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Abstract. The paper is dedicated to the use of distributed hyperdimensional vec-
tors to represent sensory information in the sign-based cognitive architecture, in
which the image component of a sign is encoded by a causal matrix. The hyper-
dimensional representation allows us to update the precedent dimension of the
causal matrix and accumulate information in it during the interaction of the sys-
tem with the environment. Due to the high dimensionality of vectors, it is possible
to reduce the representation and reasoning on the entities related to them to simple
operations on vectors. In this work we show how hyperdimensional representa-
tions are embedded in an existing sign formalism and provide examples of visual
scene encoding.
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1 Introduction

When constructing intelligent systems that control the functioning of agents in a real,
rather than a virtual environment, one of the main problems is the symbol grounding
problem. In otherwords, for each concept that the system can operatewith, it is necessary
to map some idea, which is based on the signals coming from the agent sensors. It is
human nature to operate with symbols, i.e. some indivisible entities representing the
concepts, while existing computer architectures restrict the low-level representation of
information in intelligent systems where binary numbers are commonly used.

At an early stage of the rise of artificial intelligence, one of the leading hypotheses
that captured the minds of researchers for a long time and determined the development
of the field for years to come was the hypothesis that “a physical symbol system has
the necessary and sufficient means for general intelligent action” proposed by Allen
Newell and Herbert Simon [1]. However, in the practical implementation of such sys-
tems, researchers encountered several problems, the main among which was the symbol
grounding problem mentioned above.
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Despite the fact that the research and development of symbolic artificial intelli-
gence methods continue, at present the connectionist approach using artificial neural
networks is leading in the number of applications and the attention of researchers [2].
In recent years, the neuro-symbolic approach, which combines the advantages of both
connectionism and symbolism, is gaining more and more popularity. As characteristic
representatives, Markov Logic Networks [3, 4] and Logic Tensor Networks [5] can be
distinguished.

Another direction of the neuro-symbolic representation can be called the approach
to the use of hyperdimensional representations, proposed in [6]. Despite the fact that
artificial neural networks are not used explicitly in this approach, the representations
themselves obtained using hyperdimensional computing are verywell suited forworking
with neural networks [7].

In this paper, we approach the solution of the symbol grounding problem using the
previously proposed sign-based cognitive architecture [8–10], in which the processing of
sensory information occurs in the image component of the sign representing some entity.
We propose using hyperdimensional vectors to encode the precedent component of the
sign image and demonstrate that this allows us to preserve the main advantages of the
sign approach – the ability to represent operations and relationships based on operations
with vectors and matrices. A new interpretation of the image component allowed us to
describe complex visual scenes in a simpler language. In this work, we consider the
capacity of the proposed mechanism for encoding sensory information.

The structure of the paper is as follows: Sect. 2 briefly provides the necessary infor-
mation about sign-based cognitive architecture. Section 3 describes the use of hyperdi-
mensional vectors as a representation of the image component of a sign and the operations
on such representations. The fourth part shows the possibility of using hyperdimensional
vectors for encoding elements of the causal matrix, with which the image structure is
formalized, and provides an example of representing some visual synthetic scene in the
form of a hyperdimensional vector for which simple reasoning schemes on the properties
of objects presented on the stage are carried out.

2 Sign-Based World Model

In [8], the principles of the organization of sign-based cognitive architecture (SBWM) [9,
10]were described in detail, in particular, the process of reasoning expressed by applying
certain mental actions by cognitive agents on their representation of the environment
was described. Next, we briefly outline the basic principles of the SBWM following [11,
12].

The main element of the system is the sign, which corresponds with the agent’s
concept of any object, action or situation, then for simplicity, we will call the object,
action or situation an entity. The sign consists of four components: image, meaning,
significance, and name. The image component corresponds to the characteristic feature
of the described entity. In the simplest case, an image refers to signals from the sensors
of an agent that correspond to an entity. In the general case, we can say that the image
of the sign coheres to the set of entity characteristic features with which the sign relates.
The significance of the sign describes the standard application of the entity, adopted on



Hyperdimensional Representations in Semiotic Approach to AGI 233

the basis of experience in the interaction of a coalition of agents with the environment.
The meaning of the sign is understood as the relation of the agent to the entity or the
experience of the interaction of the agent with this entity, thus, the meanings are formed
in the process of interaction of a concrete agent with the environment.

