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Thermal radiation dynamics in two parallel plates: The role of near field
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The temperature dynamics of the radiative heat propagation in a multilayer structure is theoretically treated
with a formalism combining the scattering matrix and Green’s-functions methods. The time evolution of the
temperature of parallel plates of silicon carbide in vacuum is simulated for different interplate distances and
thicknesses of plates. The characteristic radiative heat exchange time and temperature of the plates at stationary
state are determined from the time evolutions. The threshold interplate distance which separates heating and
cooling regimes for the sink plate is found. We show that the variation of the interplate distance allows us to
control the relaxation processes in the system of absorber and emitter.
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I. INTRODUCTION

The character of the radiative heat transfer from one
body to another strongly depends on the shape and the
distance between them. The Stefan-Boltzmann law predicts
the power of the radiative heat exchange between two objects
as σ (T 4

2 − T 4
1 ), where σ is the Stefan-Bolzmann constant and

T1,2 are the temperatures of objects. The applicability of this
law is limited by the following constraints. The first constraint
is that the Stefan-Bolzmann law is related only to blackbodies.
The second constraint is that the distance between the heat
source and sink, d, must be large enough compared to the
characteristic wavelength of thermal emission. At the same
time, it was shown in many publications that when the distance
between the objects is much smaller than the characteristic
wavelength of thermal emission the heat transfer intensity can
be sufficiently enhanced [1,2]. The enhancement of radiative
heat transfer intensity in the near field is due to coupling of
evanescent photons which correspond to the surface states such
as plasmon polaritons and phonon polaritons. In this case,
thermal radiation between two bodies exceeds that between
two blackbodies in the far field by orders of magnitude
[3]. Such drastically enhanced heat transfer phenomena can
immediately lead to design of microstructures and nanostruc-
tures with artificially engineered thermal conductivities for
applications where effective and efficient heat management
is necessary. The potential applications of near-field effects
include thermovoltaics [4–6], thermal emission control [7–12],
heat-assisted magnetic recording [13], etc. There are series
of theoretical studies in recent years concerning the near-
field-mediated heat transfer between two bodies of various
geometries (see, for example, [3,14–35]). Experimentally,
enhancement of heat exchange between two bodies in the
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near-field limit has been demonstrated for plane-plane and
sphere-plane geometry.

The previous theoretical and experimental efforts focus
almost exclusively on steady-state heat transfer problems
where heat source, sink, and boundary conditions are defined
irrespective to time. In reality, systems are subject to perturba-
tions; therefore the transient heat transfer plays an important
role for the systems’ overall thermal performance. Even for
many steady-state heat transfer problems, it is important to
know how long it takes for a system to achieve stationary state
after its heat source is turned on. Intuitively we understand that
a decrease in distance between a heat source and sink leads
to an enhancement of the radiative heat transfer coefficient
and, therefore, to a shortening of time for the system to reach
stationary state. However, a more accurate assessment of the
heat transfer dynamics should consider complications such
as the temperature-dependent mass heat capacity, density,
and dielectric permittivity of materials, which are all time-
varying parameters. There are very few theoretical studies
addressing transient radiative heat exchange between bodies,
with consideration of near-field tunneling.

Very recently, Messina et al. have simulated dynamics
of heat transfer in systems of multiple dipoles [36]. They
have shown that the time evolution of the temperatures in
a three-body configuration strongly depends on the relative
spatial localizations of the bodies. In [37] it is demonstrated
theoretically that it is possible to exercise coherent control
of the temperature in nanostructures by laser fields. The
authors of [38] studied the radiative cooling of polar and
metallic nanoparticles immersed in a thermal bath close to
a partially reflecting surface and demonstrated the existence
of an oscillating behavior for the thermal relaxation time
with respect to the separation distance from the surface, an
analog of Friedel oscillations in Fermi liquids. In [39] the
temporal evolutions of metallic nanoparticles temperatures
are analyzed and it is shown that it is possible to create a
nanoscale temperature distribution in an ensemble of metallic
nanoparticles with the aid of laser coherent control, without the
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need for nanofabrication. Biehs and Agarwal have developed
the dynamical quantum theory of heat transfer between two
nanosystems and determined the heat transfer rate between
two spherical nanoparticles [40]. In [41] the time evolution
of temperatures of two different spheres was studied in the
context of thermal rectification in near-field electromagnetic
thermal transfer. Finally, in [42–45] the authors studied the
radiative heat transfer occurring between arbitrary bodies in
the nonequilibrium case where each body and the environment
are at different temperatures.

In contrast to the aforementioned works, in the present
paper we consider the phenomenon of transient radiative heat
exchange between two parallel plates. Silicon carbide (SiC) is
chosen for the plate material for its phonon resonances at long
infrared range. Temperature-dependent material parameters
are taken into account in our treatment, which has not been
done before. Different aspects of radiative heat exchange
dynamics when the distance between plates varies from 1 nm
to 1 mm are studied. We simulated the time evolutions of
temperature of the plates and determined the characteristic
times it takes for a system to reach stationary state, τSS. It
is found that the dependence of τSS on the distance between
plates and the thickness of plates is sufficiently different in
near-field and far-field regimes. As a secondary objective,
we show the algorithm of calculation of the radiative heat
propagation inside an arbitrary multilayered structure.

In order to simulate the far-field and near-field radiative
heat exchange between objects, we use the approaches of
fluctuational electrodynamics [3,16]. The thermal radiation
in the system of nonmagnetic layers is treated as an emis-
sion of chaotically oriented oscillating electric dipoles. The
fluctuation-dissipation theorem relates the ensemble average
of the spatial correlation function of the current density and the
mean energy of Plank’s oscillator. Then the Green’s-function
method in conjunction with scattering matrix formalism is used
to find the thermal radiation fluxes at an arbitrary distance from
the source. The advantage of this formalism is that it can be
easily realized as an algorithm in programming languages for
numerical computations.

The structure of the paper is as follows. In Sec. II of the
paper we present the static study of the radiative heat exchange
between plates of SiC and demonstrate the near-field coupling
of the plates. In Sec. III A we present the theoretical model for
the simulation of the dynamics of the heat transfer between
parallel plates. In Sec. III B we simulate the transient dynamics
of the radiative heat exchange between SiC plates. We consider
the characteristic time it takes for plates to reach stationary
state as well as the temperature of the plate in stationary state.
In the Appendices we describe the theoretical approaches for
investigation of the radiative heat propagation in a multilayer.
In particular, we consider the scattering matrix formalism
which is widely used for simulation of the propagation of
plane waves and its analog for evanescent waves in a multilayer
[46–48]. Further, we present the algorithm of calculation of the
radiative heat exchange between the parallel layers.

