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We develop a general classification of the infinite number of families of solitons and soliton
complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schr€odinger equation with a non-
linear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term,
which takes both positive and negative local values. This model finds direct implementations in
atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the exis-
tence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, being es-
sentially squeezed into a single cell of the nonlinear lattice. This soliton species was not
previously considered in nonlinear lattices. We demonstrate that one branch of the DS family
(namely, which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontane-
ously transform into stable fundamental solitons (FSs). The results are obtained in numerical and
approximate analytical forms, the latter based on the variational approximation. Some stable
bound states of FSs are found too. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4958710]

Periodic (alias lattice) potentials is a well-known ingredi-
ent of diverse physical settings represented by the nonlin-
ear Schr€odinger/Gross-Pitaevskii equations. The lattice
potentials help create self-trapped modes (solitons) which
do not exist otherwise, or stabilize solitons which are defi-
nitely unstable in free space. In particular, the lattice
potentials generate the bandgap spectrum in the linear-
ized version of the equation, and adding local cubic non-
linearity gives rise to a great variety of gap solitons and
their bound complexes residing in the spectral gaps. On
the other hand, an essential extension of the concept of
lattice potentials is the introduction of nonlinear pseudo-
potentials, which are induced by spatially periodic modu-
lation of the coefficient in front of the cubic term. While
single-peak fundamental solitons (FSs) in nonlinear
potentials were studied in detail, more sophisticated ones,
such as narrow antisymmetric dipole solitons (DSs),
which essentially reside in a single cell of the nonlinear
lattice, were not previously considered in this setting.
Their shape is similar to that of the so-called subfunda-
mental species of gap solitons in linear lattices, which
have a small stability region. In this work, we first devel-
op a general classification of a potentially infinite number
of different types of soliton complexes supported by the
nonlinear lattice. For physical applications, the most sig-
nificant finding is the existence of two branches of the DS
family, one of which is entirely stable. Its stability is read-
ily predicted by the celebrated Vakhitov-Kolokolov crite-
rion, while the shape of the branch is qualitatively
correctly predicted in an analytical form by means of the

variational approximation. In addition to that, it is found
that some bound states of FSs are stable too, although a
majority of such complexes are unstable.

I. INTRODUCTION

It is well known that the variety of bright solitons, sup-
ported by the balance between the self-focusing nonlinearity
and diffraction (in optics) or kinetic energy (in matter
waves), can be greatly expanded if a spatially periodic (alias
lattice) potential is introduced, in the form of photonic latti-
ces acting on optical waves,1 or optical lattices acting on
matter waves in atomic Bose-Einstein condensates (BECs).2

In particular, periodic potentials make it possible to create
gap solitons in media with self-defocusing nonlinearity, due
to its interplay with the effective negative mass of collective
excitations, see original works3–9 and books.10,11 In addition
to the fundamental solitons, the analysis addressed patterns
such as nonlinear Bloch states,6,12 domain walls,13 and gap
waves, i.e., broad modes with sharp edges.14

The spectral bandgap structure induced by lattice
potentials gives rise to many families of gap solitons, classi-
fied by the number of a bandgap in which they reside.
Further, the oscillatory shape of fundamental gap solitons
opens the way to build various two- and multi-soliton
bound states through the effective interaction potential
induced by their overlapping tails. The variety of the gap-
soliton families includes both stable and unstable solutions.
A specific possibility, revealed in work15 and further ana-
lyzed in Refs. 16–20, is the existence of subfundamental
solitons (SFSs) in the second finite bandgap. (In Ref. 20,
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SFSs were called “second-family fundamental gap sol-
itons.”) They feature a dipole (antisymmetric) shape, which
is squeezed, essentially, into a single cell of the lattice po-
tential. The name “subfundamental” implies that the soli-
ton’s norm (in terms of BEC; or the total power, in terms of
optics) is smaller than the norm of a stable fundamental sol-
iton (FS) existing at the same value of the chemical poten-
tial (or propagation constant, in the optics model) in the
second finite bandgap. SFSs have a small stability region,20

while unstable ones spontaneously rearrange into stable FSs
belonging to the first finite bandgap. Partial stabilization of
SFSs was also demonstrated in a model which includes, in
addition to the local nonlinearity, long-range dipole-dipole
interactions.19

Apart from the linear spatially periodic potentials in-
duced by lattice structures, the formation of solitons may be
facilitated by nonlinear-lattice pseudopotentials,21 which
are induced by spatially periodic modulation of the coeffi-
cient in front of the cubic term in the respective Gross-
Pitaevskii/nonlinear Schr€odinger equation (GPE/NLSE).22

This structure can be created in BEC by means of the
Feshbach resonance controlled by magnetic or optical
fields.23–25 Experimentally, the possibility of the periodic
modulation of the nonlinearity on a submicron scale was
demonstrated in Ref. 26. The spatial profile of the nonline-
arity may also be “painted” by a fast moving laser beam,27

or imposed by an optical-flux lattice.28 Another approach
relies on the use of a magnetic lattice, into which the atomic
condensate is loaded,29 or of concentrators of the magnetic
field.30 In optics, spatial modulation of the Kerr coefficient
can be achieved by means of an inhomogeneous density of
resonant nonlinearity-enhancing dopants implanted into the
waveguide.31 Alternatively, a spatially periodic distribution
of resonance detuning can be superimposed on a uniform
dopant density. A review of results for solitons supported
by nonlinear lattices was given in Ref. 22.

