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Abstract—In this paper, we consider the dependence between
active distances for convolutional code and the distribution of
bursts at the output after Viterbi decoding. We suggest an
estimate of the probability of bursts of a certain length based on
the active row distances of the code and present a formula for
our estimation.

We take into consideration two recursive systematic convolu-
tional codes with the same free distance, same memory, but with
different active distances. Simulation results show that active
distances affect the distribution of error bursts.

I. INTRODUCTION

Convolutional codes are being studied for a long time. They
are widely used for data transmission in different systems.
That’s why the issues of the constructing and studying capa-
bilities of convolutional codes have great practical importance
[1], [2]. The scheme of recursive systematic codes was pro-
posed and described in works devoted to turbo-codes [3]- [4]
and it has many applications nowadays. Many works have been
devoted to the decoding of convolutional codes; algorithms of
maximum likelihood, in particular, Viterbi, have gained the
greatest popularity [5]- [7]. The representation of the path trace
Viterbi decoder is described in [8]. The bursts distribution
at the output of Viterbi decoder has been considered and
results are showing that the distribution of bursts with great
length can be estimated with geometrical distribution [9], [10].
Nevertheless, convolutional codes have unique local correcting
and detecting features [11]- [13], and distance properties.
The active distances of the convolutional code that can be
generalized from the ”extended” distances introduced in [14]
are described in detail in [15]. In this work, we propose to
consider the relationship between the bursts distribution and
active distances of the convolutional code.

In this paper, we consider two systematic recursive convo-
lutional codes (13, 17) and (13, 15) that have the same code
memory, same free distance and different distance properties,
in particular, different active row distances. We study the
influence of active distances of convolutional code on bursts
distribution and suggest a formula for estimation of the proba-
bility of error bursts depending on the length. We also present
simulation results for bursts distribution for these two codes
to show a difference between them and the dependence of
probabilities on distance properties of convolutional code.

II. ACTIVE DISTANCES FOR CONVOLUTIONAL CODE

In this chapter, we consider convolutional codes with the
rate 𝑅 = 1

2 , give a description of trellis representation and
define active distances for convolutional codes.

A. Convolutional codes

Let us briefly describe a binary, rate 𝑅 = 1
2 convolutional

code of memory 𝑚. It is necessary to define the field 𝐹2

consisting of elements {0, 1}. We will use term polynomial
𝑓(𝐷) over 𝐹2:

𝑓(𝐷) =
𝑙∑︁

𝑖=0

𝑓𝑖𝐷
𝑖, 𝑓𝑖 ∈ 𝐹2, 𝑓𝑙 = 1,

where 𝑙 = deg(𝑓(𝐷)) is a degree of 𝑓(𝐷).
We consider convolutional codes in terms of a delay

operator 𝐷 or 𝐷-transformation. Thus, we can present an
information sequence as:

u(𝐷) = u0 + u1𝐷 + u2𝐷
2 + ...

and a code sequence as:

v(𝐷) = v0 + v1𝐷 + v2𝐷2 + ... ,

where u𝑖 ∈ 𝐹2, v𝑖 ∈ {0, 1}2, 0 ≤ 𝑖 ≤ 𝑚.
The relation between an informational sequence and a

codeword can be established with a rational generator matrix
G:

v(𝐷) = u(𝐷)G(𝐷)

with a generator matrix

G(𝐷) =
(︀
g(1) g(2)

)︀
,

where generator polynomial g(𝑙)(𝐷) = 𝑔
(𝑙)
0 +𝑔

(𝑙)
1 𝐷+𝑔

(𝑙)
2 𝐷2+

...+ 𝑔
(𝑙)
𝑚 𝐷𝑚, 𝑔(𝑙)𝑖 ∈ 𝐹2, for 𝑙 = 1, 2.

In this paper, we will consider only non-systematic convo-
lutional codes in a systematic way with the rate 𝑅 = 1

2 . In
this case, the generator matrix G(𝐷) looks as follows:

G(𝐷) =
(︁
1 g(2)

g(1)

)︁
. (1)

Example 1: Let g(1) = 1+𝐷+𝐷3, g(2) = 1+𝐷+𝐷2+𝐷3,
that can be also written in the octal form g(1) = 13, g(2) =
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17. Then the generator matrix of this code has the following
structure:

G(𝐷) =
(︁
1 1+𝐷+𝐷2+𝐷3

1+𝐷+𝐷3

)︁
=

(︀
1 17

13

)︀
.