II. STATIC STUDY OF RADIATIVE HEAT EXCHANGE

Before we describe the physical model for the near-field
dynamics simulation, let us focus on the radiative heat

FIG. 1. (Color online) Intensity of the heat transfer from one SiC
plate to another as a function of the distance between plates, d ,
calculated for different thicknesses of plates, h. Inset: Sketch of the
structure.

exchange between objects without considering the temporal
evolution of temperatures. We will need the results of this
section later for an explanation of some of the effects in
the transient radiative heat transfer. We consider a problem
of heat exchange between two parallel plates of silicon
carbide surrounded by vacuum (see inset in Fig. 1). The
frequency-dependent relative permittivity of silicon carbide
(SiC) is approximated by the oscillating Lorentz model:

εSiC = ε∞

[
1 + ω2

L − ω2
T

ω2
T − ω2 − iγ ω

]
, (1)

and the parameters of oscillator are ωL = 182.53 THz,
ωT = 149.37 THz, γ = 0.8966 THz, and ε∞ = 6.7. The
dispersion of the relative permittivity of SiC supports the
surface phonon-polariton at the vacuum-SiC interface [3]. The
horizontal asymptote of the surface phonon-polariton branch
has the frequency of 178.4 THz. This means that if two plates
of SiC are separated by a thin vacuum gap then the resonant
penetration of photons from one plate to the other is possible.

The emission of thermal radiation is a quantum-mechanical
process; however, it can be considered electrodynamically
[3,19]. In this case, the thermal radiation is described as a
fluctuating electromagnetic field generated by chaotic motion
of charged particles inside the body. Mathematically, the cor-
responding current densities, �J (�r ′), and electric and magnetic
fields of thermal radiation, �E(�r) and �H (�r), are related via the
Green’s-function formalism:

�E(�r,ω) = iω

∫
V

GE(�r,�r ′,ω) �J (�r ′,ω)dV, (2a)

�H (�r,ω) =
∫

V

GH (�r,�r ′,ω) �J (�r ′,ω)dV, (2b)
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where GE and GH are electric and magnetic dyadic Green’s
functions. The z projection of the time-averaged Poynting
vector is expressed as [19]

Sz(z,ω) = 2Re[〈ExH
∗
y − EyH

∗
x 〉]. (3)

The fluctuation-dissipation theorem connects the ensemble
average of the spatial correlation function of the current
densities and the mean energy of Planck’s oscillator at a given
temperature �(ω,T ):

〈Jα(�r,ω)Jβ(�r ′,ω)〉 = ωε′′
s (ω)

π
�(ω,T )δ(�r − �r ′)δ(ω − ω′)δαβ,

(4)

where α and β refer to orthogonal components x, y, or z.
Taking into account Eqs. (2)–(4) we obtain the following
expression for the spectral intensity of thermal radiation
propagating along the z axis:

Q(ω,z,T ) = 2ω2�(ω,T )

πc2

×Re

[
iε′′

s

∫
V

(
GE

xαGH∗
yα − GE

yαGH∗
xα

)
dV

]
. (5)

The intensity of thermal radiation is then calculated as an
integral of spectral intensity:

I (z,T ) =
∫ ∞

0
Q(ω,z,T )dω. (6)

The dyadic Green’s functions GE and GH are determined
by the spatial distribution of dielectric permittivity in the
sample and in the case of the layered structures can be found
by the scattering matrix method (see Appendixes A and C).

Let us calculate the energy absorbed in plate 2 due to the
thermal emission by plate 1 as a function of the distance
between plates, d. We assume that the temperature of plate
1 is fixed at 300 K. Here, the temperature of the plate 2 is
not specified as we do not consider the emission from plate
2. We calculate the intensity of the heat transfer from plate 1
to plate 2, I12, as a difference between intensities of thermal
radiation of plate 1, I1, taken in the vacuum gap and in the upper
semi-infinite vacuum: I12 ≡ I1(z2) − I1(z3), where z2 and z3

are any z coordinates in the vacuum gap and in the upper
semi-infinite vacuum correspondingly (see inset in Fig. 1).

The intensity of the heat transfer from plate 1 to plate 2, I12,
is shown in Fig. 1 as a function of gap size, d, calculated for
different thickness of plates, h. It can be seen from Fig. 1 that
for the gap size small enough compared with the wavelength
of surface phonon resonance at the SiC-vacuum interface
(≈10 μm) the heat transfer intensity exceeds that of the
blackbody by one to five orders of magnitude. This fact is
well studied (see, for example, [3,17,49]) and is explained
by coupling of the surface phonon-polariton resonances of
the plates. Since the dispersion curves of these resonances
are below the light line, the coupling takes place only for
evanescent waves of thermal radiation. With decrease of d,
the heat transfer intensity increases as 1/d2 for d < 100 nm.
This dependence is in agreement with [50]. With increase of
the separation distance d, coupling becomes weaker. For d >

30 μm the function I12(d) is constant, which means that only
propagating waves contribute to the heat exchange between

FIG. 2. (Color online) Intensity of the heat transfer from one SiC
plate to another as a function of the thickness of plates, h, calculated
for different distances between plates, d .

plates. This is in accordance with Wien’s law, which states
that the heat transfer intensity does not depend on the distance
between objects. Based on the nature of the dependence I (d),
in Fig. 1 we can refer to the range of distances d < 100 nm as
the near-field regime and the range d > 30μm as the far-field
regime.

Figure 2 shows the heat transfer intensity as a function
of the thickness of plates, h, calculated for the different
distances d. One can see that in the near field I12 is almost
independent of the thickness of plates (see curves d = 1, 10,
and 100 nm in Fig. 2). Small oscillations of the heat transfer
intensity for h < d are due to the interference effect of guided
surface phonon polariton waves in the plates. For h > d these
oscillations do not exist since the penetration depth of the
evanescent waves of thermal radiation in SiC is very small
[51]. Hence, the heat exchange between plates in the near field
is determined by emission and absorption of the thin layers
adjacent to the separation vacuum gap. In the far field, for
small h the heat transfer intensity increases with increase of
h since the thicker the emitting plate the more thermal energy
it radiates. However, when the thickness of plates h is high
enough compared to the thermal emission wavelength, the
heat transfer intensity saturates to a constant value.

