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Abstract—In this paper, an improvement for SC list flip (SCL-

Flip) decoding is presented for polar codes. A novel bit-selection

metric for critical set (set of information symbols of polar codes

being flipped during additional decoding attempts) based on path

metric of successive cancellation list (SCL) decoding is suggested.

With the proposed metric, the improved SCL scheme based on

special nodes (SN) decoders was developed. This decoder will

be denoted by GSCLF. The main idea of the proposed decoder

is joint using of two approaches: first one is a fast decoding of

special nodes in binary tree representation of polar code (e.g.,

some special nodes in tree representation of polar code that allow

efficient list decoding with low complexity) and the second one

is an applying of additional decoding attempts (flips) in the case

when initial decoding was erroneous. The simultaneous use of

these two approaches results in both a significant reduction in

spatial complexity and a significant reduction in the number of

computations required for decoding whereas keeping excellent

performance. Simulation results presented in this paper allow us

to conclude that the computational complexity of the proposed

GSCLF decoder is from 66% to 80% smaller than the one of

SCL-32 decoder.

Index Terms—Polar codes, SCL-Flip decoding, subcodes of

polar code, successive cancellation list decoding.

I. INTRODUCTION

A
RIKAN firstly proved that polar codes could achieve
the capacity of any symmetric binary input symmetric

discrete memoryless channels (B-DMCs) under a successive
cancellation (SC) decoder as the code length goes to infin-
ity [1].

Unfortunately, for short and moderate code length, the error
rate performance of SC decoding for polar codes is inferior
to LDPC and turbo codes. As an enhanced version of SC,
the SC list (SCL) decoder [2] searches the code tree level by
level, in much the same manner as SC. However, SCL allows
a maximum of L candidate paths to be further explored, which
preserves the further error correction ability.

Cyclic redundancy check (CRC)-aided SCL (CA-SCL) de-
coding scheme is a kind of SCL decoder, which outputs the
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SCL candidate paths into a CRC detector, and the check results
are utilized to detect the correct codeword [3].

There are some special cases when it is not required to
traverse all tree for SC/SCL decoding. More precisely, there
are special nodes in tree representation of polar code that can
be decoded directly with complexity significantly lower than
direct SC application. This approach is known as simplified
SC decoding [4]. It was followed by fast-SSC decoding [5]
and several others to reduce the latency of SC decoding [6].

It was further extended to simplified SCL, with reduced
latency and more practical implementation potential [7]. For
simplified SCL, the number of operations can be reduced from
2.8 to 4.32 times in comparison with conventional SCL for
length N = 1024 polar code with different rates [8].

Simplified decoding is one of the most promising ap-
proaches when it is required to significantly decrease a number
of decoding operations i.e., to decrease decoding latency. On
the other hand the performance of this approach in terms of
frame error rate is approximately the same as for SC or SCL.
At the same time these fast decoding techniques for polar
codes are known for their significantly added space complexity
and power consumption [9].

Bit-flipping approach is aimed to solve the problem of
space complexity of SCL decoding. SC-flip (SCF) decoding
algorithm was first presented in [10]. The main idea of SCF
is to use additional SC decoding attempts in series in the case
when an initial SC decoding fails due to a single channel-
induced error. The first paper where SCL decoding with flips
(SCLF) was presented is [11]. In this paper we will show
how the same flipping approach can be adapted for simplified
SCL decoding to reduce it’s space complexity and power
consumption.

One of the most important differences between various
SC/SCL decoders with flips is the way to construct critical
set (CS). During the course of the initial SC/SCL decoding,
a CS of T bit-flipping indices Finv = {i1, i2, · · ·, iT } are
calculated and stored based on a selection criterion f . There
are a lot of papers where authors try to improve performance
of SCF/SCLF by considering more advanced methods for CS
construction. The present work is mainly based on approach to
construct CS presented in [12]. SNR dependent approach to
design CS was proposed in [13]. CS design based on deep
learning of LSTM recurrent neural network was proposed
in [14]. Shifted pruning approach for CS constructing was
discussed in [15] and [16]. Shifted pruning based CS can be
obtained offline.
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There are some other approaches that allow to improve
performance of SCF/SCLF. Multiple bit-flipping was proposed
in [17]. Instead of single flipping (one information bit per each
additional decoding attempt) this approach implies several
(usually not more than 4) flips during each extra decoding.
In paper [18] dynamic SCF decoding (DSCF) was introduced.
This decoder on the one hand allows multiple flips and on
the other hand Finv is recalculated after each failed decoding
attempt. This approach is more powerful and it was shown that
DSCF decoding with T = 50 single flips has the same perfor-
mance as SCL-8 and T = 400 flips allow to reach performance
of SCL-16 for (1024, 512) polar code with CRC-16. Mul-
tiple bit-flipping with nested construction of CS can further
improve performance of SC decoding. Nested CS approach
was also proposed in [17] and simulation results from this
paper show that applying 4-level CS construction jointly with
SCF decoding results in approximately the same performance
as SCL-32 for (1024, 512) polar code with CRC-24. An
improved segmented flipped successive cancellation list (ISF-
SCL) decoder, with a reasonable segmentation strategy and a
number of extra flipping attempts was proposed in [19].