In the one-dimensional setting, a generic form of the
scaled GPE/NLSE for the mean-field amplitude, W(x, t), in-
cluding both a linear periodic potential, U(x), and a periodic
pseudopotential induced by modulation function P(x), both
with period L, is32

iWt þWxx " UðxÞWþ PðxÞjWj2W ¼ 0: (1)

The prototypical examples of both periodic potentials are
provided by functions

fUðxÞ;PðxÞg ¼ fAU;APgþ fBU;BPg cosð2xÞ; (2)

where the period is scaled to be L¼ p. Equation (1) is written
in terms of BEC; in optics, Eq. (1) models the light propaga-
tion in planar waveguides, with transverse coordinate x, t be-
ing replaced by the propagation distance, z. In the former
case, the model can be implemented in a cigar-shaped BEC
trap with the transverse confinement strength subject to peri-
odic modulation along the axial direction, x.33,34 Similarly,
the optics realization is possible in the planar waveguides
with the thickness (in direction y) subject to the same modu-
lation along x. It is also relevant to mention that, while we

consider here the simplest cubic form of the local nonlineari-
ty in Eq. (1), strong transverse confinement applied to the
BEC with a relatively high atomic density gives rise to the
one-dimensional equation with nonpolynomial nonlineari-
ty,34 which may be a subject for a separate work. It is impor-
tant for what follows that Eq. (1) conserves the quantities N
and E

N ¼
ð1

"1
jWj2 dx; (3)

E ¼
ðþ1

"1
jWxj2 þ U xð ÞjWj2 "

1

2
P xð ÞjWj4

" #
dx; (4)

having in BEC context the sense of the number of particles
and the energy correspondingly.

The objective of the present work is to generate new
types of solitons in the model based on Eq. (1) and identify
stable solitons among them. To this end, we develop a proce-
dure which makes it possible to predict an infinite number of
different families of stationary soliton solutions (starting
from the SF and DS families), by means of a coding tech-
nique.35 Actual results are produced, with the help of numer-
ical calculations, for the model with the pseudopotential
only,36 i.e., Eq. (1) with U¼ 0, where effects produced by
the periodic modulation of the nonlinearity are not obscured
by the linear-lattice potential. Keeping in mind the prototypi-
cal cosð2xÞ modulation function in Eq. (2), we assume that
P(x) in Eq. (1) is an even p-periodic function, which takes
both positive and negative local values. In particular, while
FSs supported by nonlinear lattices have been already stud-
ied in detail,36 a possibility of the existence and stability of
the single-cell DSs in the same setting was not considered
previously. We demonstrate that this class of solitons is also
supported by the nonlinear lattice. It is composed of two
branches, one of which is stable, on the contrary to the chief-
ly unstable SFS family in the models with linear lattices.
Another difference is that the single-cell DSs are not subfun-
damental, as their norm exceeds that of the SFs existing at
the same value of the soliton frequency. We also show that,
in addition to the SFs and DSs, there exists a plethora of soli-
tons in the model with the periodic pseudopotential. While
most of them are unstable, we have found some stable bound
states of fundamental solitons.

The rest of the paper is structured as follows. Stationary
soliton solutions are produced in Section II. Results of the
stability analysis are summarized in Section III. Section IV
is focused on the new class of the single-cell DSs, including
both numerical results and analytical approximations, based
on the variational approximation (VA) and Vakhitov-
Kolokolov (VK)37 stability criterion. The paper is concluded
by Section V.

II. STATIONARY MODES

Stationary solutions to Eq. (1) with chemical potential x
(in the optics model, –x is the propagation constant) are
sought for in the usual form, Wðt; xÞ ¼ uðxÞ exp ð"ixtÞ,
where u(x) is determined by equation
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uxx þ QðxÞuþ PðxÞu3 ¼ 0; QðxÞ & x" UðxÞ: (5)

Solitons are selected by the localization condition

lim
x!61

uðxÞ ¼ 0; (6)

which implies that the function u(x) is real (see, e.g., Ref. 4).
Therefore, we focus our attention on real solutions to Eq. (5).