In order to demonstrate the coupling of the surface phonon
polariton resonances between plates, let us calculate the
spatial distribution of the electric field of vertically oriented
oscillating electric dipoles located on the plane in the middle
of plate 1. The method of dipole source terms is used for
calculation of electric field and is described in Appendix B. We
calculate the x component of the electric field for the angular
frequency ω = 179.5 THz and the x component of wave
vector kx = 27.5k0, k0 = ω/c. The values of the parameters
ω and kx correspond to maximal surface phonon polariton
coupling between 100-nm-thick plates separated by a 100-nm
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FIG. 3. (Color online) Spatial distributions of the x component of the electric field of a plane of vertically oriented oscillating dipoles
located in the middle of the bottom SiC plate (dotted line). SiC plates are separated by a (a) 100-nm or (b) 300-nm vacuum gap. Parameters
of calculation are the following: ω = 179.5 THz; kx = 27.5k0, where k0 is the wave vector in vacuum; and p polarization. Interfaces between
layers are shown by dashed lines. The color scale on the right shows the calculated electric-field strength in arbitrary units.

vacuum gap. The maximal coupling implies the maximization
of the integrands over kx and ω in Eqs. (C1) and (C3) from
Appendix C. The spatial distribution of the x component of
the electric field is shown in Fig. 3(a). The field distribution
clearly suggests the resonant coupling between surface phonon
modes in two plates. For comparison, Fig. 3(b) shows the
electric-field distribution calculated for the same ω and kx

but for d = 300 nm. Figure 3(b) demonstrates the absence of
coupling of the surface phonon polariton resonances of the
plates. For the other pair (ω, kx) the coupling at d = 300 nm
takes place; however, the efficiency of this coupling is lower
than at d = 100 nm.

We have described some aspects of the radiative heat
exchange between two SiC plates and have shown that the
distance between plates determines the coupling efficiency
of the surface phonon polariton modes. As expected from
physical grounds, the higher the coupling efficiency the faster
thermal power can be transferred from one plate to the other.

III. TRANSIENT DYNAMICS OF HEAT TRANSFER
BETWEEN TWO PLATES OF SiC

A. Theoretical model

In this section we consider the dynamics of the radiative
heat exchange between two parallel plates separated by a
vacuum (see Fig. 4). We aim to calculate the temperatures
of the bottom and top plates, T1 and T2, as a function of
time, in the assumption that the temperature of a plate is
changed only due to the radiative heat transfer from another
plate. In particular, we exclude such ways of heat transfer
as convection and conduction via heat carriers (phonons or
electrons) since the plates are separated by a vacuum gap. In
the below-described model, the thicknesses of plates d can be
larger or smaller than the gap size h. The range of parameters
d and h where the model is applicable is explicitly specified
further in the paper. We assume that the temperatures T1,2

can vary from 0 to 2650 K, the melting point of SiC. The
temperature of the surroundings of the plates in Fig. 4 is 0 K.

We start by the energy balance equation of plate 2 in the
time interval dt :

Cv2dT2 = dEin − dEout, (7)

where Cv2 is the heat capacity at constant volume of plate 2,
dEin is the “incoming” energy of thermal radiation which is
emitted by plate 1 during time interval dt and reaches plate
2, and dEout is the “outgoing” energy which is dissipated in
layer 2 during time interval dt due to the thermal radiation.
Dividing Eq. (7) by mass ρ2h2dS and time dt , we obtain

Cv2

ρ2h2dS
× dT2

dt
=

(
dEin

dtdS
− dEout

dtdS

)
× 1

ρ2h2
, (8)

FIG. 4. (Color online) (a) Sketch of the two-plates structure and
(b) thermal radiation fluxes from the top and bottom plates.
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where ρ2 is the density of the material of plate 2, dS is
the elementary square, and h2 is the thickness of plate 2.
Taking into account that cv2 ≡ Cv2/ρ2h2dS is the mass heat
capacitance, we can write the energy balance equation in the
following form:

ρ2cv2h2
dT2(t)

dt
= Iin(t) − Iout(t), (9)

where incoming intensity Iin ≡ dEin/dtdS and outgoing
intensity Iout ≡ dEout/dtdS can be found by the method of
oscillating dipoles and the fluctuation dissipation theorem (see
Appendix C).

Let us consider the intensities of the heat propagation at
coordinates z1, z2, and z3 radiated by plates 1 and 2 as shown
in Fig. 4. Taking into account that

Iin = I1(z2), (10)

Iout = I2(z2) + I1(z3) + I2(z3), (11)

we can obtain the integrodifferential equation for the temper-
ature T2(t):

α2
dT2(t)

dt
= I1(z2,T1) − I2(z2,T2) − I1(z3,T1) − I2(z3,T2),

(12)

where α2 ≡ ρ2cv2h2 and

Ii(zj ,Ti) =
∫ ∞

0
Q(ω,zj ,Ti)dω, (13)

where i = 1 or 2, j = 2 or 3, and Q(ω,zj ,Ti) is the spectral
intensity of thermal radiation from plate i at coordinate zj and
is calculated by Eq. (C1) (see Appendix C). Since the plates
are in vacuum, then the coordinates zj can be chosen by any
means in such a way that they are topologically located as in
Fig. 4.

It is necessary to note here that the set of Eqs. (12) implies
that the spatial temperature distributions are homogeneous
inside the plates. This condition is satisfied when the radiative
heat transfer intensities Ii(zj ,Ti) between plates are small
enough compared with the heat transfer intensities inside the
plates due to thermal conduction via heat carriers.

Before proceeding to describe the results of the simula-
tions, we have to pay special attention to the condition of
applicability of Eq. (12). Let us compare the radiative heat
transfer intensity between plates, Ir , and the heat transfer
intensity inside the plates due to thermal conduction via
heat carriers, Ic. It can be seen from Figs. 1 and 2 that the
intensity of the radiative heat transfer which is induced by a
temperature difference of 300 K between plates can be roughly
approximated by a simple formula:

Ir (h,d) ≈
{

108/d2 if d < 104 nm√
h/10 if d � 104 nm

, (14)

where gap size d and thickness of plates h are expressed in
nanometers. The heat transfer intensity inside a plate due to
thermal conduction via heat carriers is found by the following
formula:

Ic ≈ κ
�T

h
, (15)

where κ = 3.6 × 103 W m−1 K−1 is the thermal conductivity
of SiC and �T is also assumed to be 300 K. The condition
of applicability of Eq. (12) is the following: Ic � Ir . This
inequality ensures that the energy fluxes supported by heat
carrier motion inside the plates are large enough to treat the
spatial temperature distribution of the plates as homogeneous.
After some arithmetic calculations we obtain

h � 107d2 if d < 104 nm
(16)

h � 1032/3 if d � 104 nm.

