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Abstract—In this paper algorithm of control synthesis for
car active suspension with delays is examined. The problem is
formulated in terms of differential games. External perturbation
such as road surface unevenness is considered as actions of some
opponent. The commonly known model of quarter car active
suspension system will be expanded with delays under 0.5s in
control. Proposed algorithm depends on ”worst” delay value and
calculate robust control for the system. Comparison with LQR
regulator by mathematical modeling will be made.

Index Terms—Optimal control, robust control, delayed sys-
tems, linear quadratic regulator, delay differential equations,
active suspension, Riccati equation.

I. INTRODUCTION

This article considers an actual problem in control theory
related to the synthesis of control algorithm that can work with
models under delays. Such models can describe behaviour of
real world systems more accurately comparing to conventional
linear systems. However, the problem of synthesizing optimal
control for systems with delays still does not have a general
solution [Fridman(2014)]. One of naive methods is to consider
system without delays and use well known methods for control
task optimal solution such as LQR. LQR control is an optimal
control method with quadratic performance indexes. It is rather
simple and can achieve closed loop optimal control with linear
state feedback or output feedback. Unfortunately, there will be
delays in control system caused by various factors as long
computation times and actuator inertia. Thus classical ap-
proach of LQR regulator synthesis doesn’t consider delays in
the system and can give the researcher non optimal coefficients
[Ghiggi(2008)]. Therefore, in this paper, we propose a method
for synthesizing control algorithm that takes into account the
”worst” delay time arising in the system. Worst delay value
in system is selected from the predetermined interval which
can be defined by system physical restrictions and common
sense. Algorithm of ”worst” delay value selection is separate
task and will be considered in this work. A system with
control which is synthesised for the ”worst” scenario case
can be classified as a robust system. Such approach can be
useful in problem of control synthesis for active suspension
of car. Passive suspension systems have been widely applied
to manned vehicles from ancient carriages with flexible leaf
springs to modern automobiles with pneumatic and hydraulic

systems. The main purpose of implementing the suspension
system is to increase comfort the passengers by isolating
them from vibrations due to road unevenness. A common
passive suspension system consists of conventional springs and
dampers with a fixed spring rate and damping parameters.
Selection of such parameters depends on balance between
requirements of ride comfort and vehicle handling. As passive
suspension is not very complex idea as it has no feedback
and actuators. However, modern generation of suspensions
implements passive elements of classic mechanics and add
controlled system with actuators that can apply external force
to the body of the car [Guglielmino(2008)]. In this paper we
will consider model of one of the vehicle wheels suspension
with active actuator installed between wheel base and car
body. The main objective of the control system that drives
the actuator will be to deliver riding comfort and minimise
wheel travel to reduce possibility of loss of grip with road.
Additionally, the disturbance cased by road unevenness will
be considered as actions of another player (opponent).

II. PROBLEM FORMULATION
A. Quarter car model

The model of suspension considered in this paper is pre-
sented on fig. 1. This model is widely used in the active

Fig. 1. Graphical representation of quarter car model

vehicle suspension studies [Guglielmino(2008)] and captures

978-1-6654-6586-1/22/$31.00 ©2022 IEEE



major characteristics of a real suspension system. It consists
of car body or sprung mass where passengers are located.
This part is connected to wheel assembly with conventional
spring and shock-absorber. Tire also provides some dumping
behaviour to the system.

Actuator installed between car body and wheel assembly. It
can apply force to either increase or reduce distance between
this parts. We will consider that force is sufficient for such
task.

The mathematical representation is provided by multiple
articles:

ẍs (t) =
ks
ms

xp (t)−
ks
ms

xs (t) +
ca
ms

ẋp (t)−

− ca
ms

ẋs (t) +
1

ms
F (t) ,

ẍp (t) = − ks
mp

xp (t)−
kt
mp

xp (t) +
ks
mp

xs (t)−

− ca
mp

ẋp (t) +
ca
mp

ẋs (t)+

+
kt
mp

w (t)− 1

mp
F (t) .

(1)

Where ks is suspension stiffness, ca - suspension damping
rate, kt -tire stiffness, ms - mass of car body, mp - mass of
wheel assembly. The coordinates of system are w (t) - road
profile height under the tire, xp (t) - change of position of
wheel assembly, xs (t) - sprung mass position and F (t) -
force applied to sprung mass by actuator.