The sign components are described by a special structure - the causal matrix. A
causal matrix is a tuple z = 〈e1, e2, . . . , et〉 of length t where events ei are represented
by a binary vector of length h. For each index j of the event vector ei (row of the matrix
z), we will associate a tuple, possibly empty, of causal matrices Zj, such that z /∈ Zj.
We divide the set of columns indices of the causal matrix z into two disjoint subsets
I c ⊂ N,∀i ∈ I c i ≤ t and I e ⊂ N,∀i ∈ I e i ≤ t, such that I c ∩ I e = ∅. The set I c for the
matrix z will be called the indexes of the condition columns, and the set I e – the indexes
of the effect columns of the matrix z. If |I e| = ∅, i.e. there are no effect columns in the
matrix, then we will say that such a matrix corresponds with the object. If |I e| 
= ∅ what
the presence of effect columns in the matrix means, then such a matrix corresponds with
an action or process. The structure of the causal matrix makes it possible to uniformly
encode both static information and features of an object, as well as dynamic processes.

A sign means a quadruple s = 〈n, p,m, a〉, where the name of a sign n expressed by
a word in some finite alphabet, p = Zp, m = Zm, a = Za are tuples of causal matrices,
which are respectively called the image, significance, and meaning of the sign s. Based
on this, the whole set of causal matrices Z can be divided into three disjoint subsets:
images Zp, significances Zm, and meanings Za, such that Z = Zp ∪ Zm ∪ Za which are
organized into semantic networks, which we will call causal.

Formally, a causal network on images will be a labeled directed graphWp = 〈V ,E〉
in which:

1. each node v ∈ V is assigned a causal matrices tuple Zp(s) of the image of a certain
sign s, which will be denoted by v → Zp(s);

2. an edge e = (v1, v2) belongs to the set of graph edges E, if v1 → Zp(s1), v2 →
Zp(s2) and s1 ∈ Sp(s2), i.e. if the sign s1 is an element of the image s2.

Causal networks on significances and meanings are defined in a similar way. The
network on names is a semantic network whose vertices are the names of signs, and the
edges correspond to special relationships. The semantic network on names will also be
called a causal network.

These fourmentioned above causal networks are connected using transition functions
�

j
i , i, j ∈ {p,m, a, n} to the semiotic network. The transition function �

j
i allows us to

switch from i-th component of the sign to the j-th one. A semiotic network can be
considered as an agent’s knowledge base about the environment, taking into account its
experience of interacting with the environment.

Formally, we will call the semiotic network Ω = 〈
Wm,Wa,Wp,Wn,R,Θ

〉
a sign-

based world model, whereWm,Wa,Wp,Wn are causal networks of significances, mean-
ings, images, and names, respectively, R = 〈Rm,Ra,Rp,Rn〉 is a family of relations on
sign components, Θ is a family of operations on a set of signs. Operations Θ include
such actions on signs as unification, image comparison, updating while learning, etc.
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In the SBWM, the concept of the activity spread is defined, which allows the rea-
soning processes to occur in the semiotic network. After the activation level of the sign
component exceeds a certain threshold, the component is considered as active. If the
components of the image, significance, and meaning of the sign are activated, then the
sign itself is also activated (its name is activated). At the same time, the activation pro-
cess can proceed in the opposite direction: first, the name of the sign is activated, and
then all sign components are automatically activated. If the activation level of a sign
component is nonzero but does not exceed a predetermined activation threshold θ , then
such a component is called pre-activated.

Spreading activity on a semiotic network is subject to global and local rules for
spreading activity.

The global rule is that if one of the components of the sign s becomes active on a
step t, the other components become pre-activated.

The group of local rules consists of four rules: ascending, predicting, descending and
causal. The ascending rule says that if at the time t the component of the sign s becomes
active, then all occurrences of this component in the causal matrix of other signs become
active. The predicting rule determines that if at the time moment t an event et is active
in any component of the sign s, then the events et+1 of the same component are pre-
activated. The descending rule establishes that if at the time moment t each event et
in the tuple of causal matrices of the component i ∈ {p,m, a} of the sign s is active,
then the components i of all signs included in the event et are pre-activated. The causal
rule: if an event et is active at a time t, then a predictive rule and a descending rule are
consistently applied to all event-effects, with the amendment that the maximum activity
applies.