This condition is well satisfied in the rectangle (h,d) : {0 �
h � 106 nm} ∪ {0 � d � 106 nm}. Thus, in order to make
sure that Eq. (12) can be used for simulation of the temperature
dynamics in the the system of SiC plates, we consider only
those values of parameters d and h that fall within this
rectangle.

B. Results of simulations

Let us now simulate the time evolution of the temperature
of the system of two parallel plates of SiC. We assume that
the temperature of plate 1, T1(t), is constant and equals 300 K
while the temperature of plate 2, T2(t), changes in time until
the stationary state is established. The initial value of the
temperature of plate 2 is denoted as T2(0). Our goal is to
analyze the behavior of the function T2(t) for different T2(0),
thicknesses of plates, d, and separation distances between
plates, h. In calculations, the temperature dependence of the
mass heat capacity of SiC is accounted for by the Debye model:

cv(T ) = 9nakNAT 3

μθ3
D

∫ θD/T

0

x4ex

(ex − 1)2
dx, (17)

where θD is the Debye temperature of SiC and is equal to
1200 K, μ is the molar mass of SiC and is equal to 40.1 g/mol,
na is the number of atoms per unit cell and equals 2 for SiC, k

is the Boltzmann constant, and NA is the Avogadro constant.
The mass density of SiC is 3.21 g/cm3. The temperature
dependencies of the density, refractive index, and extinction
coefficient of SiC are neglected.

In order to find the temperature of plate 2 as a function
of time, T2(t), we solve the integrodifferential equation in the
set of Eqs. (12) which refers to plate 2 (i = 2) taking into
account the initial condition T2(0). The solution T2(t) was
found numerically using the Matlab function ode23tb.

The time evolutions T2(t) are shown in Fig. 5 in logarithmic
time scale for thickness of plates d = 100 nm and an initial
temperature of the absorbing plate T2(0) = 273 K for various
interplate distances. It can be seen from Fig. 5 that for small
separation distances d = 1, 10, or 100 nm the temperature of
plate 2 increases and tends to 300 K. In the case of d = 1 μm,
temperature T2(t) increases; however, it does not reach the
temperature of the heat source. This is explained by the fact
that the heat transfer from plate 1 to plate 2 is so small that it
cannot compensate the decrease of the internal energy of plate
2 due to its thermal emission. With increase of the separation
distance d, the heat transfer intensity becomes smaller and
smaller. At 2.7 μm the temperature T2 does not change in time,
and at d < 2.7 μm the temperature of plate 2 decreases. The
temperature of plate 2 in stationary state, T SS

2 , is determined
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FIG. 5. (Color online) Time evolutions of the temperature of
plate 2 calculated for different distances between plates. The thickness
of the plates is h =100 nm. The initial temperature of plate 2 is 273 K.
T1 = 300 K.

by the energy balance equation for the stationary state:

I2
(
z3,T

SS
2

) + I2
(
z2,T

SS
2

) = I1(z2,T1) − I1(z3,T1), (18)

where the following notation is used: T SS
2 ≡ limt→∞ T2(t).

The left side of Eq. (18) is the energy which is emitted by
plate 2, while the right side is the energy which is absorbed in
plate 2.

The physical process contained in Fig. 5 can be explained
as follows. The thermal emission from plate 1 is absorbed by
plate 2, resulting in change of temperature of plate 2. The
change of temperature of plate 2 leads to the change of energy
loss in plate 2 due to its emission. When thermal radiation
from plate 2 becomes equal to its absorption of radiation from
plate 1, the temperature T2(t) begins to be stationary.

Figure 6 represents the time evolutions T2(t) calculated for
the initial temperatures T2(0) = 50, 300, and 550 K and for two
separation distances d = 100 nm and 100 μm. It can be seen

FIG. 6. (Color online) Time evolutions of the temperature of
plate 2 calculated for distances between plates d = 100 nm and
100 μm and different initial conditions T2(0). The thickness of the
plates is h =100 nm. T1 = 400 K.

FIG. 7. (Color online) Time it takes for plate 2 to reach stationary
state, τSS, and temperature of plate 2 at stationary state, T SS

2 , as a
function of the distance between plates. The thickness of the plates is
h = 100 nm. T1 = 300 K.

from Fig. 6 that the time it takes for plate 2 to reach stationary
state does not appreciably depend on the initial temperature.
Furthermore, as can be seen from Fig. 6, the initial temperature
T2(0) does not influence the temperature of plate 2 in stationary
state. This is in agreement with Eq. (18), which says that the
temperature of plate 2 at stationary state depends only on the
geometrical configuration of the structure, complex dielectric
permittivity of the material, and temperature of the heat source.
One can see from Fig. 5 that the time it takes for plate 2 to reach
stationary state, τSS, increases with increase of the gap size.

Figure 7 shows the dependence of τSS and T SS from
d. When the distance between plates is d < 100 nm (near
field), the time to reach stationary state is relatively short
and increases as d2 increases and the temperature T2 reaches
300 K. The value of the parameter τSS changes from 1.5 μs to
≈15 ms when the distance d increases from 1 to 100 nm. In
the far-field limit (d > 30 μm) τSS = 14.5 s and T SS

2 = 187 K,
and these parameters do not depend on the gap size. In order to
explain the characters of dependencies T SS

2 (d) and τSS(d) in the
near-field and far-field regimes, let us turn to Eq. (9). The right-
hand side of this equation can be represented as the difference
between the intensity of heat transfer from plate 1 to plate
2, I12 = I1(z2,T1) − I1(z3,T1), and the intensity of thermal
radiation emitted by plate 2, I2,rad = I2(z2,T2) + I2(z3,T2). As
it was demonstrated in Figs. 1 and 2, in the near field, I12 is
proportional to d−2 and approximately independent on h, so
that we can write