For the analysis of stationary modes, we apply the ap-
proach developed previously for the usual model, with the
uniform nonlinearity and a linear lattice potential, i.e.,
P(x)¼"1 and U(x) a bounded periodic function.35 This ap-
proach makes use of the fact that the “most common” solu-
tions of equation

uxx þ QðxÞu" u3 ¼ 0; (7)

are singular, i.e., they diverge at some finite value of x¼ x0

(limx!x0
uðxÞ ¼1), as

uðxÞ ' 6
ffiffiffi
2
p
ðx" x0Þ"1: (8)

Then, it was shown that, under certain conditions im-
posed on Q(x), nonsingular solutions can be described using
methods of symbolic dynamics. More precisely, under these
conditions, there exists one-to-one correspondence between
all solutions of Eq. (7) and bi-infinite sequences of symbols of
some finite alphabet, which are called codes of the solutions.

As shown below, this approach can be extended for Eq.
(5), which combines the periodic lattice potential and period-
ic modulation of the nonlinearity coefficient that represents
the nonlinear-lattice pseudopotential.

A. The coding procedure

Assume that Q(x) and P(x) in Eq. (5) are even p-periodic
functions. We call a solution u(x) of Eq. (5) singular if u(x)
diverges at finite x0 as per Eq. (8). In this case, one may also
say that solution u(x) collapses at point x¼ x0.

Define Poincar"e map T : R2 ! R2 associated with Eq.
(5) as follows:

T
u0

u00

" #
¼ uðpÞ

uxðpÞ

" #
; (9)

where u(x) is a solution of the Cauchy problem for Eq. (5)
with initial conditions

uð0Þ ¼ u0; uxð0Þ ¼ u00: (10)

We call an orbit a sequence of points fpng; pn 2 R2 (the se-
quence may be finite, infinite, or bi-infinite) such that
Tpn ¼ pnþ1.

Define sets UþL 2 R2 and U"L 2 R2, L> 0 as follows:
p ¼ ðu0; u00Þ 2 U

þ
L if and only if solutions of the Cauchy

problem for Eq. (5) with initial conditions (10) does not col-
lapse on interval [0, L]. Similarly, we define U"L as the set of
initial conditions uð0Þ ¼ u0; uxð0Þ ¼ u00 such that the corre-
sponding solution of the Cauchy problem for Eq. (5) does
not collapse on interval [–L, 0]. It is easy to show that
Poincar"e map T is defined only on set Uþp and transforms it

into U"p . Accordingly, inverse map T"1 is defined only on
U"p and transforms this set into Uþp .

Next, consider the following sets:

D0 ¼ Uþp \ U
"
p ; (11)

Dþnþ1 ¼ TDþn \ D0; n ¼ 0; 1;…; (12)

D"nþ1 ¼ T"1D"n \ D0; n ¼ 0; 1;…; : (13)

Evidently, D0 consists of points that have T-image and T-
pre-image. The following statements are valid:

fp 2 Dþn g () fTp; T2p;…; Tnp 2 D0g; (14)

fp 2 D"n g () fT"1p; T"2p;…; T"np 2 D0g: (15)

Sets D6
n are nested in the following sense:

… ( Dþnþ1 ( Dþn … ( Dþ1 ( D0; (16)

… ( D"nþ1 ( D"n … ( D"1 ( D0: (17)

Now, we define sets

Dþ ¼
\1

n¼1

Dþn ; D" ¼
\1

n¼1

D"n : (18)

Consider set D ¼ Dþ \ D". It is invariant with respect to the
action of the T map. Orbits generated by points from D are in
one-to-one correspondence with non-collapsing solutions of
Eq. (5). Therefore, the numerical study of sets D6

n allows
one to predict and compute bounded solutions of Eq. (5).

There are several restrictions for Q(x) and P(x) for this
approach to be applicable. In Ref. 38, the following state-
ments were proved.

Theorem 1. Suppose that QðxÞ;PðxÞ 2 C1ðRÞ and for
each x 2 R

(a) there exists ~P such that P(x)> 0, jP0ðxÞj ) ~P;
(b) there exist Q0; ~Q, such that QðxÞ * Q0; jQ0ðxÞj ) ~Q;

then the solution to the Cauchy problem for Eq.(5) with arbi-
trary initial conditions (10) can be continued onto the whole
real axis R.

Theorem 2. Suppose that 8x 2 R conditions P(x)< 0,
Q(x)< 0 holds, then all solutions of Eq. (5) are singular, ex-
cept the trivial zero solution.

In particular, this implies that if P(x) and Q(x) are bound-
ed and periodic, and P(x)> 0 for all x 2 R, then all solutions
of Eq. (5) are non-singular, and the present approach cannot
be applied. In the case of P(x)< 0, Q(x)< 0, Eq. (5) has no
non-singular solutions, except for the zero state; therefore, the
approach cannot be used either. However, it follows from
Proposition 2 of Ref. 38 that, if P(x) is a sign-alternating func-
tion, the collapsing behavior is generic for solutions of Eq.
(5), and the application of the present approach is reasonable
for finding non-collapsing solutions.

