objects, quantity, properties of objects, and
questions about relative to the observer location. The resulting questions were
rigorously assessed following the given instruction. Also, during this stage, per-
formers were asked to give an answer to their question and mark the type of
question. This part of the work was not evaluated strictly since the main task of
this stage is to collect questions. The total number of workers who participated
in this stage was 1,172, with an overall task acceptance rate of 0.63.

The second stage is collecting answers. This time, performers had to answer
questions about the images that were collected in the previous step. The instruc-
tions for this task were written to bring all answers to the same form and to
reduce the number of unique answers in the resulting data. For each image-
question pair two answers were collected to reduce the likelihood of erroneous
markup. The total number of workers who participated in this stage was 787,
with an agreement rate of 0.37.

3.3 Synthetic Questions

For question generation a modular algorithm was written, it generates seven
types of questions based on the tabular representation of each scene, which was
obtained from the results of the instance segmentation of the corresponding
image (Fig. 2). The following question templates were used:

– What color is the nearest object to the [single obj]?
– What color is the [single obj] to the [single obj]?
– What is the nearest object to the [single obj]?
– In which part of the image is the [single obj]?
– How many [multiple obj] are there?
– How many [multiple obj] are to the left/right of the [single obj]?
– Is there a [object] to the left/right of the [single obj]?

Here [single obj] is any object type that is represented in the image in a single
instance, [multiple obj] is the type of object that is represented in the image by
more than one instance, and [object] is a placeholder for any type of object that
may not even be represented.

2 https://toloka.yandex.com.

https://toloka.yandex.com
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Fig. 2. Examples of generated questions

3.4 Dataset Analysis

Our dataset is different from other VQA datasets like CLEVR [11] and VQA
v2.0 [6]. VQA v2.0 is a very large and diverse dataset full of common-sense
questions. This is good in the case of creating a universal VQA model that can
answer a broad variety of questions. CLEVR is much less diverse and, like our
dataset, consists of synthetic images. At the same time, it has a weak variety
of objects and scenes represented on them, which is why the number of unique
words in questions and answers is extremely small. Also, the structure of ques-
tions is extremely complex and dissimilar to what people use. Both datasets
suffer from disembodiedness, as images are taken from different shoot points (an
agent position is not considered), and unsituatedness, as scenes do not resemble
the actual environment in which an agent is supposed to operate. That limits
the application of these datasets for Visual Navigation in human-centered envi-
ronments. By the latter, we mean ordinary rooms with furniture and elements
of everyday life in which we are all used to living. On the other hand, the pro-
posed dataset is focused on important navigation questions such as the location
of various objects, uses images that resemble the operating environment, and are
taken from an agent viewpoint. This is what distinguishes it from other VQA
datasets.

The HISNav VQA dataset includes 3,500 images with one human-asked ques-
tion per image and two answers per question. There are 712 unique answers and
all questions contain 868 unique words. This is about an order of magnitude
more than the CLEVR dataset has and at the same time an order of magnitude
less than the VQA dataset (Table 1).

Figure 3(a) shows the distribution of collected human-asked questions by
their first four words. The ordering of the words starts toward the center and
radiates outward. The arc length is proportional to the number of questions
containing the word. White areas are words with contributions too small to
show. This figure demonstrates the complexity and variety of human questions,
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Table 1. Quantitative comparison of VQA datasets’ complexity

Dataset Unique words Unique answers

VQA v2.0 [6] 14576 162496

CLEVR [11] 80 28

HISNav VQA (ours) 868 712

synthetic questions are built on seven structural templates of fixed length, while
all possible structures of human questions do not fit in this figure, and their
length varies from three to 13 words.

Fig. 3. Comparison of question lengths for different VQA datasets

Figure 3b shows the distribution of question lengths for three datasets: ours,
VQA v2.0, and CLEVR. Our dataset and VQA v2.0 turned out to be close since
both consist of questions asked by people, and for CLEVR, the distribution
turned out to be significantly shifted due to the artificial syntactic complexity
of synthetic questions. This fact additionally shows that this dataset is poorly
suited for training an assistant who would answer people’s questions.

Figure 4 shows various quantitative statistics for our dataset: (a) is the distri-
bution of question types given by Yandex.Toloka workers; (b) is the distribution
of answers to questions about color. Due to the specifics of the scenes used, the
number of possible colors is also small, but this number is sufficient to test the
ability of the model to distinguish the colors of objects, which is important both
for the task of navigation and for assistants; (c) is the distribution of answers to
count-questions, all the number-answers are in the range from 0 to 9, this is not
a large range, but sufficient for room scenes, because there are rare cases when
it is needed to count so many objects in rooms; (d) is the distribution of answers



38 D. E. Kirilenko et al.

to what-containing questions, which are the most common and important for
our purposes.

Fig. 4. Quantitative statistics for out dataset

4 Vector Semiotic Architecture Baseline

In this section, we propose a Vector Semiotic Architecture Baseline that
addresses the symbol grounding problem and provides an interpretable answer-
ing procedure. The Vector Semiotic Architecture model is inspired by NS-VQA
[30] and uses the scene representation from [17]. The model consists of three
main parts: a scene parser, a question parser, and a program executor. The
scene parser uses an instance segmentation model to extract attributes, such as
coordinates and color, for each object. The question parser is an attention-based
sequence to sequence model [3] that receives a sequence of words in a natural
language as input and outputs a sequence of programs for execution. Both the
encoder and the decoder have two hidden layers with a 256-dim hidden vector,
and the dimension of word vectors is 300. The executor is a collection of func-
tional modules that are sequentially applied to the scene representation to get
the answer to a question. The dimension of HD vectors is set to 1,000.
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Compared to the work in [17], we use a variance of the Semantic Pointer
Architecture (SPA) [5] – Spatial Semantic Pointers [15] – to represent causal
matrices and work efficiently with continuous values such as coordinates. Here
we use real random vectors with a unit norm. The unique feature of this approach
is using special algebraic operations: circular convolution and convolutive power,
which is defined as follows