I12 = 1

d2
× f1(T1), (19)

where f1(T1) is a function of the temperature of plate 1.
Equation (19) assumes that the dependence of the heat
transfer intensity I12 on d is the same for all temperatures
T1 in the temperature range under consideration. Our further
simulations [52] of I12(d,h,T1), which were made for different
temperatures T1, have shown that this assumption is indeed
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FIG. 8. (Color online) Temperature of plate 2 at stationary state
as a two-dimensional function of the distance between plates, d , and
thickness of the plates, h. The near-field and far-field regimes are
separated by black dashed lines. The color scale on the right shows
the calculated values of parameter T SS

2 . The solid line is a contour
line at T SS

2 = 273 K and separates heating and cooling regimes in the
assumption that T2(0) = 273 K. T1 = 300 K.

valid. As for the term I2,rad, the coupling between plates
is dominant compared to the out-coupling to the outer
space, so that I2(z3,T2) � I2(z2,T2). Taking into account that
I2(z2,T2) ∼ d−2 one can rewrite the term I2,rad as

I2,rad = 1

d2
× f2[T2(t)], (20)

where f2[T2(t)] is a function of temperature of plate 2. Based
on Eqs. (19) and (20) one can rewrite Eq. (9) as

ρ2cv2h2
dT (t)

dt
= 1

d2
[f1(T1) − f2(T2], (21)

which gives the expression for the time it takes for plate 2 to
reach stationary state in the near-field regime:

τNF
SS = F (T1,T2(τSS)) × ρcvhd2. (22)

Similarly, we can find the expression for the time it takes for
plate 2 to reach stationary state in the far-field regime:

τ FF
SS = F (T1,T2(τSS)) × ρcvf (h), (23)

where f (h) is some function of h reflecting the fact that in the
far field the heat transfer intensity depends on h (see Fig. 2)
and does not depend on d. Equations (22) and (23) explain the
dependence τSS(d) shown in Fig. 7.

Let us now calculate the parameters T SS
2 and τSS as two-

dimensional functions of the separation distance d and the
thickness of plates h (see Figs. 8 and 9). When the separation
distance is small enough (near field), the heat transfer intensity
I12 is high and the temperature of plate 2 reaches the value of
300 K (see Fig. 8), and the time it takes for plate 2 to reach
stationary state changes as hd2 changes, in accordance with
Eq. (22). In contrast to the near field, in the far field only

FIG. 9. (Color online) Time it takes for plate 2 to reach stationary
state as a two-dimensional function of the distance between plates, d ,
and thickness of the plates, h. The contour lines are shown by black
solid lines. The near-field and far-field regimes are separated by black
dashed lines. The color scale on the right shows the calculated values
of the parameter τ in seconds.

propagating waves contribute to the heat transfer from plate 1
to plate 2. In this case, the heat transfer from plate 1 to plate 2
cannot compensate the thermal radiation losses in plate 2 and
the temperature of plate 2 in stationary state is less than the
temperature of the heat source. The parameter τSS is constant
over distance d and only depends on h. The character of this
dependence is determined by the function f (h) introduced
in Eq. (23). In Fig. 8, the solid line shows the pairs (h,d)
where T SS

2 = T2(0) = 273 K. This line represents the threshold
interplate distance which separates the heating and cooling
regimes under the condition that the initial temperature of
plate 2 is 273 K. The value of the threshold interplate distance
ranges from 560 nm to 2.8 μm depending on the thickness
between plates.

IV. CONCLUSION

Using the method of fluctuational electrodynamics in
conjunction with the scattering matrix formalism, we have
simulated the propagation of thermal radiation in a multilayer
structure with SiC. We have shown that for a two-plate
configuration the intensity of radiative heat exchange is mainly
determined by the vacuum distance between plates while the
thickness of plates does not play a crucial role. This affects the
characteristics of the time evolution of the temperature of the
sink plate. When the separation distance is small (the near-field
regime), the time it takes for the sink plate to reach stationary
state τSS is proportional to hd2 and the temperature of the sink
plate reaches the temperature of the heat source plate. When
the separation distance is large (the far-field regime), τSS does
not depend on d and the temperature at the stationary state of
the sink plate is less than the temperature of the source plate.
Although we have considered heat transfer dynamics of an
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idealized two-plate configuration, our study reveals the most
basic radiative interaction characteristics between two bodies
in vacuum space. The conclusions as well as the method of
simulation of time evolutions can be applied to understand heat
transfer dynamics in more complicated planar structures other
than the described system of two SiC plates. We believe that the
results of this work can be useful for design of more complex
systems where radiative heating is important, such as designs
of absorbers and emitters in solar thermophotovoltaic devices.
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APPENDIX A: SCATTERING MATRIX FORMALISM

The scattering matrix method is a very elegant tool for
simulation of the propagation of plane waves and its analog for
evanescent waves in the layered structure. The system under
consideration (see Fig. 10) consists of N parallel layers placed
between two semi-infinite media. All the layers are assumed
to be isotropic and homogeneous. Thicknesses of the layers
dj (j = 1, 2, . . . , N ), their refractive indices, and extinction
coefficients ñi = nj + ikj are given.

Let us consider complex amplitudes of electric field, E+(z)
and E−(z), of the plane waves propagating in a layered
structure along positive and negative z directions at coordinate
z. We would like to find the relation between the amplitudes
E+(z) and E−(z) taken at two arbitrarily selected coordinates
z′ and z′′. We find this relation in the following form:[

E+(z′′)
E−(z′)

]
= S(z′,z′′)

[
E+(z′)
E−(z′′)

]
, (A1)

FIG. 10. (a) Sketch of the layered structure and (b) amplitudes of
forward and backward traveling plane waves in the layered structure.

where the matrix S(z′,z′′) is called the scattering matrix. The
column on the left-hand side describes the outgoing amplitudes
to the layered substructure, defined by the coordinates z′
and z′′, while the column on the right-hand side stands for
the incoming amplitudes. The matrix Stot ≡ S(z0 − 0,zN + 0)
which connects the vectors of amplitudes taken at immediately
opposite sides of the whole layered structure is called the
total scattering matrix. Here we used the notation z ± 0 =
lim�→0(z ± �).