In Ref. 35, the case of PðxÞ ¼ "1 in Eq. (5) was consid-
ered from a more abstract viewpoint. It was shown that if

(a) the D0 set consists of a finite number N of connected
components, D0 ¼ [N

k¼1Dk, and each of the components
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Dk is a curvilinear quadrangle, whose boundaries satisfy
special conditions of smoothness and monotonicity;

(b) all the sets TDk \ Dm and T"1Dk \ Dm; k;m ¼ 1;…;N
are non-empty, and the action of T on curves lying in
Dk preserves the monotony property;

(c) areas of sets D6
n vanish at n!1;

then orbits of the Poincar"e map T acting on the D0 set are in
one-to-one correspondence with bi-infinite sequences of
symbols of some N-symbol alphabet.

This result can be commented as follows. Let symbols
of the alphabet be the numbers 1;…;N. Denote the con-
nected components of D0 by Dk; k ¼ 1;…;N. Then, for each
non-collapsing solution u(x), there exists a unique orbit
fpkg; k ¼ 0;61;62;…; pk 2 D, and the corresponding
unique bi-infinite sequence …a"1; a0; a1;…; ak 2 f1;…;Ng
such that

…; p"1 ¼ T"1p0 2 Da"1
; p0 2 Da0

;

p1 ¼ Tp0 2 Da1
;…: (19)

On the contrary, for each bi-infinite sequence of numbers
f1;…;Ng, there exists a unique orbit fpkg; k ¼ 0;61;
62;…; pk 2 D that satisfies condition (19) and corresponds
to a unique solution u(x). The check of conditions (a), (b),
and (c) was carried out in Ref. 35 numerically, using some
auxiliary statements.

In what follows below, we apply this approach to
Eq. (5) with U(x)¼ 0, i.e., QðxÞ ¼ x, when the linear poten-
tial is absent, and only the pseudopotential is present in
Eq. (5), induced by the modulation function taken as

PðxÞ ¼ aþ cosð2xÞ: (20)

This is a new setting for which the present method was not
elaborated previously.

B. Numerical results

According to what was said above [Eq. (20)], we now
focus on the following version of Eq. (5)

uxx þ xuþ ðaþ cos 2xÞu3 ¼ 0: (21)

Due to Theorem 1, we impose restriction a 2 ð"1; 1Þ in
Eq. (21) for the approach to be applied, i.e., the nonlinearity
coefficient (20) must be a sign-changing function of x.
Another restriction, x< 0, comes from the obvious condition
of the soliton localization, given by Eq. (6).

1. Sets U6
p

The set Uþp was found by scanning the plane ðu; u0Þ of
initial data by means of the following procedure. The Cauchy
problem for Eq. (21) was solved numerically, taking as initial
conditions uð0Þ ¼ nDu; uxð0Þ ¼ mDu0; m; n ¼ "L;…; L,
where spacings Du and Du0 are small enough (typical values
were Du ¼ Du0 ¼ 0:01). If the absolute value of the solution
of the Cauchy problem exceeds, in interval [0; p], some suffi-
ciently large value u1, it is assumed that the collapse occurs.
The corresponding point is marked white, otherwise, it is grey.

The computations were actually performed for u1¼ 105 and
further checked for u1¼ 107, the results obtained for both cases
agreeing very well. Since Eq. (21) is invariant with respect to
inversion x! –x, the set U"p is the reflection of Uþp with respect
to the u-axis. The numerical results allow us to conjecture that,
for a 2 ð"1; 1Þ; U6

p are unbounded spirals with infinite number
of rotations around the origin, see Fig. 1.

2. Set D0

Some examples of set D0 are displayed in Fig. 1. Panel
(A) of Fig. 1 corresponds to the case of x¼"1, a¼"1.1,
when D0 consists of only one connected component situated
in the origin. This fact agrees with Theorem 2. If a 2 ("1;
1), then, presumably, D0 is unbounded and consists of an in-
finite number of connected components that are situated
along the u and u0 axes [panels (B)–(F) of Fig. 1]. The con-
nected components can be enumerated by symbols fAkg; k ¼
61;62;… (the components along u axis) and fBkg; k ¼
61;62;… (the components along u0 axis). The central con-
nected component is denoted by O. The basic assumption for
the applicability of the coding approach is that the connected
components are curvilinear quadrangles with opposite sides
lying on the boundaries of Uþp and U"p . Due to geometric
properties of the spirals, it is quite natural to assume that all
connected components fAkg; fBkg; k ¼ 61;62;… satisfy
this condition. However, central connected component O
may be such a curvilinear quadrangle (cases A, B, F in Fig.
1), or may be not (cases C, D, E in Fig. 1), depending on the
values of x and a.