We also present an encoder for this code at Fig. 1. Here-
inafter we can use the notation ”code G(𝐷) = (g(1), g(2))”
implying that the generator matrix has form (1). It should
be noted that we consider codes with generator polynomials
that satisfy the condition that the greatest common divisor of
generator polynomials is gcd(g(1), g(2)) = 1.

Figure 1. Encoder for systematic code G(𝐷) = (13, 17)

At Fig. 1 there are binary operators ⊕, registers and
connections between them. The division by polynomial is
implemented with the feedback structure. Codes with a recur-
sive encoder are also referred to as the recursive systematic
convolutional codes.

The important characteristic of the convolutional code is a
memory 𝑚.

Definition 1: The maximum degree of generator polynomi-
als of the convolutional code is called code memory:

𝑚 = max
𝑙

deg
(︁

g(𝑙)
)︁

.

It is also a maximum register length, that means encoder output
depends on 𝑚 informational bits. For code G(𝐷) = (13, 17)
memory is 𝑚 = 3. Code memory defines a number of bits
which define the current register state s𝑡 at moment 𝑡 and it
is represented with a sequence of 𝑚 elements from 𝐹2, then
the number of possible states at moment 𝑡 > 𝑚 − 1 is 2𝑚.
As code memory increases, code performance improves but
decoding complexity grows exponentially.

B. Trellis Representation and Active Distances for convolu-
tional codes

Convolutional codes can be described with trellis. Each
input symbol 𝑢 ∈ 𝐹2 at each moment of time 𝑡 corresponds to
a transition to a specific state s𝑡 =

(︁
𝑠
(1)
𝑡 , 𝑠

(2)
𝑡 , ...𝑠

(𝑚)
𝑡

)︁
. There

is a one-to-one correspondence between a sequence of input
symbols and a sequence of register states. It is convenient
to make a trellis in which the nodes correspond to register
states and the edges are marked with output sequences of
the encoder. For codes that we consider here output sequence
consists of 𝑛 = 2 bits and the first one is an informational
symbol. It is agreed that the initial state of the encoder registers
are considered zeros s0 = (0, 0, ...0).

Example 2: For code G(𝐷) = (1 + 𝐷 + 𝐷3, 1 + 𝐷 +
𝐷2 + 𝐷3) = (13, 17) we present a trellis at Fig. 2 where
the moments of time are plotted on the horizontal axis. The
maximum number of states is 2𝑚 = 8, the first state is 000.

The edges are marked with output sequences, where the first
symbol is input one. You can see that for each input symbol
there is only one transition with one output sequence. Thus,
for an informational sequence there is only one trellis path. It
should be noted that the up arrow means zero is saved in the
first register, and the down arrow means one is saved.

Figure 2. Trellis for systematic code G(𝐷) = (13, 17)

The informational sequence is generally semi-infinite, but in
reality we are dealing with sequences of finite length. Finite
sequences corresponds to finite trellis path. Hereinafter we
consider codewords of finite length that corresponds to trellis
path of finite length.

After describing trellis representation let us describe the
distance properties of convolutional code.

Definition 2: Let the initial state at the moment of time
𝑡 > 0 be zero: s𝑡 = 0. Then if there is a trellis path of length
𝑗 that corresponds to some sequence v = (𝑣1, 𝑣2, ...𝑣𝑗), where
𝑣𝑖 is tuple of length 𝑛 = 2, 1 ≤ 𝑖 ≤ 𝑗, and does not have
two consecutive zero states in between and if at moment 𝑡+ 𝑗
the register state is s𝑡+𝑗 = 0, then the active row distance of
convolutional code is defined as follows:

𝑎𝑟𝑗 = min
v∈𝐶𝑗

𝑗∑︁
𝑖=1

𝑤𝐻(𝑣𝑖) ,

where 𝐶𝑗 = {v|s𝑡 = s𝑡+𝑗 = 0,@𝑘 ∈ {𝑡, ...𝑡 + 𝑗 − 1} : s𝑘 =
0 ∩ s𝑘+1 = 0}, 𝑤𝐻(𝑣𝑖) is a Hamming weight of 𝑣𝑖 .