The procedure of calculation of the scattering matrix
between two z coordinates is described in many publications
[46,47,53,54]. The scattering matrix S(z′,z′′) is found itera-
tively, starting from the obvious equality:

S(z′,z′) = I, (A2)

where I ≡ [1 0
0 1]. At each iteration step we find the new matrix

S∗∗ ≡ S(z′,z∗∗) from the matrix S∗ ≡ S(z′,z∗) calculated in
the previous iteration step. If both points z∗∗ and z∗ lie in layer
j then the elements of the matrices S∗∗ and S∗ are related as

S∗∗
11 = S∗

11e
ikzL, (A3a)

S∗∗
12 = S∗

12e
2ikzL, (A3b)

S∗∗
21 = S∗

21, (A3c)

S∗∗
22 = S∗

22e
ikzL, (A3d)

where ε̃i ≡ ñ2
i , kz = ±

√
(ω

c
)2ε̃j − k2

x is the z component of
the wave vector of the propagating light in layer j and L =
z∗∗ − z∗. The negative sign of the square root is chosen when
arg (ε̃i) > π (see [55]). If the coordinates z∗∗ and z∗ lie at
immediately opposite sides of an interface zj , i.e., z∗∗ = zj +
0 and z∗ = zj − 0 [56], then the relation between matrices S∗∗
and S∗ can be found from the boundary conditions for the
electric field and has the following form:

S∗∗
11 = S∗

11t

1 − S∗
12r

, (A4a)

S∗∗
12 = S∗

12 − r

1 − S∗
12r

, (A4b)

S∗∗
21 = S∗∗

11S
∗
22r

t
+ S∗

21, (A4c)

S∗∗
22 = S∗

22(rS∗∗
12 + 1)

t
, (A4d)

where r and t are the Fresnel coefficients of the j th interface.
Therefore the calculation of the total scattering matrix of
the whole structure, Stot, can be performed by the following
sequence of iterations:

S(z0 − 0,z0 − 0) −→ S(z0 − 0,z0 + 0) −→
−→ S(z0 − 0,z1 − 0) −→ S(z0 − 0,z1 + 0) −→
−→ S(z0 − 0,z2 − 0) −→ S(z0 − 0,z2 + 0) −→ · · ·
−→ S(z0 − 0,zN − 0) −→ S(z0 − 0,zN + 0).

Knowledge of the total scattering matrix of a structure
enables us to determine the reflection, transmission, and
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absorption coefficient of the layered structure at a given
frequency ω:

R ≡ |r|2 = |Stot
21 |2, (A5a)

T ≡ |t |2 = Re[kz(zN + 0)]

Re[kz(z0 − 0)]
|Stot

11 |2, (A5b)

A = 1 − R − T . (A5c)

The aforementioned algorithm for calculation of the scat-
tering matrixS(z′,z′′) between two arbitrary coordinates z′ and
z′′ in an arbitrary layered structure is used in simulation of the
radiative heat propagation in the multilayer structure.

APPENDIX B: METHOD OF SOURCE TERMS FOR
DIPOLE EMISSION

Using the scattering matrix formalism one can simulate
the electromagnetic field of emission of dipoles located in
an arbitrary layered structure. The corresponding algorithm is
described as a method of source terms for dipole emission and
is well described in [57].

Let us consider a layered system with a plane of oscillating
electrical dipoles (see Fig. 11). The plane is assumed to be
parallel to the layer interfaces, to be located in layer s and
to have coordinate zs . We aim to calculate the components
of electric and magnetic fields at coordinate zc at a given
frequency of emitted light ω, the x component of the wave
vector kx , and a given polarization. From the boundary
conditions for the tangential components of the electric
and magnetic vectors, one can obtain the following relation
between the complex amplitudes of waves lying immediately
on opposite sides of the plane with oscillating dipoles [57,58]:

E+(zs − 0) = E+(zs + 0) − J+
(B1)

E−(zs − 0) = E−(zs + 0) − J−,

FIG. 11. Sketch of the layered structure with a plane of oscillating
dipoles for the case (a) zc > zs and (b) zc < zs . The plane of
oscillating dipoles is denoted by the dash-dotted line.

where for horizontal chaotically oriented dipoles

J± =
⎧⎨
⎩∓

√
3

16π
in s polarization

− kzs

ks

√
3

16π
in p polarization

(B2)

and for vertical dipoles

J± =
{

0 in s polarization

∓ kx

ks

√
3

8π
in p polarization

. (B3)

In Eqs. (B2) and (B3) the z component of wave vector
kzs is calculated for layer s and ks = ωñs/c, where ñs is
the refractive index of layer s. The amplitudes of positive
and negative traveling plane waves E± taken at coordinates
z = 0 − 0,zs ± 0, and zN are related by scattering matrices
S(1) and S(2):[

0
E−(zs − 0)

]
= S(1)

[
E+(zs − 0)
E−(0 − 0)

]
(B4)[

E+(zN + 0)
E−(zs + 0)

]
= S(2)

[
E+(zs + 0)

0

]
.

The zero components in the 1×2 vectors reflect the fact that
there is no incident plane wave either on the top or bottom of
the sample. Taking into account Eqs. (B1) and (B4) one can
find the expression for the amplitudes of waves out-coupled
from the structure:

E+(zN + 0) = +J+ − S(1)
12 J−

S(1)
12S

(2)
21 − 1

× S(2)
11 ,

E−(0 − 0) = −J− + S(2)
21 J+

S(2)
21S

(1)
12 − 1

× S(1)
22 .

(B5)

After algebraic manipulations one can find the expressions
for the amplitudes of waves at coordinate zc. If zc > zs , then

E+(zc) = 1

C(2)
11

× E+(zN + 0),

E−(zc) = C(2)
21

C(2)
11

× E+(zN + 0),

(B6)

where the matrix C(2) connects the amplitudes at coordinates
zc and zN + 0 [see Fig. 11(a)]. In the opposite case, when
zc < zs , the amplitudes at zc are given by

E+(zc) = C(1)
12

C(1)
22

× E−(0 − 0),

E−(zc) = 1

C(1)
22

× E−(0 − 0),

(B7)

and the matrix C(1) connects the amplitudes at coordinates
z = 0 − 0 and zc [see Fig. 11(b)].

The vector of the electric field at coordinate zc is expressed
as

�E(zc) = E+(zc) �p+ + E−(zc) �p−, (B8)

where

�p± =
{{0,1,0} in s polarization
{± kzc

kc
,0, ∓ kx

kc
} in p polarization.