The delay is introduced by argument of control: F (t) =
u (t− τ), where τ ∈ Υ is delay period. The dynamic equa-
tions (1) can be rewritten:

ẋs (t) = vs(t),

v̇s (t) = − ks

ms
xs (t)− ca

ms
vs (t) +

ks

ms
xp (t)+

+ ca
ms

vp (t) +
1
ms

u (t− τ) ,

ẋp (t) = vp(t),

v̇p (t) =
ks

mp
xs (t) +

ca
mp

vs(t)− ca
mp

vp(t)−
−
[

ks

mp
+ kt

mp

]
xp (t) +

kt

mp
w (t)− 1

mp
u (t− τ) .

(2)

The system (2) can be represented in the form of state space
as

ẋ (t) = A · x (t) +D · w(t) +B · u (t− τ) . (3)

The states of the model are defined as

x(t) =
[
xs(t) vs(t) xp(t) vp(t)

]T
and

A =


0 1 0 0

− ks

ms
− ca

ms

ks

ms

ca
ms

0 0 0 1
ks

mp

ca
mp

[
− ks

mp
− kt

mp

]
− ca

mp

 , (4)

D =
[
0 0 0 kt

mp

]T
, (5)

B =
[
0 1

ms
0 − 1

mp

]T
. (6)

The resulting system (3) can be considered as a system,
where control is implemented with a time delay, this is
reflected in the summand u (t− τ). And (3) also contains an
uncontrolled disturbing effect in the form of a changing road
profile w(t), which can be considered as an enemy acting
against us, but having reasonable restrictions.

Note that it is not always possible to measure all state
coordinates directly or sensors can give only noisy data
[Akbari(2008)]. An observer should be used in real-world
applications, but the synthesis of such filter lays out of the
scope of this work and we consider state vector directly
observable without any noises.

B. Problem Statement

The construction of control actions will be carried out in
two stages. First, the problem of synthesizing control actions
without delay will be solved in the case when there is an
”enemy” in the system. Next, the resulting control will be
rebuilt to compensate for the worst time delay that occurs in
real systems.

The algorithm for constructing the controller is based on
the ideas of differential zero-sum games [Afanasiev(2014)].
Hence let us introduce the cost function:

J (x (·) , u (·) , w (·)) =
lim

tf→∞

∫ tf
t0

{
∥x (t)∥Q + ∥u (t− τ)∥R − ∥w (t)∥P

}
dt. (7)

The goal of our control u(t − τ) is to minimise the cost
function (7), on the other hand enemy control w(t) is trying
to maximize it. We should also compare performance of active
and passive suspensions by measuring RMS of sprung mass
acceleration (v̇s). The recommended by ISO 2631 (ISO, 1997)
RMS sprung mass acceleration must be below 0.315m/s2 to
passengers feel highly comfortable [Ahlin(2001)].

III. CONTROL DEVELOPMENT

We will split the process of regulator development by two
stages.

Initially we will assume that there is no delay of actuator
and synthesize control for both players [Nagarkar(2016)]. As
it stated in earlier studies the controls will be

u (t) = −Ku · x(t) = −R−1BTS · x(t), (8)

w (t) = Kw · x(t) = P−1DTS · x(t), (9)

where S is solution of Riccati equation with matrices (4)-(6):

SA+ATS − S[BR−1BT −DP−1DT ]S +Q = 0. (10)

Then we will use information from previous stage to specify
regulator coefficients for a case of presenting delay.

Note that x (t− τ) = x (t) − τ · ẋ (t) near x (t) = 0 then
control law can be rewritten as

u (t− τ) = −Ku ·x (t− τ) = −Ku ·x (t)+τKuẋ (t) . (11)



Substituting approximation (11) into state space representa-
tion (3):

ẋ (t) = A·x (t)+DKw ·x(t)−B·Ku·x (t)+τBKuẋ (t) (12)

or finally

ẋ (t) =
{
[1− τBKu]

−1
[A−BKu +DKw]

}
· x (t) . (13)

Since the exact value of τ is not specified for the system,
moreover, it can be different depending on the situation, so we
will build the control based on the worst value of τ from the
possible interval. It should be noted that the system (13) can
be both stable and unstable. In the case of a stable system, we
will call the delay value τ∗ the worst case scenario, in which
the system comes to a stable state for as long as possible. In the
case of an unstable system, τ∗ will be considered the worst, at
which the system gains maximum speed when deviating from
equilibrium. Fig. 2 shows abstract graphs of the behavior of
the system in the case a), when the system is stable, and in
the case b), when the system is unstable. In both cases, the
dotted graphs correspond to the worst delay values τ∗.