3. Coding

Assume that the parameters x and a are such that all con-
nected components in D0 are curvilinear quadrangles. Then,
our numerical study indicates that T"1Ak; T"1Bk; k ¼ 1;
2;…, and T"1O are infinite curvilinear strips situated inside
Uþp and crossing all the connected components. Similarly,
TAk, TBk, k ¼ 1; 2;…, and TO are also curvilinear strips situ-
ated inside the U"p set that also cross all the connected compo-
nents. T-pre-images of the sets

T"1Z \ Al; T"1Z \ Bl; T"1Z \ O; l ¼ 61;62;…;

Z 2 fO;Ak;Bk; k ¼ 61;62;…g;

are infinite curvilinear strips belonging to T"1Z. Similar
statement is also valid for T-images of TZ \ Al; TZ \
Bl; TZ \ O l ¼ 61;62;… which are placed inside TZ, with
Z 2 fO;Ak;Bk; k ¼ 61;62;…g. Therefore, the situation is
similar to one considered in Ref. 35, and we conjecture that
the dynamics of T is similar to dynamics of the Poincar"e
map from Ref. 35, and that there is one-to-one correspon-
dence between all nonsingular solutions of Eq. (21) and bi-
infinite sequences f…Z"1; Z0; Z1;…g based on the infinite
alphabet of symbols Zm 2 fO;Ak;Bk; k ¼ 61;62;…g. The
orbit corresponding to code f…; Z"1; Z0; Z1;…g visits suc-
cessively connected components Zm, m ¼ + + + ;"1; 0; 1;….
Note that the orbit corresponding to the soliton solution starts
and ends in the central connected component; therefore, it
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has the code of the form f…;O;O; Z1; Z2;…; ZN;O;O;…g
where symbols Z1 and ZN are different from O.

4. Solitons

Regardless of whether the coding conjecture is true or
false generically, it might be used for the prediction of pos-
sible shapes of nonlinear modes. Specifically, the location
of the connected components in the plane of ðu; u0Þ, and the
order in which the orbit visits them, yields comprehensive
information about the nonlinear mode. In the present model,
the predicted nonlinear modes were found numerically in
all the cases considered. Some of soliton solutions of Eq.
(21) and their codes are shown in Fig. 2 for x¼"1,
a¼"0.1. The soliton in panel (B) is the FS, cf. Ref. 36,
with code f…;O;A1;O;…g, or f…;O;A"1;O;…g, which
is its symmetric counterpart. Another particular solution,
shown in panel G, represents the above-mentioned DSs (di-
pole solitons), which are essentially confined to a single
cell of the nonlinear lattice. This solution corresponds to
code f…;O;B"1;O;…; g, and its symmetric counterpart is
f…;O;B1;O;…g. The DSs are similar to the (mostly unsta-
ble) SFSs reported in Refs. 15–20 in models with the linear
lattice potential, as both soliton species feature the antisym-
metric profile squeezed into a single cell of the underlying

lattice (the linear one, in the case of the SFSs, and the non-
linear lattice, as concerns the DSs). The area of the
localization of the soliton corresponding to code
f…;O; Z1; Z2;…; ZN;O;…g, where the symbols Z1 and ZN

are different from O, is Np, i.e., it extends over N periods of
the underlying nonlinear lattice. In particular, the solitons
with codes f…;O;O; Z;O;O;…g; Z 6¼ O (named elementa-
ry solitons in what follows below), are localized, essential-
ly, in one period of the lattice.

III. THE LINEAR-STABILITY ANALYSIS

As said above, stability is a critically important issue for
solitons supported by lattice potentials. Here, we address the
stability of solitons produced by Eqs. (1) and (21). It has
been shown in Sec. II that there exist a great variety of
shapes of such modes. Thus, adopting the nonlinear lattice as
given by Eq. (20), we aim to study the linear stability of soli-
tons generated by equation

iWt þWxx þ ðaþ cos 2xÞjWj2W ¼ 0: (22)

Following the well-established approach, (see, e.g., Ref.
10), we consider small perturbations around a stationary so-
lution W0ðx; tÞ ¼ uðxÞe"ixt in the form of