(B9)
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The vector of the magnetic field is calculated and given by

�H (zc) = √
ε̃cE

+(zc)[�k+ × �p+] + √
ε̃cE

−(zc)[�k− × �p−],

(B10)

where �k± = [ �p(p)
± × �p(s)

± ]. The Poynting vector at an arbitrary
coordinate zc is calculated as

�S(zc) = c

4π
Re[ �E(zc) × �H (zc)]. (B11)

The intensity of dipole emission which emerges in the
structure can be found via the z component of the pointing
vector:

Iout = n0k
2
z0

nsk2
zs

× Sz(zN + 0). (B12)

In Eq. (B12) the factor n0k
2
z0/nsk

2
zs is used to account for

the change in solid angle that is due to refraction for plane
waves or its analog for evanescent waves [57].

It is worth noting that the described method is a powerful
tool for simulation of interference effects in the luminescence
spectra of the samples where one or several layers can emit
light (see, for example, [59–62]).

APPENDIX C: INTENSITY OF THERMAL RADIATION

Let us consider a problem of calculation of the thermal
emission of a source layer into a multilayered structure. We are
going to find the z component of the energy flux at an arbitrary
coordinate zc of the electromagnetic waves thermally radiated
by a source layer in an arbitrary layered structure at a given
temperature of the source layer, T , and frequency, ω.

The mathematical model for the calculation of the radiative
heat flux is well described in literature (see, for example,
[3,20]). The thermal radiation is described as a fluctuating elec-
tromagnetic field generated by chaotic motion of charged par-
ticles inside the body. Using the Green’s-function formalism,
one can express the electric and magnetic fields at coordinate
z due to the oscillating dipole at coordinate z′ via the vector
of the current density of this dipole [see Eq. (2)]. At the same
time, the fluctuation-dissipation theorem Eq. (4) connects the
ensemble average of the spatial correlation function of current
density and the mean energy of Planck’s oscillator. Using the
expression of spectral intensity of thermal radiation, Eq. (5),
and representing the dyadic Green’s functions GE and GH in
a plane-wave form [20], we obtain the following expression
for the spectral intensity of thermal radiation at coordinate z

due to the emission by the source:

Q(ω,z,T ) = ω2�(ω,T )

π2c2

× Re

[
iε′′

s

∫ ∞

0
kxdkx

∫ zs+h

zs

dz′q(ω,kx,z,z
′)
]

,

(C1)

where coordinates zs and zs + h confine the emitting layer, h

is the thickness of the emitting layer, and

q(ω,kx,z,z
′) ≡ gE

xα(ω,kx,z,z
′)gH ∗

yα (ω,kx,z,z
′)

−gE
yα(ω,kx,z,z

′)gH ∗
xα (ω,kx,z,z

′). (C2)

Parameter ε′′
s is the imaginary part of the relative per-

mittivity of the source layer, gE
i,k and gH

i,k are the Weyl
components of the dyadic Green’s functions, and �(ω,T ) =
�ω/ (exp �ω/kBT − 1) is the mean energy of a harmonic
oscillator. In order to calculate the intensity of thermal
radiation at coordinate z one has to integrate the spectral
intensity of thermal radiation Q(ω,z,T ) over the frequency:

I (z,T ) =
∫ ∞

0
Q(ω,z,T )dω. (C3)

The Weyl components of the dyadic Green’s functions can
be written in tensor form as [20]

gE(kx,z,z
′) =

⎡
⎣gE

xx 0 gE
xz

0 gE
yy 0

gE
zx 0 gE

zz

⎤
⎦, (C4a)

gH (kx,z,z
′) =

⎡
⎣ 0 gH

xy 0
gH

yx 0 gH
yz

0 gH
zy 0

⎤
⎦. (C4b)

It can be shown [19,20] that the elements of the gE tensor
are

gE
xx = (+Ap − Bp − Cp + Dp)

ikzc

2kskc

, (C5a)

gE
xz = (−Ap + Bp − Cp + Dp)

ikzckx

2kzskskc

, (C5b)

gE
yy = (+As + Bs + Cs + Ds)

i

2kzs

, (C5c)

gE
zx = (−Ap − Bp + Cp + Dp)

ikx

2kskc

, (C5d)

gE
zz = (+Ap + Bp + Cp + Dp)

ik2
x

2kzskskc

, (C5e)

and the elements of the gH tensor are

gH
xy = (+As − Bs + Cs − Ds)

kzc

2ks

, (C6a)

gH
yx = (−Ap − Bp + Cp + Dp)

kc

2ks

, (C6b)

gH
yz = (+Ap + Bp + Cp + Dp)

kckx

2kskzs

, (C6c)

gH
zy = (−As − Bs − Cs − Ds)

kx

2kzs

. (C6d)

The subscripts s and p denote different polarizations of
light. ks and kc are the wave vectors in the source and
sink layers correspondingly. The coefficients A(kx,z,z

′) and
B(kx,z,z

′) are the amplitudes of forward and backward
traveling plane waves at a coordinate z due to emission of
plane waves of unit amplitude in layer s at coordinate z′ in the
positive z direction. Likewise, the coefficients A, B, C, and D

are the amplitudes of forward and backward traveling plane
waves at a coordinate z due to the emission of a plane wave
of unit amplitude in layer s at coordinate z′ in the negative z

direction. The coefficients A, B, C, and D can be expressed
in terms of the scattering matrices connecting the different
z coordinates in the structure. The scattering matrix method
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FIG. 12. (Color online) Layered structures with a source layer
(pink) and receiver layer (blue). Arrows show the complex amplitudes
of forward and backward traveling plane waves taken at specific
coordinates. Amplitudes P +(z′ − 0) and P −(z′ + 0) in panel (a) are
shown by dots in order to avoid overlapping with arrows labeled as
P +(z′ + 0) and P −(z′ − 0).

allows us to find these coefficients for any arbitrary layered
structure and for any arbitrary position of the source, z′, and
the point z where the radiative radiative heat flux is calculated.