Most existing SCLF decoders operate with symbols of the
received word instead of some patterns of symbols (special
nodes) that can be decoded directly without tree traversing.
In this paper we propose new improved generalized bit-
flipping decoding (GSCLF) of polar codes that is aimed to
solve two problems simultaneously: Reducing both space and
computational complexities in comparison with SCL. Here
term “generalized” means that this decoder involves fast
decoders of special/generalized nodes of polar code. First
issue is solved due to additional decoding attempts that allow
to reduce list size. The second one is resolved by applying
simplified version of SCL that reduces number of operations.
To realize our decoder we additionally suggest novel method
of CS construction that can be applied both for symbol-wise
and generalized SCL decoders.

II. PRELIMINARY INFORMATION

In this paper we use standard notation: for any vector v =
(v0, · · ·, vN�1) under vj

i we understand (vi, vi+1, · · ·, vj).

A. Polar Codes

Polar codes are rooted in the channel polarization phe-
nomenon. At first, the same independent channels are trans-
formed into two kinds of synthesized sub-channels: more
reliable channels and less reliable channels. By recursively
applying such polarization transformation, when the code
length is sufficient, the synthesized sub-channels converge
to two extreme groups: The noisy sub-channels and almost
noise-free sub-channels. Since the noiseless channels have
higher capacities/reliabilities than the noisy channels, polar
codes transmit information bits over the noiseless sub-channels
while assigning frozen bits (fixed value of zeroes or ones, and
assumed known at both the encoder and decoder) to the noisy
ones.

However, for finite code length N , the polarization of
the sub-channels is incomplete. Sub-channels with different

Fig. 1. Encoding implementation with (N,K) = (8, 4) polar codes with
I = {0, 1, · · ·, N � 1}.

reliabilities are in between the noiseless (high reliability) sub-
channels and noisy (low reliability) sub-channels. To choose
a subset I of K sub-channels from {0, 1, · · ·, N � 1} to en-
code K information bits becomes the polar code construction
problem. Here N is restricted to powers of two (N = 2n,
n � 0), and the complement of I in {0, 1, · · ·, N � 1}
is called frozen sub-channels which denoted as F , i. e.
F = I

c = {0, 1, · · ·, N � 1} \ I.
Consider a binary (N,K) polar code specified by set I of

information indexes, set of frozen indexes F = I
c, |I| = K,

|F| = N�K, N = 2n, n 2 N and the corresponding encoding
procedure:

xN�1
0 = dN�1

0 GN , (1)

where d 2 {0, 1}N and GN is the generator matrix of
order N , defined as GN = F⌦n with the Arikan’s standard
polarizing kernel F , [ 1 1

0 1 ] and ⌦n is n-fold Kronecker
product of F.

We consider the frozen bits as zeroes, dF = 0, and the
information bits as the information to be encoded, dI = u.

Fig. 1 illustrates an encoding example with polar code
(8, 4), where information set is I = {0, 1, · · ·, N � 1}.

For our purposes it is more convenient to consider polar
code as a binary tree where leaf nodes correspond to code
symbols. Tree structure of described above (8, 4) polar code
(I = {3, 5, 6, 7}) is presented in Fig. 2 where filled circles
at last level � = 0 correspond to information symbols and
empty ones to frozen symbols. Also it can be noticed from
the picture that length N polar code correspond to log2 N +1
levels (enumerated from leafs to root p) in the tree and each
node in i-th subtree can be assumed as length 2i subcode of
polar code which in fact is also a polar code.

Both encoding and decoding of polar code can be described
in terms of recursive application of (u + v, v) Plotkin
construction in the tree. Encoder starts at level � = 0
and applies (u + v, v) for each pair of symbols (u0, u1),
(u2, u3), · · ·, (uN�2, uN�1) to obtain N/2 codewords u(1)

0 ,
u(1)
1 , u(1)

2 ,· · ·, u(1)
N/2 of length 2 polar codes. Then these

vectors divide into pairs (u(1)
0 ,u(1)

1 ),· · ·, (u(1)
N/2�2,u

(1)
N/2�1)

and Plotkin construction is applied to each of these pairs to
obtain N/4 codewords of length 4 polar codes at level � = 2
etc. This process terminates when (u + v, v) applies to two
N/2-length vectors at level � = logN � 1. The result of
transform is codeword of (N,K) polar code with information
set I.
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Fig. 2. Tree of (8, 4) polar code with I = {3, 5, 6, 7}.