FIG. 1. Uþp (dark grey color), U"p (light
grey color), and their intersection D0

(black color) in the model based on
Eq. (21), at different values of parame-
ters x and a: (a) x¼"1, a¼"1.1; (b)
x¼"1, a¼"0.3; (c) x¼"1,
a¼ 0.15; (d) x¼"1, a¼ 0.5; (e)
x¼"0.7, a¼ 0.55; (f) x¼"1.5,
a¼ 0.
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Wðt; xÞ ¼ ½uðxÞ þ ~Uðt; xÞ-e"ixt; j ~Uðt; xÞj. 1; (23)

where u(x) is a localized solution of Eq. (21), and the pertur-
bation satisfies the linear equation

i ~Ut þ ~Uxx þ x ~U þ ðaþ cos 2xÞu2ð2 ~U þ ~U
/Þ ¼ 0; (24)

where asterisk means complex conjugate. Seeking solutions
to Eq. (24) as

~Uðt; xÞ ¼ ðvðxÞ þ wðxÞÞekt þ ðv/ðxÞ " w/ðxÞÞek/t; (25)

we arrive at the eigenvalue problem

FIG. 2. Numerically found solutions of Eq. (21) and their codes for parameters x¼"1, a¼"0.1; (a) U6
p sets; (b)–(j) the profiles of solitons together with their

codes.
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LY ¼ kY; (26)

L ¼ i
0 L0

L1 0

" #
; Y ¼ v

w

" #
; (27)

where

L0 ¼ @xx þ G0ðxÞ; G0ðxÞ ¼ xþ ðaþ cos 2xÞu2;

L1 ¼ @xx þ G1ðxÞ; G1ðxÞ ¼ xþ 3ðaþ cos 2xÞu2:

The soliton is linearly unstable if the spectrum produced by
Eq. (26) contains at least one eigenvalue k with a non-zero
real part, <ðkÞ > 0. Otherwise, the solitons are linearly
stable.

Equation (26) generates the spectrum consisting of con-
tinuous and discrete parts. It is easy to show that the continu-
ous spectrum is represented by two rays, ½"ix;þi1Þ and
ð"i1; ix-, if x< 0, and by the whole imaginary axis, if
x> 0. The discrete spectrum includes zero eigenvalue k¼ 0.
Other eigenvalues of the discrete spectrum appear in quadru-
ples; since if k is an eigenvalue, then –k, k*, and –k* are
eigenvalues too.

To find discrete eigenvalues numerically, the Fourier
Collocation Method (FCM)10 was used. This method is very
efficient to find exponential instabilities that appear due to
real eigenvalues. However, it is known that it can miss the
situations of weak oscillatory instabilities caused by quartets
of complex eigenvalues with small real parts (see e.g., Ref.
39) where more sophisticated methods, such as Evans func-
tion method,8 must be applied. With the help of FCM, a great
number of stationary solutions of Eq. (22), represented by
different codes, were analyzed. Due to the infinite number of
essentially different solutions, it is not possible to perform a
comprehensive stability analysis of all localized solutions,
even of all elementary solitons. However, we observed that a
majority of the solitons are linearly unstable, thus being
physically irrelevant solutions. Stable solitons can be catego-
rized as follows:

(a) Among the elementary solitons, it was found that FS
and DS are linearly stable, under some restrictions on
x and a. Other elementary solitons were found to be
unstable. Note that FSs are considered as stable solu-
tions in models with linear lattice potentials, see Ref.
36 and references therein, while the SFSs are chiefly
unstable in that case, having a small stability region20

(strictly speaking, FSs in models with linear lattice
potentials may also feature a very weak oscillatory in-
stability, having at the same time great lifetime, see
Ref. 39). Therefore, stable DSs supported by the non-
linear pseudopotential, whose shape is very similar to
that of the chiefly unstable SFSs in the systems with
linear lattice potentials, deserve a detailed consider-
ation, which is given in Sec. IV. It includes not only
numerical results but also analytical ones based on VA.

(b) There are stable bound states of FSs – for instance, with
codes f…;O;A1;A"1;A1;O;…g;f…;O;A1;O;A"1;O;…g.
However, other bound states of these modes may be
unstable.

Stability spectra for some solitons and their bound states
are shown in Fig. 3. These examples adequately represent
the generic situation.

IV. DIPOLE SOLITONS (DSs)

A. The variational approximation

Some general features of soliton solutions of Eq. (21)
can be obtained by means of the VA, using the fact that Eq.
(21) for the stationary states can be derived from Lagrangian

L ¼
ðþ1

"1

1

2
u0ð Þ2 " 1

2
xu2 " 1

4
aþ cos 2xð Þ½ -u4

% &
dx: (28)

In Ref. 36, VA was successfully applied for analysis of FS.
In that study, the soliton was assumed to be bell-shaped, and
the following ansatz was used:

u xð Þ ¼ A exp " x2

2W2

" #
: (29)

The VA had yielded correct predictions for the existence of
the minimal norm:

N ¼
ðþ1

"1
u2ðxÞdx ¼

ffiffiffi
p
p

A2W; (30)

for the FS and the existence of an amplitude threshold for
stable solitons.