Let us consider the most general case when z0 < z′ < z <

zN [see Fig. 12(a)]. It can be shown (see Appendix A) that

the coefficients A, B, C, and D have the following explicit
expressions:

A = S′′
11

C′′
11

× 1

1 − S′
12S

′′
21

, (C7a)

B = C′′
21A, (C7b)

C = S′
12A, (C7c)

D = S′
12C

′′
21A, (C7d)

where the following notations are used:

C′ ≡ S(0,z), (C8a)

S′ ≡ S(0,zs − 0), (C8b)

C′′ ≡ S(z,zN + 0), (C8c)

S′′ ≡ S(zs + 0,zN + 0). (C8d)

If z0 < z < zs < zN then Eqs. (C7) and (C8) are valid with
the substitutions C′ ↔ C′′, S′ ↔ S′′, 1 ↔ 2. The calculation
procedure of the matrices C′, C′′, S′, and S′′ is explained
in Appendix A. Equations (C7) describe the radiation from
the one plane of chaotically oriented dipoles. In order to
calculate the radiative heat flux from a layer of a certain
thickness, one has to integrate the flux over the corresponding z

coordinates. In numerical simulations the integration is often
replaced by the summation of the heat fluxes calculated for
different coordinates z′. This integration is introduced in Eq.
(C1). In practice, the number of coordinates z′ for summation
depends not only on the emitting plate thickness but also on
the separation distances between plates, so that the calculation
time for the thick emitting plate and short separation distances
might be very long. In order to avoid this problem here we give
the explicit expression of the result of analytical integration
over z′ in Eq. (C1):

∫ zs+h

zs

dz′q(ω,kx,z,z
′) = i

2k′
zs

(1 − e−2ihk′
zs )(+AsC

∗
s τψ∗ + AsD

∗
s τψ∗ − BsC

∗
s τψ∗ − BsD

∗
s τψ∗ − ApC∗

pαβ∗ − BpC∗
pαβ∗

+ApD∗
pαβ∗ + BpD∗

pαβ∗ + ApC∗
pγ δ∗ + BpC∗

pγ δ∗ − ApD∗
pγ δ∗ − BpD∗

pγ δ∗)

− i

2k′
zs

(1 − e+2ihk′
zs )(+ApC∗

pαβ∗ + ApD∗
pαβ∗ − BpC∗

pαβ∗ − BpD∗
pαβ∗ − ApC∗

pγ δ∗ − ApD∗
pγ δ∗

+BpC∗
pγ δ∗ + BpD∗

pγ δ∗ − AsC
∗
s τψ∗ + AsD

∗
s τψ∗ − BsC

∗
s τψ∗ + BsD

∗
s τψ∗)

− 1

2k′′
zs

(1 − e+2hk′′
zs )(+CsD

∗
s τψ∗ − CsC

∗
s τψ∗ − DsC

∗
s τψ∗ + DsD

∗
s τψ∗ − CpC∗

pαβ∗ − CpD∗
pαβ∗

+DpC∗
pαβ∗ + DpD∗

pαβ∗ − CpC∗
pγ δ∗ − CpD∗

pγ δ∗ + DpC∗
pγ δ∗ + DpD∗

pγ δ∗)

+ 1

2k′′
zs

(1 − e−2hk′′
zs )(+ApA∗

pαβ∗ + ApB∗
pαβ∗ − BpA∗

pαβ∗ − BpB∗
pαβ∗ − BpB∗

pγ δ∗ − BpD∗
Aγ δ∗

+ApB∗
pγ δ∗ + ApA∗

pγ δ∗ + BsA
∗
s τψ∗ − BsB

∗
s τψ∗ − AsB

∗
s τψ∗ + AsA

∗
s τψ∗), (C9)

where

α = ikzc

2kskc

, β = kc

2ks

, γ = ikzckx

2kzskskc

,

(C10)

δ = kckx

2kskzs

, τ = i

2kzs

, ψ = kzc

2ks

,
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k′
zs and k′′

zs are the real and imaginary parts of the z component
of the wave vector of the emitting layer. Note that both k′

zs and
k′′
zs are positive. Coefficients A, B, C, and D are calculated by

Eqs. (C7) for the coordinate z′ closest to the receiving layer
(i.e., for z′ = zs + h when zs < z and z′ = zs when zs > z.)
The analytical expressions for the radiative heat flux in the case
of few-layered structures can be obtained and were analyzed
in many publications [9,14,16,49].

The expression for the intensity of thermal radiation can be
simplified when the emitting layer is a semi-infinite substrate
[see Fig. 12(b)]. Of course, one can treat the substrate as an
additional very thick layer and integrate the heat flux over this
layer. At the same time, as is shown in [20], the integral over
z′ in Eq. (C1) can be expressed as∫ z0−0

−∞
dz′q(ω,kx,z,z

′) = 1

2k′′
zs

q(ω,kx,z,z0 − 0). (C11)

This means that we can calculate the heat flux from the semi-
infinite source layer considering only one emitting plane in it,
namely, z0 − 0. The expressions for the coefficients A–D are
also simplified:

A = S′′
11

C′′
11

, (C12a)

B = C′′
21A, (C12b)

C = 0, (C12c)

D = 0. (C12d)

The scattering matricesC′ andC′′ are defined by Eqs. (C8a)
and (C8c). The zero values of the coefficients C and D mean
that the plane waves, which are emitted by dipoles in the lower
semi-infinite media, do not contribute to the amplitudes at the
coordinate z where the flux is calculated.

Let us consider the next very important case where the sink
is a semi-infinite layer and the source is a layer of a certain
thickness [see Fig. 13(a)]. The monochromatic radiative heat
flux is calculated by Eq. (C1) with z = zN + 0. Since the
receiver is a semi-infinite medium, C′′ = I and the coefficients
in the tensors gE,H are given by the following expressions:

A = S′′
11

1 − S′
12S

′′
21

, (C13a)

B = 0, (C13b)

C = S′
12A, (C13c)

D = 0. (C13d)

FIG. 13. (Color online) Layered structures with a source layer
(pink) and receiver layer (blue). Arrows show the complex amplitudes
of forward and backward traveling plane waves taken at specific
coordinates. Amplitudes A(z′ − 0) and B(z′ + 0) in panel (a) are
shown by dots in order to avoid overlapping with arrows labeled as
A(z′ + 0) and B(z′ − 0).

Zero values of the coefficients B and D mean that there is
no incident light on the structure from the upper semi-infinite
medium.

Finally, when both the source plate and sink plate are as
semi-infinite as is shown in Fig. 13(b), C′′ = I, S′ = I, and
S′′ = Stot. Therefore, the integration over z′ in Eq. (C1) is
replaced by Eq. (C11) with the following expressions for the
coefficients A, B, C, and D:

A = Stot
11, (C14a)

B = 0, (C14b)

C = 0, (C14c)

D = 0. (C14d)

The procedure of calculation of the total scattering matrix
Stot is described in Appendix A.
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