Definition 3: Free distance of the convolutional code is a
minimum of active row distances over all possible 𝑗:

𝑑𝑓𝑟𝑒𝑒 = min
𝑗

𝑎𝑟𝑗 .

At Fig. 3 and Fig. 4 we present numeric results for active
distances depending on the number of 2-tuples 𝑗 (length of
trellis path) for convolutional codes with same memory 𝑚 = 3
but different active distances: code G(𝐷) = (13, 17) and code
G(𝐷) = (13, 15) respectively.

III. DECODING AND ANALYSIS OF OUTPUT

In our simulation, we use a Viterbi algorithm for decoding.
This algorithm provides maximum likelihood performance,
the decoder receives a codeword as an input and gives the
most probable trellis path corresponded to some informational
sequence to an output. We have finite informational sequences
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Figure 3. Active distances for systematic code G(𝐷) = (13, 17) Figure 4. Active distances for systematic code G(𝐷) = (13, 15)

at the input and use zero-termination. That means we suppose
input sequence of length 𝑁 corresponds to some trellis path
from the initial zero state. From any state registers can return
into zero state after 𝑚 input symbols. Thus, we consider
sequences of register states of length 𝑁+𝑚+1 or trellis path
of length 𝑁+𝑚 that begins and also ends at zero register state.
If decoding is correct the sequences of states at the decoded
path and at the path corresponded to the transmitted vector are
the same.

We consider an output by Viterbi decoder that is a trellis
path of length 𝑁 + 𝑚. Then there is a sequence of bits of
length 𝑁 + 𝑚 saved to the first register while transferring
from state to state. We suppose that the initial state is zero
state that mean before the sequence there are 𝑚 zero bits.

Definition 4: Let the code memory be 𝑚. In this sequence of
bits the first incorrect bit after 𝑚 correct is a beginning of the
burst. If after an incorrect bit in the burst there is a sequence
of correct bits of length at least 𝑚, then this incorrect bit is
the last bit in this burst:

... 𝑐...𝑐⏟ ⏞ 
𝑚

𝑒...𝑒⏟ ⏞ 
length of burst

𝑐...𝑐⏟ ⏞ 
𝑚

... ,

where 𝑐 - correct bit, 𝑒 - burst bit. There can be sequences
of correct bits in bursts but their length is less than 𝑚. After
a sequence of 𝑚 correct bits saved to the first register the
register state is guaranteed to become correct.

The bursts define error trellis path that begins after the
transition from the correct path (at least two consecutive
correct states) to the first error state that means the beginning
of burst. The last error state before the correct path ends error
trellis path. The number of transition on error path is number
of error states plus one. It defines length of error trellis path
and can be written as number of 2-tuples.

In this paper, we consider the distribution of error trellis
paths depending on their length after Viterbi decoding.

IV. DEPENDENCE DISTRIBUTION OF ERROR BURSTS OF
ACTIVE DISTANCES

A. Derivation of the theoretical formula

Let us suppose that we have a recursive systematic convo-
lutional code with rate 𝑅 = 1

2 and we have the value of active

row distances 𝑎𝑟𝑗 for different trellis path length 𝑗.
The sequence of input bits of length 𝑗 corresponds to the

trellis path (sequence of 𝑗 states) and to the sequence of output
tuples. Thus, it corresponds to the sequence of 𝑛𝑗 = 2𝑗 bits.
If we have correctly decoded sequence then after adding sent
sequence to decoded one we will have a zero path(sequence
of 𝑗 + 1 zero states). If we have the error trellis path then
after adding sent sequence to the decoded one we will have
a path with start and end at zero state corresponded to a
sequence of output tuples of non-zero weight. The ones in
the resulting sequence will be in the places of errors in the
decoded sequence. According to the definitions of active row
distance and error bursts, the minimum possible Hamming
weight of obtained after adding sequence of output tuples will
be 𝑎𝑟𝑗 . In this way, since the code is linear, we can consider
the transmission of a zero codeword without loss of generality.
Error path in this codeword will start after zero state and end
in a zero state.