3 Representation of Symbols by Hyperdimensional Vectors

In recommender systems and natural language processing, a widely used approach is
the one that translates localized one-hot representations of objects that the system works
with into distributed representations. Moreover, in both problems, there is a decrease in
dimensionality, because initial one-hot vectors can have tens of thousands of dimensions,
while the standard length of a distributed vector, for example, for word representation, is
300. A classic example in recommender systems are models with hidden variables that
use a singular matrix decomposition of users-items matrix [13], and the modification of
such a decomposition, called the truncated singular decomposition, allows one to vary
the dimensions of the representation, simultaneously solving the regularization problem.

For the problems of natural language processing, there also have been attempts to
use the singular decomposition, for example, for the co-occurrence frequency matrix
[14]. However, approaches based on iterative learning of representations in the corpus
of texts, such as word2vec [15, 16] and GloVe [17], gained wide popularity. In the
original word2vec article, CBOW (continuous bag of words) and skip-gram models are
proposed. InCBOW, the centralword in thewindow is predicted from surroundingwords
by a certain contextual window that runs through text whose size is a hyperparameter. In
skip-gram, the inverse problem is solved – according to the central word, it is predicted
whether another word enters its context. In essence, the CBOW and skip-gram models
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are neural networks with one hidden layer with a linear activation function, and the
prediction is constructed as softmax from the scalar product of the vector of the central
and context words.

In GloVe, the problem is formulated as follows, given a joint co-occurrence matrix
whose elements correspond to the occurrence frequency of one word in the context of
another, then let the scalar product of the vector representations of the central word and
the context word approximate the logarithm of this value.

In [18], examples are given that such representations of words contain some semantic
and syntactic information that allows us to solve problems of searching for analogies,
for example, of the type “king:man :: woman:queen” using arithmetic operations on
vectors:

vking − vman + vwoman ≈ vqueen,

where vking, vman, vwoman, vqueen vector representations for words “king”, “man”,
“woman” and “queen” correspondingly. Similarly, analogies of the type “big:biggest
:: large:largest” are solved.

For recommender systems, this approach allows you to specify the similarity between
the vectors of users or items, for example, using the cosine distance, while with the
“one-hot” representation, the distance between the vectors does not make any sense.

Similar results were obtained for computer vision problems [19, 20], when using an
autoencoder, representations are learned that allow you to add or remove some details
of an image by changing a specific coordinate.

All of the above approaches can be summarized as follows: we reduce the dimension
of the original vector while simultaneously trying instead of a localized, uninterpreted
representation, to obtain representations in which the coordinates carry some, often
poorly interpreted, meaning.

On the other side of the scale lies an approach that, in contrast to the first, increases
the dimension of the vector representation and deprives individual component of the
vector of any interpretability. Moreover, the resulting representations are in some ways
symbols, but symbols that can be operated on using vector operations. Let us consider
this approach described in [6] in more detail.

The basis of this approach is the idea that for a sufficiently large dimension of
the space for any randomly extracted and fixed vector from this space ~99% of the
remaining vectors of the space will be quasi-orthogonal to this fixed vector. In this case,
by quasi-orthogonality we mean that, for example, for binary vectors, the normalized
Hamming distance between them will be approximately 0.5, and then any sufficiently
small deviation from this value will indicate that these two vectors are not random, and
one enters into a superposition of the other. This property of hyperdimensional spaces
allows us to reduce the procedure of matching a given object of its hyper-dimensional
representation to sampling a random vector. Thus, for each object or property that the
system encounters, a random hyper-dimensional vector, for example, a binary one, is
generated and put into correspondence with this object or property. All vectors obtained
in such a manner are stored in a special memory called “Item Memory”, where they are
assigned a label corresponding to the encoded entity. For the Item Memory, a search
operation that receives a vector and returns the vector closest to this one is defined. The
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search operation on the Item Memory can be considered as restoring the original vector
of an entity from its noisy copy, the need for such an operation will be shown below. The
property of hyperdimensional spaces described above just allows avoiding collisions for
such an operation with sufficient space capacity and not too much noise in the input
vector.

We briefly describe operations on hyperdimensional vectors.
The binding operation to two vectors associates the third, quasi-orthogonal to both

initial vectors. For binary vectors, the binding is carried out using the elementwise
exclusive or operation. Binding obeys the laws of commutativity and associativity. The
semantic meaning of binding can be explained by the following example: let some
object have a certain attribute ai with a value vj, we put them in correspondence with

hyper-dimensional random vectors Ai and V
Ai
j . Then the binding Ai ⊕ VAi

j corresponds
to assigning the value vj to the attribute ai. Also, the inverse operation to the binding

is defined – an unbinding Ai ⊕
(
Ai ⊕ VAi

j

)
= VAi

j which returns one of the original
vectors.