B. Successive Cancellation Decoding

The SC decoding algorithm can be regarded as a greedy
search algorithm over the compact-stage code tree described
above. Between the two branches associated with an infor-
mation bit at a certain level, only the one with the larger
probability is selected for further processing. Whenever a
bit is wrongly determined, correcting it in future decoding
procedures becomes impossible.

Also SC decoder might be considered as a special type of
message-passing decoding where messages passed along edges
that connect parent nodes with their children.

The general aim of SC decoding is to estimate ûK�1
0 for

all information symbols. Since SC is sequential decoding, then
ith information bit is decoded under the assumption that all
previous information bits were correctly recovered:

ûi =

8
<

:
argmax
ui2{0,1}

W (i)
n (yN�1

0 , ûi�1
0 |ui), if i 2 I

0, otherwise
, (2)

where yN�1
0 = (y0, y1, · · ·, yN�1) — received from channel

vector of log-likelihoods: yi , ln W (yi|xi=0)
W (yi|xi=1) , where W (y|x),

x 2 {0, 1}, y 2 R is a channel transition probability function
and W (i)

n (yN�1
0 , ûi�1

0 |ui) represents the likelihood of ui given
the channel output yN�1

0 and ûi�1
0 considering uN�1

i+1 as
unknown bits.

C. Successive Cancellation List Decoding

As an enhanced version of SC, the SCL decoder [2] searches
the code tree level by level, in much the same manner as SC.
However, SCL allows a maximum of L candidate paths to be
further explored, which preserves the further error correction
ability.

SCL decoding maintains L concurrent decoding candidates.
In order to construct these candidates ûi at leaf nodes is
estimated as both 0 and 1 when not being a frozen bit, doubling
the number of candidates (paths). To estimate the reliability of
each path during the decoding process and limit the number
of possible candidates path metric (PM) is used. PM limits
the exponential increase of complexity: When number of paths
become higher than list size L, then only L paths with minimal
PM are preserved and other paths are eliminated. There are

different approaches to construct PM. The most widely-used
and hardware-friendly approach for PM calculation proposed
in [20].

PMl
i =

(
PMl

i�1 + |↵(l)
i |, if ûi 6=

1
2 (1 + sign(↵(l)

i ))

PMl
i�1, otherwise

,

where l = 1, · · ·, L is the index of path, i = 0, · · ·, N � 1 is
the index of bit, and ↵(l)

i = log
W (i)

n (ûi
0,l,y

N
0 |ui=0)

W (i)
n (ûi

0,l,y
N
0 |ui=1)

is an output

log-likelihood ratio (LLR) for i-th bit in lth path. The initial
values of PM is zero PMl

�1 = 0.
In other words, PM increased each time (even for frozen

bits) when the ith bit in current path differs from the one that
would be obtained by simple SC decoding. The penalty of
“non-optimal” decision is |↵(l)

i |.
When SCL decoder terminates, the output will be L possible

code words of length N . To choose one of these codewords
different approaches can be implemented. For instance one can
choose a codeword with lowest PM, but since the minimal
distance of polar code is relatively small, then this method
usually results in relatively poor performance.

More fruitful practice is to construct concatenated code by
applying inner CRC encoder. CA-SCL decoding scheme is a
kind of SCL decoder, which outputs the SCL candidate paths
into a CRC detector, and the check results are utilized to detect
the correct codeword [3].

In this paper we will focus only on CA-SCL schemes.
From this moment onwards, by the notation (N,K+ r) we

mean a concatenation of (N,K) polar code and CRC with
degree r generating polynominal.

D. Simplified Successive Cancellation List Decoding

There are some special cases when it is not required to
traverse all tree for decoding. For instance for code in Fig. 1
decoder already knows that û1 = û2 = 0 without any
additional calculations since these symbols are frozen.

There are also some special types of nodes that can be
decoded directly with complexity significantly lower than
direct SC application. This approach is known as generalized
SC (GSC) decoding [21].

Fast list decoding of special nodes was suggested in [22],
with reduced latency and more practical implementation po-
tential. We name such kind decoder as generalized SCL
(GSCL) decoder.