u ⊗ w := IDFT (DFT (u) � DFT (w))

up := �(IDFT ((DFT (u)p)D−1
j=0 ))

where u,w are two random vectors, � denotes taking the real part of a num-
ber, � denotes element-wise multiplication, and DFT and IDFT denote the
Discrete Fourier Transform and Inverse Discrete Fourier Transform respectively.
With these operations, we can encode two numerical values corresponding to the
coordinates x, y by generating two random unitary vectors corresponding to the
coordinate axes X,Y (vector u is called unitary if ∀v : ‖v‖ = ‖v ⊗ u‖):

V = Xx ⊗ Yy.

Thus, to answer the question “What is the object to the left of the chair?” we
have to encode coordinates of a chair into a vector Vchair, construct a vector
that represents a region left to the chair Vleft [15], and compute the similarity
between this vector and vectors of other objects coordinates.

5 Experiments

In this section, we test the performance of two baseline models on the HIS-
Nav VQA dataset. For human-asked questions, the model’s answer is considered
correct if it matches at least one of the two ground-truth answers.

5.1 Neural Network Baseline

We implemented a simple neural network baseline for the VQA task. A bag-of-
words representation of questions is used as 300-dim vectors. Resnet18 [10] is
used to obtain embedding of an image as a vector of dimension 512. Question and
image embeddings are concatenated and then passed to a multi-layer perceptron
classifier with two layers of 512 hidden units. We used ReLU activation in hidden
layers and a softmax for an output layer. The accuracy of this model on synthetic
questions is 0.57, and on human questions 0.43. The model was trained using
SGD with standard parameters and a batch size of 64. The main problem with
this model is that it is sensitive to the bias in our data: the model learns to
predict only the most frequent answers to questions.
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5.2 Vector Semiotic Architecture

We first trained the VSemA model in a supervised manner on a subsample of
synthetic questions (32 questions of each type, 224 in total). This model achieved
an accuracy of 0.82 on the validation part of synthetic questions. Further, this
model was trained using the REINFORCE [29] algorithm on human questions.
The reward was given only for the correct answer, and, as a result, it reached
an accuracy of 0.20 on the corresponding validation set.

To obtain the best performance on synthetic data, we used a larger subsam-
ple, and, as a result, we got a nearly perfect accuracy of 0.98 (Table 2).

Table 2. Baselines performance (accuracy)

Model Synthetic questions Human-asked questions

Our approach 0.98 0.20

Simple NN 0.57 0.43

On human-asked questions, our model demonstrates moderate performance
compare to a neural network baseline. Error analysis reveals two main causes.
First, our model relies on an instance segmentation mask, and therefore it fails to
answer questions about instances that are not segmented. The left half of Fig. 5
depicts a stair with a corresponding question “How many steps are shown on the
image?”. Our model does not distinguish individual stair steps – it sees them as
a whole and, thus, predicts a wrong answer. The second cause also affects the
neural network baseline – the ambiguity of questions. In the right half of Fig. 5,
both models give wrong answers in terms of ground truth, though predictions
are generally correct (both the door and the chair are in the room). This is since
there are more than two objects in the room that leads to ambiguity. Other
examples of predicted answers are shown in Appendix B.

Fig. 5. Examples of Vector Semiotic Architecture model mispredictions
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6 Discussion

The proposed HISNav VQA dataset aims to address the needs of Visual Navi-
gation in human-centered environments. The dataset also does not suffer from
disembodiedness and unsituatedness and might be used to advance research in
the field of assistance robotics or for VLN.

We demonstrated the performance of Vector Semiotic Architecture on a chal-
lenging dataset HISNav VQA and achieved nearly perfect performance on syn-
thetic questions. The performance on human-asked questions demonstrates the
limitations of our model due to reliance on the instance segmentation mask.
This limitation may be addressed by pretraining on a dataset with a large num-
ber of classes [7]. On the other hand, our approach provides an interpretable
answering procedure compare to a neural network baseline. Also, nearly perfect
performance on synthetic questions gives us the ability to construct the domain-
and task-specific questions with a high probability of getting the right answer
that is crucial for application purposes.

For future work, we plan to increase the performance of Vector Semiotic
Architecture on human-asked questions by using datasets with a large number
of segmentation classes and exploiting the questions’ syntactic structure. We also
plan to use HISNav VQA and the proposed model to build a prototype agent
that can first operate in a virtual and then in a real-world environment. We hope
our work draws researchers’ attention to this task, as there are still unresolved
problems and challenges.

7 Conclusion

In this work, we propose HISNav VQA – a challenging dataset for a Visual
Question Answering task that is based on the Habitat dataset and concen-
trates on questions about spatial arrangements of the scene objects. The dataset
may be used in the scenario of the Vision-and-Language Navigation task in
human-centered environments where a robot asks and answers questions to clar-
ify instructions. We also demonstrate the performance of the Vector Semiotic
Architecture on the proposed dataset and compare it to a simple neural network
baseline.

Acknowledgements. The reported study was supported by RFBR, research Project
No. 19-37-90164.
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A Appendix: Data Labeling

Fig. 6. The user interface for data labeling in Yandex.Toloka

B Appendix: Examples
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Fig. 7. Examples of predicted answers given by Vector Semiotic Architecture and NN
baseline. First row: both models give the right answer. Second row: NN baseline fails.
Third row: Vector Semiotic Architecture fails. Last row: both models fail.
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