The bundling operation to a certain set of hyperdimensional vectors associates
another hyperdimensional vector that is not quasi-orthogonal with respect to any of
the vectors of the set. Bundling is implemented through the threshold sum:

[X0 + X1 + . . .Xn] = Y ,

where yi ∈ Y and

yi =

⎧
⎪⎪⎨

⎪⎪⎩

n∑

1
xi, xi ∈ Xi, if

n∑

1
xi ≤ thr

thr, if
n∑

1
xi > thr,

where thr is a threshold, which is a hyperparameter.
Bundling can be considered as a representation of the set of some objects. The

commutativity and associativity of bundling are obvious.
Sometimes it becomesnecessary to obtain a quasi-orthogonal vector from theoriginal

one, but so that this operation is reversible. To do this, permutation operations are used,
which permute the coordinates of the vector according to a certain rule. A special case
of permutation is a cyclic shift. Denote X n> whose vector coordinates are cyclically
shifted to the right on n positions relative to the original vector X .

Let the state of a system at the initial timemoment correspond to a hyperdimensional
vector X0, then all the states of the system at time moments i = 1, . . . n can be expressed
as follows:

X1 =X 1>
0 ,

X2 =X 1>
1 = X 2>

0 ,

. . .

Xn =X 1>
n−1 = X 2>

n−2 = . . . = X n>
0
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Applying unbinding to a bundle

Ai ⊕ B =
[
A1 ⊕ VA1

j + . . . + Ai ⊕ VAi
j + . . . + An ⊕ VAn

j

]

=
[
Ai ⊕ A1 ⊕ VA1

j + . . . + Ai ⊕ Ai ⊕ VAi
j + . . . + Ai ⊕ An ⊕ VAn

j

]

=
[
Noise + VAi

j

]
= Ṽ Ai

j

we get Ṽ Ai
j – a noisy version of the vector VAi

j by which one can restore the vector VAi
j

by searching through Item Memory.

4 The Use of Hyperdimensional Vectors in the Sign-Based World
Model

Let us consider the use of hyperdimensional binary vectors in the Signed-Bases World
Model using the causal matrix of an image network as an example. We recall that the
causal matrix z is a tuple of events ei z = 〈e1, e2, . . . , et〉 of a length t. We agree further
that the hyperdimensional vector corresponding to the concept will be denoted by the
same letter as the concept itself, only in capitals. Then, a vector Ei is assigned to each
event ei, the method of obtaining this vector will be described below. Since a tuple is
an ordered set of elements, it is easy to set it through the variety of elements and their
order. As described above, the set in hyperdimensional computations is specified by
the operation of bundling over the elements included in it, to determine the order, we
introduce a special hyperdimensional vector S that will correspond to the first column
of the causal matrix. The subsequent columns will be defined through the cyclic shift
of the vector S. The fact that some event Ei corresponds to the j-th column will be
denoted through Ei ⊕ Sj>. Then in general terms, the vector of the causal matrix can be
represented as:

Z =
[
E0 ⊕ S + E1 ⊕ S1> + . . . + Et ⊕ St>

]
.

If the causal matrix corresponds to the action, then we introduce two vectors Sc and
Se for the columns of conditions and effects, respectively, then:

Z =
[
E0 ⊕ Sc + E1 ⊕ S1>c + . . . + Ej ⊕ Sk>c + Ej+1 ⊕ Se + Ej+2 ⊕ S1>e + . . . + Et ⊕ Sl>e

]
,

where k + l = t.
It is worth noting that if there is no need to maintain order, for example, for object

matrices, then you may not introduce an additional vector S.
Let us return to the representation of an event ei. An event corresponds to the simul-

taneous appearance of some attributes, therefore, if each attribute and all possible values
of this attribute are associated with hyperdimensional vectors, then the event takes the
form:

E =
[
A1 ⊕ VA1 + A2 ⊕ VA2 + . . . + Am ⊕ VAm

]
,
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where Ai corresponds to i-th attribute and VAi is its value.
Thus, following the structure of a causal matrix and given HD representation of

events we can collapse the whole matrix into the corresponding HD vector CM . This
vector may act as an event in the formation of another causal matrix on the next level of
abstraction. Properties of operations with HD vectors allow to keep structure inside of
such representation and restore it if needed.