We adopt notation from [21] to describe generalized decod-
ing of polar codes, and use a 2t length vector m to present
the frozen bits mask, where mi = 0 if ith bit is frozen and
mi = 1 otherwise.

Special (generalized) nodes that can be simply decoded are:
• Rate-0 code R0: m = {0, 0, · · ·, 0}, where all symbols

are frozen. This code has only one all-zeros codeword.
• Rate-1 code R1: m = {1, 1, · · ·, 1}, where all symbols

are information. This code consists of all possible 2t

vectors.
• Repetition code REP : m = {0, 0, · · ·, 0, 1}, where all

symbols except the right-most bits are frozen. This code
consists of 2 codewords (0, 0, · · ·, 0) and (1, 1, · · ·, 1).
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Fig. 3. Generalized (8, 4) polar code with I) = {3, 5, 6, 7}.

• Single parity-check code SPC: m = {0, 1, · · ·, 1, 1}
where all symbols except the left-most bits are informa-
tion. This code consists of 2t�1 codewords with even
Hamming weight.

We will call all nodes but R0 non-trivial and node R0 will
be called trivial. Sometimes instead of “special node” we will
use term “subcode” since this denomination better explains
both structure and decoding of node.

As an example let us consider (8, 4) polar code with
information set I = {3, 5, 6, 7}. The tree of this code consists
of two sub-trees: first represents (4, 1) repetition code REP

and the second one is (4, 3) single parity-check code (4, 3).
Fig. 3 represents generalized tree of this polar code.

The main idea of GSC/GSCL decoder is to divide a tree of
polar code in special nodes listed above and then decode each
of these generalized nodes sequentially one by one.

Let us explain the decoding process in more details. Each
special node consists of n0 = 2t subsequent symbols. During
decoding process each node receives n0 input LLR values
↵n0�1
0 and (for GSCL) L or less paths of length n00 with

assigned path metrics PMl. These paths of length n00 are bit-
sequences that were obtained in previous decoding steps.

After corresponding computations each decoder returns
either unique codeword �n0�1

0 2 {0, 1}n
0

of subcode corre-
sponed to this special node (for GSC decoding) or a set of
at most L binary vectors �[1], �[2],· · ·, �[L0] (L0

 L) of
lengths n0 + n00 with L0 smallest values of PM.

Thus after decoding of a given special node we have either
decoded bits ûn0+n00�1

0 for GSC, or the list of L0 paths of
lengths n0 + n00 with L0 smallest PMs for GSCL.

It should be noted here that path metrics PM1,· · ·,PML

being calculated for any special node of length n0 are block-
wise metrics - it means that they are calculated for the whole
codeword of subcode but we can not calculate them for each
symbol of subcode.

E. Successive Cancellation Decoding with Flips

The main idea of SC-Flip decoder is to use additional SC
decoding attempts in series in the case when an initial SC
decoding fails due to a single channel-induced error. During
the course of the initial SC decoding, a set of T bit-flipping
indices Finv = {i1, i2, · · ·, iT } (which is also called critical set
— CS) are calculated and stored. Indexes in CS are selected in
accordance with some criterion (metric). This CS is used when
initial SC decoding fails. In this case at most T additional

decoding attempts SC(ij), j = 1, · · ·, T are applied, where
under SC(ij) we denote SC decoding with ij th information
bit flipping: i.e., instead of returning bit ûi in accordance with
original procedure (2) decoder SC(ij) returns 1� ûi.

In paper [10] very simple criterion was chosen to construct
CS: T indices correspond to T smallest absolute values of out-
put LLRs of initial SC decoding ↵(0)[i1], ↵(0)[i2], · · ·,↵(0)[iT ]
form a CS. This very simple approach allows to obtain
performance of SCL with list size L = 2 for (1024, 512)
polar code when T = 32.

There are a lot of papers where authors try to improve
performance of SCF either by considering more advanced
methods for CS construction (for instance making it SNR
dependent [13]) or by applying multiple bit-flipping, i.e.,
flipping more than one bit at each decoding attempt. In
paper [18] dynamic SCF decoding (DSCF) was introduce.
This decoder in one hand allows multiple flips and in other
one Finv is recalculated after each failed decoding attempt.
This approach is more powerful and it was shown that DSCF
decoding with T = 50 flips has the same performance as
SCL-8 and T = 400 flips allow to reach performance of CA-
SCL-16 for (1024, 512) polar code with CRC-16. Multiple bit-
flipping with nested construction of CS can further improve
performance of SC decoding. Nested CS approach was intro-
duced in [17] and simulation results from this paper shows that
applying 4-level CS construction jointly with SCF decoding
results in approximately the same performance as SCL-32 for
(1024, 512) polar code with CRC-24. Also it should be noted,
that in already mentioned paper [18] multiple flips are also
used. For the case of T = 50 2-bit flips are allowed and for
T = 400 setting 3-bit flips are allowed.