We will provide you with the estimation of the probability of
an error trellis path of length 𝑗. As we have mentioned earlier
the minimum non-zero number of errors in bits in decoded
sequence is 𝑎𝑟𝑗 . There can be more errors in bits, but it is
logical to assume that the most often number of errors that
leads to the path of this length is the active distance 𝑎𝑟𝑗 . Thus,
we are going to give a lower bound on probability of error
trellis path of certain length. We consider a sequence of 2𝑗
bits of Hamming weight 𝑎𝑟𝑗 corresponded to the trellis path of
length 𝑗 with the start and the end at zero state. The probability
of error in a bit while transmitting is 𝑝 in our consideration.

The number of errors in the sequence of 2𝑗 bits 𝑖 can be
greater than 𝑎𝑟𝑗 and up to 2𝑗. The number of errors in places

of ones 𝑖1 in the sequence greater than
𝑎𝑟
𝑗

2 leads to a decoding
into a sequence which is under consideration and there can
be any number of errors in places of zeros in the sequence.
The probability of 𝑖1 errors between 𝑎𝑟𝑗 ones in the sequence
has the binomial distribution:

(︀𝑎𝑟
𝑗

𝑖1

)︀
𝑝𝑖1(1 − 𝑝)𝑎

𝑟
𝑗−𝑖1 , and the

probability of 𝑖 − 𝑖1 errors between 2𝑗 − 𝑎𝑟𝑗 zeros has the
same one:

(︀𝑎𝑟
𝑗

𝑖1

)︀
𝑝𝑖1(1−𝑝)𝑎

𝑟
𝑗−𝑖1 . To sum up, in the sequence of

length 2𝑗 the total number of errors 𝑖 is greater than
𝑎𝑟
𝑗

2 and
can be up to 2𝑗 and the number of errors in ones 𝑖1 is greater
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than
𝑎𝑟
𝑗

2 and can be up to 𝑎𝑟𝑗 but not greater than the total
number of errors. We can write the estimation on probability
of error trellis path of length 𝑗:

𝑃 (𝑠 = 𝑗) =

2𝑗∑︁
𝑖>

𝑎𝑟
𝑗
2

𝑚𝑖𝑛(𝑎𝑟
𝑗 ,𝑖)∑︁

𝑖1>
𝑎𝑟
𝑗
2

(︂
𝑎𝑟𝑗
𝑖1

)︂
𝑝𝑖1(1− 𝑝)𝑎

𝑟
𝑗−𝑖1 ×

×
(︂
2𝑗 − 𝑎𝑟𝑗
𝑖− 𝑖1

)︂
𝑝𝑖−𝑖1(1− 𝑝)2𝑗−𝑎𝑟

𝑗−𝑖+𝑖1 ,

where 𝑠 is a random variable which defined length of an error
trellis path.

The equation can be simplified and rewritten. This reasoning
leads us to the following lemma.

Lemma 1. The lower estimation on probability of the
occurrence of error trellis path of length 𝑗 is:

𝑃 (𝑠 = 𝑗) = (2)

=

2𝑗∑︁
𝑖>

𝑎𝑟
𝑗
2

𝑝𝑖(1− 𝑝)2𝑗−𝑖

𝑚𝑖𝑛(𝑎𝑟
𝑗 ,𝑖)∑︁

𝑖1>
𝑎𝑟
𝑗
2

(︂
𝑎𝑟𝑗
𝑖1

)︂(︂
2𝑗 − 𝑎𝑟𝑗
𝑖− 𝑖1

)︂
, (3)

where 𝑠 is a random variable which defined length of an error
trellis path.

B. Simulation results

Here we present the simulation results of decoding the
output of a binary symmetric channel with a transition proba-
bility 𝑝. In our simulation we transmitted and decoded 5 · 106
informational words of length 500. We considered two recur-
sive systematic convolutional codes with G(𝐷) = (13, 17)
and G(𝐷) = (13, 15) of memory 𝑚 = 3 and free distance
𝑑𝑓𝑟𝑒𝑒 = 6. For theoretical estimation we used the formula
(3). The results are presented at Fig. (5) and Fig. (6) where
we also give the estimation by the geometrical distribution
proposed in [9]- [10]. These figures show us that theoretical
estimation based on active distances much better approximate
the probabilities of error bursts with small length and give us
more information of distribution features. At Fig. (7) there
are simulation results for error bursts distribution of these
two codes and at Fig. (8) there are theoretical results. Thus,
our theoretical formula describes well the behavior of bursts
distribution of the convolutional code and can be used for
comparing performances of the different codes.