Consider an example of representing the causal matrix of a scene depicted in Fig. 1
as a hyperdimensional vector.

Fig. 1. The model scene

Let us suppose that the objects on the scene have the attributes c – “color”, s – “shape”,
x – “x coordinate”, y – “y coordinate” with the corresponding possible values: for the
attribute “color” w – “white” and g – “gray”, for “form” ci – “circle”, t – “triangle” and
sq – “square”. Let us set the attributes and their values in accordance with the vectors C,
S, X , Y , W , G, CI , T , SQ. The value of the attribute “coordinate x” will be encoded as
follows. Assume directionality of the process of parsing of the visual scene (for example
from top to bottom and from left to right). During parsing of the visual scene we find
the leftmost object on the scene, in this case there are two such objects –Obj0 and Obj2,
and assign a vector X0 to them, then the next right object – Obj3 will have a (relative to
Obj0) coordinate valueX1 = X 1>

0 . For objectObj4, we haveX2 = X 2>
0 . The y coordinate

values are encoded in a similar way. This allows us tomove from the absolute coordinates
to the relative ones. We also introduce vectorsO0 . . .O3 corresponding to scene objects.
Now we can represent the vector corresponding to the causal matrix of the scene as:

SCENE = [Oo ⊕ [C ⊕ G + S ⊕ CI + X ⊕ X0 + Y ⊕ Y0]

+ O1 ⊕
[
C ⊕ G + S ⊕ SQ + X ⊕ X 2>

0 + Y ⊕ Y0
]

+ O2 ⊕ [C ⊕ W + S ⊕ T + X ⊕ X0 + Y ⊕ Y2]

+ O3 ⊕ [C ⊕ G + S ⊕ CI + X ⊕ X1 + Y ⊕ Y1]].

After that, if we want to find out the value of the object 2 form attribute, we must
perform the following operations:

SCENE ⊕ O2 ⊕ S = Noise + T = T̃ .
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Such operations allow performing the simplest reasoning on the representation of
the scene using hyperdimensional vectors.

5 Discussion

While this paper focused on conceptual aspects of using HD representation in semiotic
approach toAGI it is useful to get an intuition about possible applications of the presented
encoding for flexible answering to complex queries. Take the last example of the SCENE
encoding. Suppose the task is to extract objects to the right of object Obj3. To do this
the following computational steps should be performed.

1. Similarly to the example of extracting the value of attribute S, extract the value of
attribute X of object Obj3.

2. Retrieve the clean copy of X3 from the Item Memory.
3. Construct a bundle of all possible coordinates “to the right of X3” by circularly

shifting X3 n times binding with X and bundling the result:

X right
3 =

[
X ⊕ X 1>

3 + X ⊕ X 2>
3 + . . . + X ⊕ X n>

3

]

4. Bind the resulting bundle with the SCENE vector. This operation will produce a
bundle containing the noisy values of the objects on the queried coordinates.

SCENE ⊕ X right
3 = Noise + Õ1

5. Passing the result through the Item Memory of objects will reveal the identities of
the objects (Fig. 2).

Fig. 2. Distance to objects vectors in Item Memory
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Several important issues must be addressed for make the approach work on real
use-cases. Specifically, one need to take into account the informational capacity of the
bundles of HD vectors. Early results on the capacity were given in [21, 22]. Some ideas
for the case of binary/bipolar HD vectors were also presented in [23, 24]. Probably the
most comprehensive analysis of the capacity of different VSAs’ frameworks has been
recently presented in [25]. The practical dimensioning of the architecture for the case of
visual questions answering application is a subject for future work and will be reported
outside the scope for this article.

6 Conclusion

The paper proposes a new approach that allows solving the symbol grounding prob-
lem based on the agent sing-based cognitive architecture using hyperdimensional vector
computations to describe the image component of the sign. Due to the use of hyper-
dimensional vectors to describe the precedent of the causal matrix component, it is
possible to interpret the structure of the causal matrix and relations in the causal network
as operations on a set of such vectors. The work provides a model example of the use of
hyperdimensional vectors to represent a visual scene. In the future, we propose various
applications of the sign-based architecture, including for personal cognitive assistants
[26] that adapt to a specific user.
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01011 and No. 19-37-90164.
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