The main drawback of SCF decoders based on core SC
algorithm is a very strict trade-off between latency and perfor-
mance. Original SCF decoder from [10] has high latency due
to very large number of additional attempts that are required
to achieve better performance than SC. At the same time,
very simple metric that are used in this decoder can not
provide good enough performance that can be comparable with
SCL decoders with large list size. More modern algorithms
like Dynamic SCF [18] or nested SCF [17] allow to obtain
performance of SCL-16 or even SCL-32 but also at the cost of
a very high latency due to huge average number of additional
SC trials. The most attractive thing here is a space complexity
- it remains O(N).

F. Successive Cancellation List Decoding with Flips

There is an updated version of flip-based decoder where
core SCL with small list size L is used instead of SC. Of
course it results in increasing of space complexity from O(N)
to O(LN) but number of flips (size of Finv) can be also
reduced significantly. The first paper where SCL decoding with
flips (SCLF) was presented is [11]. Authors also provide new
method of CS construction. The idea of SCLF is very close
to one of SCF. The only difference is that for every additional
decoding attempt SCL(ij), j = 1, · · ·, T , the SCL decoder
chooses L paths of length ij with the highest PMs, not the
lowest.
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In [23] a new metric to construct critical set was proposed.
It was shown that core SCL-8 decoder with T = 50 flips
outperforms SCL-32 decoder for (256, 128) and (1024, 512)
polar codes with CRC-9.

Maximal latency of SCLF algorithm is O((T+1)LN logN)
while space complexity is O(LN). But instead of SCF/DSCF
decoding SCLF requires significantly smaller number of flips
to obtain the reference performance.

The main disadvantage of the decoder in [23] is that the
CS metric is symbol-wise: It can not been calculated for some
vector of symbols correspond to a subcode of polar code. In
our contribution we will discuss how this disadvantage can be
overcome.

III. OUR CONTRIBUTION

In this section we give an explanation of our contribution.
First, we describe new method of critical set construction for
SCLF decoding which can be applied for both symbol-wise
traditional decoding and for simplified decoding, based on fast
decoding of special nodes. After it we will propose a new
generalized SCL decoding with flips (GSCLF) which operates
with special patterns of symbols and can achieve significantly
better throughput than ordinary SCLF decoder.

A. Differential Critical Set

We propose a new metric which bring in at least the
following benefits:

• Suit for both symbol-wise and block-wise SCL decoding
• Low computational complexity
• Better or comparable performance with symbol-wise

SCLF
For a SCL decoder, when decoding the ith information bit,

at most 2L PMs will be calculated and these PMs will be
sorted in an ascending mode. Then the decoder will keep
the first half paths with the smaller PMs and discard the
second half of the paths with larger PMs. The decoding error
probability of i-th information bit is related to the closeness
between the value of the PMs in survived paths and the ones
in discarded paths. Thus we propose the following metric D
to construct CS for symbol-wise decoding:

D[i] = � min
l2Survival

PMl
i + min

l2Discard
PMl

i. (3)

T information bits indices with smallest D[i] form the CS:

CS(T ) = {i1, · · ·, iT : D[i1]  · · ·  D[iT ]}. (4)

The minimum operation in (3) can be omitted as an ordinary
SCL decoding already done the sorting when choosing which
paths to be saved.

D[i] = �PM1
i + PML+1

i .

This differential metric only requires one subtraction oper-
ation.

Since the proposed metric depends only on PM from SCL
decoding, it can be easily adapted to a GSCL decoder. The

only difference is metric calculated on the PMs for subcodes
regardless of the exact subcode type. The description how PMs
can be calculated for different subcodes type can be found
in [24].

It should be mentioned that the proposed differential metric
can be considered as simplified version of PM proposed in [12]
for ↵ = 1:

Ei = log

LP
l=1

e�PMl
i

✓
LP

l=1
e�PML+l

i

◆↵ . (5)

Metric (5) can be rewritten as:

Ei = log

e�PM1
i

LP
l=1

e�PMl
i/e�PM1

i

✓
e�PML+1

i

LP
l=1

e�PML+l
i /e�PML+1

i

◆↵

= log
e�PM1

i

⇣
e�PML+1

i

⌘↵ + log

LP
l=1

e�PMl
i/e�PM1

i

✓
LP

l=1
e�PML+l

i /e�PML+1
i

◆↵

= D[i] + ✏i.

