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Abstract — We investigate a nonlinear stabilizing regulator 

with coefficients depending on the state built for nonlinear 
systems. Usage of a quadratic cost function allows to develop a 
control with coefficients that include the solution of the Riccati 
equation. A rather common approach is to solve this equation 
online which requires making high performance calculations that 
is not appropriate for some applications such as UAV autopilots. 
The method represented in this article is useful when the system 
state space is compact and the performance or weight of a control 
device is more critical than memory size. Thus, we can sample 
state space with some accuracy. It is offered to calculate 
regulator gain coefficients in advance and to keep them in 
memory of the control device. Assessment of the regulator gain 
coefficients quantity and memory size depending on accuracy of 
system state space sampling is provided. The algorithm of the 
next gain coefficient fast search is given. The numerical 
simulation of a UAV controlled by such a regulator is made for 
verification. 
 

Index Terms — quaternion algebra, state dependent 
coefficients, Riccati equation, nonlinear dynamic systems. 
 

I. INTRODUCTION 

nmanned Aerial Vehicles (UAVs) autopilots often 
require fast processing of inputs from sensors and 

corresponding control outputs calculation. Linear regulators 
are not always capable to operate such objects correctly. 
Nonlinear differential equations of UAVs motion could be 
represented as nonlinear differential equations with linear 
structure and parameters depending on object state. Thus, 
State Dependent Coefficients (SDC) method could be applied 
to develop a regulator [1]. Usage of a quadratic cost function 
allows to apply the method based on the State Dependent 
Riccati Equation (SDRE) solutions [2]. 

The SDRE method usage could be complicated because of 
problems connected with ambiguity of equivalent 
transformations to SDC representation and the need of a rather 
fast and efficient algorithm of matrix Riccati equation online 
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solution [3]. 
For correct work of a regulator it is enough to find the 

solution of the Riccati equation in 14 ms as it is showed in [4]. 
The described algorithm required a computer with CPU clock 
rate about 300 MHz. Solutions that could provide such 
performance might be not appropriative for micro UAVs. 

We present an approximate method which relaxes 
requirements for control devices. The main disadvantage of 
this method is a rather small class of applicable systems. The 
idea is to calculate the gain coefficients of a regulator in a 
certain point of a possible trajectory in advance. It combines 
approaches of the regulator synthesis for systems with 
coefficients depending on states, the gain-scheduled regulators 
and the cache concept. 

II. PROBLEM FORMULATION 

We will consider four rotor helicopter (quadcopter) as a 
controllable object. Four motors with rotors attached are 
located at ends of poles of length 2l. Motors are numbered 
clockwise starting with the front right (Fig. 1). Motor can 
rotate rotor only in the direction marked by an arrow. 

 
Rotors have the same fixed pitch. Inclination of the 

quadcopter is made by the differentiation of motors thrust. 
It is supposed that the sum of all thrust forces is able to lift a 
UAV. Moreover, the thrust-weight ratio is 2. 
We suppose that the current state is undisturbed and is 

observable. 
The control problem is to stabilize vehicle horizontally. 

III. EQUATIONS OF MOTION 

For further reasoning we need a mathematical model of the 

A method for realization of nonlinear state-
dependent coefficients regulators based on 

microcontroller memory  

Semion A. A. 

U

 
Fig. 1.  Quadcopter top view. Numbers describe motor 
enumeration. 



2018 Moscow Workshop on Electronic and Networking Technologies (MWENT) 

quadcopter which is given in [5], where rotation of the UAV is 
described in algebra of quaternions [6]. 

We will use Euler's equations for rotational motion: 

I Iτ ω ω ω= + × , here τ  denotes the torque generated by 

the rotors, I – inertia tensor, ( )ω ϕ θ ψ=    – angular 

velocity vector described in body-fixed coordinate system. 
Applied torques components will be described as controls: 

( )1 2 3

T
U U Uτ = , where 

( )1 1 2 3 4

2

2
U l F F F F= + − − , 

( )2 1 2 3 4

2

2
U l F F F F= − + + − , 

( )3 1 2 3 4U F F F Fα= − + −  and iF  are the thrust of the 

corresponding rotor. The alpha coefficient is calculated 
empirically. 