A similar analysis for the DS may be based on the sim-
plest spatially odd ansatz,

u xð Þ ¼ Ax exp " x2

2W2

" #
: (31)

The maximum value of u(x), which is
ffiffiffi
e
p

AW, is situated at
xmax ¼ W; therefore, W may be regarded as the half-width of
the DS. Norm N of ansatz (31) is

N ¼
ffiffiffi
p
p

2
A2W3: (32)

Equation (32) makes it possible to eliminate the amplitude A
in favor of the norm:

A2 ¼ 2ffiffiffi
p
p N

W3
: (33)

The substitution of ansatz (31) into Lagrangian (28) and cal-
culation of the integrals yield the following effective
Lagrangian:

Leff ¼ "
x
2

N þ 3N

4W2
" 3aN2

16
ffiffiffiffiffiffi
2p
p

W

"N2e"W2=2

16
ffiffiffiffiffiffi
2p
p

W
3" 6W2 þW4ð Þ; (34)

where Eq. (33) was used to eliminate A2. The Euler-
Lagrange (variational) equations; following from the effec-
tive Lagrangian, are
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@Leff=@W ¼ 0; (35)

@Leff=@N ¼ 0; (36)

with W and N treated as free variational parameters for giv-
en x.

Hereafter, we consider the case a¼ 0 in more detail.
Equation (35) implies the following relation between N
and W:

N ¼
48

ffiffiffiffiffiffiffiffi
p=2

p
exp W2=2
' (

W 3þ 9W2 " 9W4 þW6ð Þ : (37)

This relation is plotted in Fig. 4 (left panel, thin dashed
line) where it attains a minimum value

NðVAÞ
min ' 19:41; (38)

at W ¼ W0 ' 0:806:
An essential feature of the dependence is that it predicts

the existence of a minimum norm necessary for the DS to ex-
ist. Furthermore, it follows from Eq. (37) that the range of
the variation of W predicted by the VA is finite,

0 < W < W/VA ' 1:21: (39)

FIG. 3. Localized solutions, their codes, and linear-stability spectra for x¼"1, a¼"0.2.
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The second variational equation, Eq. (36), yields, after
additional algebraic manipulations, a monotonic dependence
of x on W:

x ¼ 3

2
+ "9þ 33W2 " 13W4 þW6

W2 3þ 9W2 " 9W4 þW6ð Þ : (40)

It may be combined with Eq. (37) to apply the VK stability
criterion,37 dN=dx & ðdx=dWÞ"1dN=dW < 0. Because it
follows from Eq. (40) that dx/dW is always positive, the VK
criterion predicts that stable is the left branch in Fig. 4, with
dN/dW< 0, which corresponds to interval

0 < W < W0 ' 0:806; (41)

while the right branch, with dN/dW> 0, i.e., W>W0, is
unstable.

Note that Eq. (40) is compatible with the above-
mentioned localization condition, x< 0, at 0<W< 0.556,
while the fact that the VA predicts x> 0 at W> 0.556 is a
manifestation of its inaccuracy. It is worthy to note that the
predicted stability region tends to have x< 0, i.e., the stabili-
ty is predicted in the region where the VA is more accurate.

To summarize, the predictions of VA are

(i) the existence of the minimal norm of the DS;
(ii) the existence of its maximum width;
(iii) the existence of the maximum width of DSs to be

stable.

In what follows below, we show that these predictions
qualitatively agree with results of numerical computation.
The application of the VA to more complex solitons is much
more cumbersome and is not presented here.

B. Numerical results for stationary dipole solitons

The numerical computation of DS profiles was carried
out by dint of the shooting method. The results can be sum-
marized as follows.

(1) The DS family may be parameterized by x or W, which
is here defined as the distance of maxima of the wave
field from the central point. The amplitude and norm of
the DS grow as the soliton shrinks (i.e., when W tends to

zero), and in this limit, x tends to –1. Examples of DS
profiles for a¼ 0 and x¼"15 (thin line), x¼"7 (dash
line), and x¼"1 (thick line) are depicted in Fig. 5. The
dependence of norm N on W is shown in Fig. 4 (bold line
in the left panel and the right panel). It is seen in Fig. 4
that this dependence agrees well with VA results in the
interval on the left of W/comp, the maximum width of DS.
Also, it follows from Fig. 4 that there is a minimum
norm Nmin necessary for the existence of the DS, hence
the above-mentioned prediction (i) of the VA holds.

(2) The DS exists for x<x*. At x¼x*'" 0.265, the DS
family, coded by f…;O;B61;O;…; g, undergoes a
saddle-node bifurcation and annihilates with the family
coded by f…;O;A71;B61;A61;O;…g (see Fig. 6). This

FIG. 4. Left panel: the relation between the norm and width of the DS, as
predicted by the variational approximation, (thin dashed line, a¼ 0). Bold
line shows the same relation for numerically computed DS. Right panel: the
magnification of the bold line in small rectangle in the left panel.