Thus D[i] can be stated as the main component of (5) when
↵ = 1. As there are no complex calculations, such as log(·) or
exp(·), and best exploits the ordinary SCL decoder calculation
result and data structure, D[i] is also the extremely simplified
metric could preserve all the benefits of (5) stated in [12].
The latest statement comes from the fact that to calculate Ei

one requires to calculate 2L exponential functions of PM, 2L
sums of exponents, one calculation of logarithm function and
one power function. Thus the complexity Ctot for constructing
critical set for (N,K) polar codes applying Ei as follows:

Ctot = 2LK(Cexp + Csum) +K(Clog + Cpow),

where
1) Cexp is a complexity for calculation exp(·)
2) Clog is a complexity for calculation log(·)
3) Csum is a complexity for floating point sum calculation
4) Cpow is a complexity for calculation x↵, x,↵ 2 R
At the same time to calculate D[i] on sorted array of PMs

from SCL decoder only one subtraction is required.
Figs. 4–9 illustrate the decoding error distribution versus

the index of a critical set, where x-axis represents the index of
the critical set based on Ei metric [12] and differential metric,
and the y-asix represents the error probability of the ith bit in
received (256, 128 + 16), (512, 256 + 16), (1024, 512 + 16),
(1024, 205 + 16), (1024, 648 + 16), (1024, 848 + 16) polar
codewords. These results were obtained by decoding of 106

received codewords for SNR = 2 dB, SNR = 1 dB,
SNR = 2.7 dB, and SNR = 3.7 dB in AWGN channel.
Simulations obtained for another code constructions (different
rates, CRC lenghts and constructions of polar codes) and SNR
values show the same behavior.

Here, the code construction is taken from 5G NR standard,
the list size of the SCL decoder is 8.
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The results show that the error distribution of the differential
metric is approximately the same as the distribution of the
Ei metric, which indicates that differential metric requires a
the same set size as Ei metric to cover the first erroneous

information bit for a fixed probability.
Simulation results provided in Section IV also show that

for various code parameters D[i] and Ei bit-selection metrics
used jointly with SCLF decoders have approximately the same
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error-correction performance. In order to compensate for the
biased estimate due to the error propagation the proposed
metric D[i] can be straightforwardly generalized in the same
manner as Ei. In this case the metric can be calculated as
follows:

D↵[i] = �PM1
i + ↵PML+1

i .

Now let us show that variation of the parameter ↵ in Ei

does not result in any performance improvement.
Tables I and II presents a simulation results (in terms of

FER) for (1024, 512 + 16) 5G NR Polar codes for SCLF
decoder with different parameters ↵. From these tables we can
conclude that varying of ↵ does not result in any performance
improvement at least for FER ⇡ 10�3 that is working point
for applications.

Simulation results we made allow us to conclude that there
is no significant improvement in error-correction performance
when varying ↵. Thus instead of using D↵[i], we will use D[i]
further.

B. Subcodes-based Successive Cancellation List Decoding

with Flips

In this section we describe how proposed differential metric
can be applied for special nodes decoding and flipping in
SCLF decoding. Here we propose a new decoder called
GSCLF. In fact we show how to modify CS for GSCLF and
how to flip the whole special node but single bit. As it was
mentioned earlier, the idea of fast list decoding of some special
nodes of polar code’s binary tree representation is already
known. At the same time there are a several approaches how
to organize bit-flipping decoding of polar codes and combine
it with SCL decoding. These algorithms are known as SCLF.
The main idea of this paper is to combine these two promising
approaches for polar codes decoding: Fast list decoding of
special nodes that allows to reduce computational complexity
and flipping that allows to reduce space complexity of ordinary
SCL. To implement this idea we need to characterize each
special node in terms of SCL error probability and then flip
special nodes where this probability is maximal. Thus the main
challenge here is to adapt metrics that are used to construct
CS to special nodes.

For simple SCLF decoder with list size L, if ith bit must
be flipped, then the flipping is equivalent to choose L paths
ûi
0[L + 1], · · ·, ûi

0[2L] corresponding to L path metrics with
maximal values instead of L paths with minimal ones.

The idea of flipping the whole (instead of symbol flipping)
special node s of length n0 = 2t and placed in positions from
i to i+n0

�1, i+n0
�1  N is almost the same: If it is neither

trivial nor among first logL non-trivial, then decoder of s —
Decs(↵

i+n0�1
i , (PMin

1 , · · ·, PMin
L )) has n0 LLR values and L

path metrics PMin
i as an input and produces L surviving paths

ûi+n0�1
0 [1], · · ·, ûi+n0�1

0 [L] of length n0 and L corresponding
PM-s (PMout

1 , · · ·, PMout
L ) as output.