Note that for the full system description we have to add the 

control 0 1 2 3 4U F F F F= + + + , which is calculated in the 

height stabilisation problem and will not be provided in this 
work. 

We also add an equation for the quaternion derivative 

received from the quaternion properties [6]: 
1

2
λ λ ω=
   . 

Combining the above mentioned equations we obtain the 
motion equations of a quadcopter: 

( )

( )

( )

1

2

3

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

1
,

1
,

1
,

1
,

2
1

,
2
1

,
2
1

.
2

z

z y
x

z y
y

z y

d
U I I

dt I

d
U I I

dt I

d
U I I

dt I

d

dt
d

dt
d

dt
d

dt

ϕ θψ

θ ϕψ

ψ ϕθ

λ λ ϕ λ θ λ ψ

λ λ ϕ λ θ λ ψ

λ λ ϕ λ θ λψ

λ λ ϕ λ θ λ ψ

 = − − 

 = − − 

 = − − 

 = − − − 

 = − + 

 = + − 

 = − + + 

 

  

 

 

 

 

 

(1) 

Here are the components of the quaternion describing the 
rotation of a UAV. 

Note that such representation of system (1) is not 
controllable. However, Yaguan Yang [7] shows a method of 
system reduction to make this system controllable. He proves 
that the scalar component of the quaternion can be extracted 
from the system and substituted by 

( ) 2 2 2
0 1 2 31fλ λ λ λ λ= = − − −


 with some limitations. 

After such substitution the dynamic system can be 

represented in the standard form: ( )X A X X BU= + , 

where ( )1 2 3

T
X ϕ θ ψ λ λ λ=    – a state vector, 

( )1 2 3

T
U U U U=  - a control vector, 
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. 

IV. CONTROL SYNTHESIS 

The regulator with variable discrete parameters is described 
in details in [3;5]. The functioning interval is divided into 
segments of equal length. The control operating in (i+1)-th 
interval is defined as 

( ) ( ) ( )1 T
i i i i i iU K X X R B X S X X−= = − , where 

( )iS X  is the solution of the algebraic Riccati equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 0T TS X A X A X S X S X B X R B X S X Qi i i i i i i i
−+ − + =

 (2). Matrix ( )iK X  is the gain coefficient matrix. 

The usage of the suggested control requires to solve 
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equation (2) rather fast. However one can notice that matrix  

( )iA X  depends only on quaternion components and angular 

rates. The quaternion is a unit vector and it’s components lie 
in [-1;1] limits. Moreover, we can assume angular rates are 
limited by some reasonable constant so they are limited by 

[ ];ν ν− . Considering the results of experiments with a UAV, 

we will assign 20 /rad sν = .  

V. MICROCONTROLLER MEMORY USAGE METHOD  

Let us assume that needed accuracy of quaternion 

components in state vector is 0.01ε = , that is about 1  of  
the UAV rotation. Then the interval [-1;1] can be divided by 

2 1ε +  points with ε distance between each of them. 

There are 201 different values for one component of a 
quaternion for the chosen accuracy and there are 3 quaternion 
components in our state vector. Thus, there are

3  81220 11 060=  different values of these components with 
chosen accuracy, but we can lower this number noticing the 

fact that 2 2 2
1 2 31 0, , i 1, 2,3iλ λ λ λ− − − ≥ ∀ =  in 

accordance with the quaternion space norm. 
This can be illustrated by (Fig. 2), where  all the 

components of the quaternion lie in the nodes of the 3-
dimensional grid with the size of  and are limited by a unit 
sphere. 

 
 
Exact calculation of all possible triples was done by a 

bruteforce check of every dot inside of the cube with the side 
of 2. This was done because volume formulas do not allow 
achieving exact result. 