FIG. 5. Numerically found profiles of the dipole solitons for x¼"15 (thin
line), x¼"7 (dash line), and x¼"1 (thick line), with a¼ 0 in Eq. (21).

FIG. 6. (A) The bifurcation diagram for solitons in Eq. (21) with a¼ 0: the
family of single-cell dipole solitons corresponding to code f…;O;B61;O;…g
coalesces at x¼x* with family f…;O;A71;B61;A61;O;…g. The bottom
branch (dashed line) represents fundamental solitons, showing that, on the con-
trary to the SFSs in models with linear lattice potentials, the norm of the dipole
solitons is higher than the norm of the fundamental solitons at the same value
of x. (B) Dependence of the energy E on N for the dipole-soliton branch. Two
profiles of solitons coexisting at x¼"0.8 are displayed in the right panels (a)
and (b), and the corresponding points are marked in panels A and B.
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implies that width W of the DSs is bounded from above;
hence, prediction (ii) of VA, concerning the existence of
the maximum width of the DS, holds too. However, the
estimation of VA for the greatest width of the dipol soli-
ton, W/VA, is quite rough when compared with computed
value W/comp, see Fig. 4.

Note that the panel A in Fig. 6 also demonstrates that,
although the single-cell DS is very similar, in its shape, to
the SFS in systems with linear lattice potentials, the DS in
the present model is not subfundamental, as its norm is
higher than that of the FS existing at the same x. The panel
B of Fig. 6 presents the dependence of energy E versus the
norm N. It follows from Fig. 6 that the energy for the branch
coded by f…;O;A71;B61;A61;O;…g is greater than the
energy of the DS branch.

Thus, the predictions of the VA qualitatively agree with
the numerical results, although the accuracy of the VA is
rather low, as ansatz (31) is not accurate enough. For in-
stance, the VA-predicted minimum norm, given by Eq. (38),
is smaller than the respective numerical value,

NðnumÞ
min ' 27:5; (42)

by '30%. The ansatz may be improved by adding more
terms to it, but then the VA becomes too cumbersome.

C. Evolution of dipole solitons

To check the above-mentioned prediction (iii) of the VA
concerning the stability of the DSs, we have performed simu-
lations of the evolution of these solitons in the framework of
Eq. (1), with U(x)¼ 0 and P(x) corresponding to Eq. (21).
The simulations were run by means of the Trofimov-Peskov
finite-difference numerical scheme.40 The scheme is implicit,
its realization implying iterations for the calculation of val-
ues in each temporal layer, but it allows running computation
with larger temporal steps. In order to reveal instability (if it
is), the soliton profile was perturbed at the initial moment
with a small spatial perturbation. A finite spatial domain
[–4p, 4p] was used, with reflection of radiation from bound-
aries eliminated by means of absorbing boundary conditions.

FIG. 7. Typical examples of dipole solitons, their linear-stability spectra, and unstable and stable temporal evolution, for a¼ 0 in Eq. (21). Additional exam-
ples of the evolution are shown below in the lower panel of Fig. 8.
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Typical results of the simulations are presented in Fig.
7, for a¼ 0 in Eq. (21). One can conclude that the VA pre-
diction (iii), based on the VK criterion, is generally valid.
The results are summarized in the (x, N) plane, as shown in
Fig. 8. The DS is stable for the values of x corresponding to
the slope of the N(x) curve situated on the left of the mini-
mum point xmin ' "0:66, and transforms into FS on the
right of this point. The border between the stability and insta-
bility regions in the top panel of Fig. 8 is fuzzy. Within this
“fuzzy area,” the evolution of initial DS profile strongly
depends on the shape of imposed perturbation and parame-
ters of the numerical method.

V. CONCLUSION

The mathematical issue considered in this work is the
classification of families of solitons and their bound states in
the model of the nonlinear lattice, which is represented by the
periodically varying nonlinearity coefficient. A condition nec-
essary for the existence of the infinite variety of the bound
states is that the local coefficient must assume both positive
and negative values. Then, the analysis is performed for the
physically relevant problem, which may find direct applica-
tions to Bose-Einstein condensates and planar waveguides in
nonlinear optics: finding two branches of the DSs (dipole soli-
tons), whose antisymmetric profile is confined, essentially, to
a single cell of the nonlinear lattice. The shape of these soli-
tons is very similar to that of the subfundamental solitons,
which are known in models with usual linear lattice potentials,
where they are chiefly unstable. An essential finding reported
here is that one of two branches of the single-cell DS family
which satisfies the VK (Vakhitov-Kolokolov) criterion, is
completely stable. Also, it was found that DSs belonging to
the unstable branch evolve into stable FSs. These results were
obtained by means of numerical methods and also, in a quali-
tatively correct form, with the help of the VA (variational ap-
proximation). Besides that, it was found that particular species
of FS bound states are stable too.
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