If
CS(T ) \ {i, i+ 1, · · ·, i+ n0

� 1} 6= ;,

i.e., at least one of information bits of special node has
to be flipped, then output of Decs(·, ·) changes: Instead

of returning L paths with lowest PM, decoder returns L
paths ûi+n0�1

0 [L+ 1], · · ·, ûi+n0�1
0 [2L] with maximal PM-s

(PMout
L+1, · · ·, PMout

2L ).
Such approach of special nodes flipping is sub-optimal

for repetition code since each such node extends current list
of survival paths twice. In this case flipping of information
symbol in repetition code is equivalent to decoding of the
corresponded information bit in original SCL decoding — both
GSCLF and SCL decoders return the same survival paths for
a sequence of bits corresponded to REP .

At the same time results of SCL and GSCLF decoders in
general differ for R1 and SPC. While SCL decoder makes a
decision about new set of survival paths after decoding of each
ith information bit (after first log2 L information bits), GSCLF
decoder updates a set of survival paths after whole subcodes’s
decoding. Let us illustrate the main difference between SCL
and GSCLF decoders for R1 of length n0 = 2t, t 2 N. The
same idea (with some limitations mentioned below) works also
for SPC.
R1 subcode of length n0 = 2t consists of all possi-

ble N 0 = 2n
0

binary sequences v1, v2,· · ·,vN 0 of length
n0. Let us assume that this subcode is placed in positions
i, i+ 1, · · ·, i+ n0

� 1 of the whole codeword of polar code.
Let us denote by yN�1

0 a vector of log-likelihoods re-
ceived from channel. Then the most likely codeword v̂ =
(v̂i, v̂i+1, · · ·, v̂i+n0�1) of R1 can be obtained as follows:

v̂j =

(
0, if yj > 0

1, otherwise
, j = i, · · ·, i+ n0

� 1. (6)

The second likely codeword ev of R1 can be obtained from
v̂ by flipping rth bit in v̂ that corresponds to smallest absolute
LLR value |yr|:

evj =
(
v̂j , if j 6= r

1� v̂j , otherwise
, j = i, · · ·, i+ n0

� 1.

Thus GSCLF decoder for R1 works as follows: if
ûi�1
0 [1], · · ·, ûi�1

0 [L] are paths that were survived after decod-
ing of bits from 0 to i�1, then each path ûi�1

0 [l], l = 1, · · ·, L
splits into

�
ûi�1
0 [l], v̂

�
and

�
ûi�1
0 [l], ev

�
, then PM metric

calculates for each of these 2L paths (see [7, eq. (18)]). It
means that decoder assigns value PMout

l , l = 1, · · ·, 2L to
each path

�
ûi�1
0 [l], v̂

�
and

�
ûi�1
0 [l], ev

�
. Let us assume that

these paths are already sorted by increasing of PMout
l . If

CS(T ) \ {i, i+ 1, · · ·, i+ n0
� 1} = ;,

then decoder eliminates paths from L+ 1 to 2L with highest
path metrics and holds first L paths, else decoder eliminates
paths from 1 to L with lowest path metrics and holds last L
paths with highest PM.

The idea of SPC list decoding is almost the same. We
describe it in few words and highlight the differences between
SPC and R1 list decoders. As in previous example we assume
that SPC subcode corresponds to i, i+1,· · ·, i+n0

�1 indexes
of polar code codeword, n0 = 2t.

The only difference between SPC and R1 list decoders
is the approach to obtain a set of most likely codewords of
the corresponding subcodes. Let us show how most likely
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TABLE I
FER PERFORMANCE OF 5G NR (1024, 512 + 16) POLAR CODE FOR SCLF DECODER, T = 10, PROPOSED IN [12] FOR DIFFERENT ↵ VALUES.

↵/SNR 0 0.5 1 1.5 2
1 9.759 · 10�1 7.681 · 10�1 3.019 · 10�1 3.975 · 10�2 1.604 · 10�3

1.2 9.760 · 10�1 7.690 · 10�1 3.014 · 10�1 4.031 · 10�2 1.622 · 10�3

1.4 9.765 · 10�1 7.673 · 10�1 3.002 · 10�1 3.942 · 10�2 1.611 · 10�3

1.6 9.758 · 10�1 7.671 · 10�1 3.020 · 10�1 4.000 · 10�2 1.628 · 10�3

1.8 9.767 · 10�1 7.687 · 10�1 3.005 · 10�1 4.008 · 10�2 1.613 · 10�3

2 9.778 · 10�1 7.700 · 10�1 3.027 · 10�1 4.034 · 10�2 1.630 · 10�3

TABLE II
FER PERFORMANCE OF 5G NR (1024, 512 + 16) POLAR CODE FOR SCLF DECODER, T = 50, PROPOSED IN [12] FOR DIFFERENT ↵ VALUES.