The numbers of possible triplets of quaternion components 
for different accuracy are provided in table 1. 

 
There are 4187707 different values for chosen accuracy. 

According to IEEE.754 standard describing floating point 
formats, there are 2 possibilities to store this value: float and 
double formats, sized as 4 and 8 bytes respectively. As the 
memory size of a control device is limited, float format is 
preferable.  

Moreover, to lower the memory usage it is reasonable to 

store the ( )iK X  matrix. It has the size 3x6, so to store one 

gain matrix using the float format we have to allocate 72 bytes 
of memory. 

The memory usage in case when the angular rates are 
considered is estimated using combinatorics and similar 
reasonings. The required memory size for all cases is 
presented in table 2. 

 
It is suggested to store the additional information about the 

location of the neighboring (differing by ε ) gain coefficient 
in memory to speed up the search of the next coefficient. 
Obviously, there exist 2 neighbors for each of the quaternion 
components and we have to allocate additional 24 bytes to 
store the pointers. For the chosen quaternion accuracy 95.8 
MB of memory is needed. 

To find the next coefficient we need to sequentially move 
by pointers from the current matrix until the difference 
between the current state and the state of the  candidate matrix 
will not be less than the chosen accuracy. This method is a 
simple linked list with 6 links for each of the list elements. 

To analyze the speed of the provided algorithm let the state 

of a UAV  change from ( )0 0 0 1 1 1
T

 to 

( )0 0 0 1 1 1
T− − −  with 0.01ε = . To find the 

new gain coefficient the control device has to process 603 
pointers and read 43 KB. Modern SSD cards, available on the 
market, can achieve 30 MB/s read speed and will find the new 
coefficient in about 1.4 ms without taking the comparison 
operations timing into account.  

VI. MATHEMATICAL SIMULATION 

For the method testing the simulation in MatLab Simulink 

TABLE 2 
MEMORY SIZE REQUIRED TO STORE THE GAIN MATRICES 

Accura
cy 

Memory size without  
angular rates 
consideration 

Memory size with angular rates 
consideration 

0.1 291 KB 113.96 MB 
0.01 287.547 MB   112 GB 

0.001 280 GB 110 TB 

TABLE I 
QUANTITY OF DIFFERENT TRIPLETS BY ACCURACY  

Accuracy of component Quantity of different triplets 

0.1 4139 
0.01 4187707 
0. 001 4188780761 

 
Fig. 2.  Grid of 0.5ε =  accuracy with a unit sphere. The 
quaternion components are located in the  intersection points 
of the grid lines. 
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was made. The initial state is

( ) ( )1 0 0 0.27 0 0.96 00 1 2 3
T T

ϕ θ ψ λ λ λ λ =   and 

0.01ε = . 
The figure 3 shows angular rates and quaternion trajectories 

of the quadcopter. 

 
Perturbation of the yaw (last coordinate) appears because of 

the torque arising on the remaining axis while stabilization on 
the two other axes. 

The plot for the 3 elements of ( )iK X  matrix change is 

provided in figure 4 for illustration purposes. 

 
Moreover, the sequence of the corresponding gain 

coefficients selection is provided in figure 5. 

 

VII. CONCLUSION 

The method for the realization of regulators with discrete 
variable parameters for nonlinear dynamic systems based on 
the storage of control gain coefficients in the memory of the 
control device was suggested in this work. Such a technique 
can be useful in time-critical systems control devices with low 
CPU performance. 

Calculations of the necessary memory space depending on 
the accuracy were made. The described control was tested by  
a mathematical simulation. 

The research of the accuracy change influence on the 
control performance is planned. 
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Fig. 5.  Sequence of gain coefficients selection. 

Fig. 4.  Change of the first three elements of the gain 
coefficients matrix. 

 
Fig. 3.  Trajectories of UAV motion with suggested control 
law. 
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