The results of our experiments and calculations for these
two codes are presented at tables (I) and (II). We use next ab-
breviations: k - length of error trellis path, a - active distance, d
- minimum value of number of errors in 1, Th.Pr. - theoretical
probability(from formula (3)), Sim.Pr. - simulation probability,
Num. - number of error bursts. Simulation probability we
consider as 𝑁𝑢𝑚/500/5000000, cause length of information
sequence was 500, number of sequences was 5000000.

V. CONCLUSION

In this paper we propose a formula for the lower estimation
of error bursts distribution at the output of Viterbi decoder
based on knowing active row distances of the convolutional
code. We present the results which show that our formula (3)
gives accurate values for short error trellis path. Taking into
account spectrum of code we can improve our lower bound.
As error bursts of small length have greater probability it is

Table I
SIMULATION AND THEORETICAL RESULTS FOR RECURSIVE SYSTEMATIC

CODE G(𝐷) = (13, 17)

k a d Th. Pr. Sim. Pr. Num.
4 7 4 2.64e-5 2.08e-5 51512
5 6 4 1.16e-5 1.12e-5 27639
6 7 4 2.64e-5 2.02e-5 50007
7 7 4 2.64e-5 2.17e-5 53414
8 8 5 1.26e-6 5.43e-6 13364
9 8 5 1.26e-6 3.27e-6 8037
10 9 5 2.77e-6 4.55e-6 11137
11 9 5 2.77e-6 4.96e-6 12116
12 10 6 1.38e-7 1.45e-6 3530
13 10 6 1.38e-7 1.06e-6 2593
14 11 6 2.96e-7 1.22e-6 2953
15 11 6 2.96e-7 1.08e-6 2616
16 12 7 1.52e-8 3.86e-7 934
17 12 7 1.52e-8 3.48e-7 841
18 13 7 3.2e-8 2.93e-7 707
19 13 7 3.2e-8 2.23e-7 537
20 14 8 1.68e-9 9.96e-8 239

Table II
SIMULATION AND THEORETICAL RESULTS FOR RECURSIVE SYSTEMATIC

CODE G(𝐷) = (13, 15)

k a d Th. Pr. Sim. Pr. Num.
4 6 4 1.16e-5 1.12e-5 27719
5 8 5 1.26e-6 8.48e-7 2098
6 6 4 1.16e-5 1.18e-5 29082
7 8 5 1.26e-6 1.56e-6 3855
8 8 5 1.26e-6 1.83e-6 4453
9 8 5 1.26e-6 1.99e-6 4889
10 8 5 1.26e-6 1.28e-6 3129
11 8 5 1.26e-6 1.39e-6 3393
12 10 6 1.38e-7 5.67e-7 1384
13 10 6 1.38e-7 4.77e-7 1162
14 10 6 1.38e-7 4.50e-7 1093
15 10 6 1.38e-7 2.98e-7 722
16 10 6 1.38e-7 2.27e-7 545
17 12 7 1.52e-8 1.37e-7 332
18 12 7 1.52e-8 1.03e-7 248
19 12 7 1.52e-8 8.23e-8 198
20 12 7 1.52e-8 6.75e-8 162

important to accurately assess the likelihood of their occur-
rence. This theoretical estimation describes the probabilities of
error bursts of small length much better than the geometrical
distribution proposed in [9]- [10] and give us more information
about bursts distribution pattern as our formula is based on
the distance properties of code. It is also can be used for
comparing the performance of different convolutional codes
without simulation.

In the nearest future we are going to consider different
probabilities of error in a bit in a channel and study the
spectrum of code and the average weights of error bursts in
order to improve our estimation.

XVI International Symposium Problems of Redundancy in Information and Control Systems (Redundancy 2019)

113
Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 26,2020 at 13:28:59 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5. Distribution of error bursts in dependence of error trellis path
length with 𝑝 = 0.03 for systematic code G(𝐷) = (13, 17)

Figure 6. Distribution of error bursts in dependence of error trellis path
length with 𝑝 = 0.03 for systematic code G(𝐷) = (13, 15)

Figure 7. Distribution of error bursts in dependence of error trellis path
length with 𝑝 = 0.03 for two codes (simulation results)

Figure 8. Distribution of error bursts in dependence of error trellis path
length with 𝑝 = 0.03 for two codes (theoretical results)
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