Fig. 2. Trajectories of stable a) and unstable b) systems

To find exact value τ∗ we can find roots λ (τ) of charac-
teristic equation for matrix

As =
{
[1− τBKu]

−1
[A−BKu +DKw]

}
(14)

and maximize it’s real part: max
τ∈Υ

λ (τ) . The other way to find
τ∗ is to consider norm:

M = ∥x (t, τ)∥2 =
1

2
xT (t, τ)x (t, τ) , (15)

one can notice that τ∗ meets the greatest derivative of (15):
d
dτM (τ∗) > d

dτM (τ) ,∀τ ̸= τ∗.
Substituting value τ = τ∗ in (13), we gain majoring system

for the original system

ż(t) =
{
[1− τ∗BKu]

−1[A−BKu +DKw]
}
· z(t), (16)

or in other form

ż (t) = [1− τ∗BKu]
−1

A · z (t)+
+ [1− τ∗BKu]

−1
Buz(t) + [1− τ∗BKu]

−1
Dwz(t),

(17)
here uz(t) = −Ku · z(t) and wz(t) = Kw · z(t). Let’s rewrite
(17) in general form

ż (t) = Az · z (t) +Bz · uz (t) +Dz · wz(t), (18)

where matrices Az, Bz, Dz are obtained from (17) and have
the following form:

Az = [1− τ∗BKu]
−1 ·A,

Bz = [1− τ∗BKu]
−1 ·B,

Dz = [1− τ∗BKu]
−1 ·D.

This representation of the system in the form (18) makes it
possible to calculate Kz = R−1BT

z Sz , where Sz is solution
of Riccati equation:

SzAz +AT
z Sz − Sz[BzR

−1BT
z −DzP

−1DT
z ]Sz +Q = 0.

(19)

Value of Kz should be substituted as regulator coefficients.
Let us apply suggested algorithm to the system (1).

A. Nondelayed case

On this stage we will assume that τ = 0. This case leads us
to simple LQR problem, where matrices (4), (5) and (6) are
described in previous section. Solving the Riccati equation
(10) with parameters provided in table 1. we receive

Ku = [3.677 · 103, 2.398 · 103,−4.859 · 103, 1.094 · 10−4]

B. Delayed case

As we obtained coefficient Ku for non delayed case we can
now calculate regulator coefficient for delayed case.

For τ∗ selection we will use norm (15).
As shown in fig. 3 the largest delay value is not always

worst scenario for the control task. For this particular object
τ∗ = 0.0152.

M
d

dτ

τ

Fig. 3. Plot of d
dτ

M function used for τ∗ determination

After obtaining Ku and τ∗ we can now solve control task
for (18)-(19) and use Kz as regulator gain

Kz = [3.37853 · 104, 1.00977 · 104,−3.70699 · 104, 0.00565]



Model parameters symbol values unit
suspension stiffness ks 16812 N/m

suspension damping rate ca 1000 N/(m/s)
tire stiffness kt 190000 N/m

mass of car body ms 250 kg
mass of wheel assembly mp 50 kg

delay τ 0.01 s
TABLE I

SIMULATION PARAMETERS

IV. SIMULATION RESULTS

The simulation was made in MATLAB Simulink with
parameters provided in table 1.

Step with size of 0.025 m was chosen to simulate the road
w (t).

We will compare performance of passive (dash-dot line) and
active suspensions (solid and dashed lines) on the given road
section. Dashed line corresponds to behaviour of suspension
under lqr regulator synthesized without delay value consider-
ation. Solid line corresponds to control synthesised for found
τ∗.

The deflection of suspension space (xs) is shown in fig.
4. It is good to have less deflection in suspension for better
handling of the car as it have better grip to the road. Maximum
deflection of system under lqr synthesized for τ∗ is lower that
other cases.

Fig. 4. Sprung mass position (xs(t)) under different controls

The provided in fig. 5 plots show the RMS of car body
acceleration that also affects on passengers.

As one can notice, passengers feel more comfortable when
lqr is synthesized for worst delay value as RMS of sprung
mass acceleration is lower.

V. CONCLUSIONS

This article demonstrates control algorithm development
for the system with delayed control which shows capabilities
to stabilise active suspension under influence of delays. The
control algorithm is based on widely known linear quadratic
regulator and is synthesized for the system with the ”worst”
delay value from possible delays interval. This method was

Fig. 5. RMS of car body acceleration

applied to the active suspension system model extended by
adding delay to the control loop. The active suspension with
provided algorithm improves vehicle handling and comfort
of passengers. Offered approach was tested by modelling
system in MATLAB Simulink. Provided algorithm shows
better results than LQR synthesised for system without taking
delay value in consideration.
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