↵/SNR 0 0.5 1 1.5 2
1 9.621 · 10�1 6.887 · 10�1 2.152 · 10�1 2.051 · 10�2 5.640 · 10�4

1.2 9.632 · 10�1 6.925 · 10�1 2.180 · 10�1 2.026 · 10�2 5.560 · 10�4

1.4 9.636 · 10�1 6.899 · 10�1 2.162 · 10�1 2.059 · 10�2 5.830 · 10�4

1.6 9.619 · 10�1 6.905 · 10�1 2.172 · 10�1 2.079 · 10�2 5.680 · 10�4

1.8 9.615 · 10�1 6.949 · 10�1 2.178 · 10�1 2.061 · 10�2 6.100 · 10�4

2 9.629 · 10�1 6.925 · 10�1 2.169 · 10�1 2.073 · 10�2 5.760 · 10�4

codewords ŝ1, ŝ2 of SPC can be constructed. The main
difference between codewords from R1 and SPC is that the
codewords from the latest must fulfill parity-check constraint.
Let us assume that vector vi+n0�1

i is constructed as in (6).
To obtain most likely codeword ŝ1 of SPC one apply the
following algorithm:

1) Set vi = 0 since first symbol of SPC is frozen

2) Calculate q =
i+n0�1L
j=i+1

vj , where
L

means modulo-2 sum.

3) If q = 0 then set ŝ1 = v and terminate.
4) If q = 1 then find index r of least reliable bit among

i+ 1,· · ·, i+ n0
� 1 bits

5) Update vr = 1� vr.
6) Set ŝ1 = v and terminate
The second most likely codeword ŝ2 can be obtained from

ŝ1 by flipping two least reliable bits of ŝ1.
All other steps of SPC list decoding and flipping are the

same as for R1.
It should be noted that subcodes’ flipping approach does

not take into account two facts that are rather important in
original SCLF:

1) Number of information bits be flipped in subcode
2) Positions of these bits
It means that proposed rule of subcodes flipping can signif-

icantly reduce number of flips in CS. It doesn’t make sense to
make T more than number of non-trivial (not R0) subcodes
of polar code. The further increasing of T does not result in
any performance improvement in this scheme.

The subcodes structure of 5G NR polar codes with CRC-16
and code rate R = 0.5 are listed in Table III.

It can be noted from Table III that for short polar codes
number of non-trivial special nodes is very limited. If number
of accepted flips T exceeds number of non-trivial special nodes
then further simplifications of GSCLF are possible: In this case
we can eliminate “on-line” CS construction, calculate it offline
and use as an external parameter of GSCLF.

Summarizing all written above we can give an algorithmic
description of proposed decoder.

Algorithm: Proposed improved generalized successive
cancellation list flip decoder of polar codes with fast
decoding of special nodes - GSCLF

Input: yN�1
0 , T, L, I

Output: ûN�1
0

/* Apply conventional Fast-CA-SCL
(FSCL) decoding as described in
[8] */

for i ranges over all but R0 subcodes of polar code do

{PMout
1 [i], · · ·,PMout

2L [i]} � FSCL
Calculate D[i].

if ANY(CRC(ûN�1
0 [l])) = success, l = 1, · · ·, L then

Return ûN�1
0 [l⇤], where l⇤ is smallest index over

all successful codewords
else

/* Construct CS Finv by T smallest
D[i] corresponded to T distinct
subcodes but R0 as in (4) */

Finv = {i1, i2, · · ·, iT }, with
D[i1] < D[i2] < · · · < D[iT ]

/* Try to flip bits in accordance
with Finv */

for j = 1, 2, · · ·, T do

{ûN�1
0 [j]} � FSCL(ij) // Apply
Fast-CA-SCL (FSCL) with flipping
in bit with index ij, j = 1, · · ·, T.

if CRC(ûN�1
0 [j]) = success then

Return ûN�1
0 [j]

Break

Return ûN�1
0 [1]
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TABLE III
STRUCTURE OF 5G NR POLAR CODES AND MAXIMAL NUMBER OF FLIPS

FOR THESE CODES.

Polar code R1 REP SPC Max. T
(64, 32+16) 6 3 1 10
(128, 64+16) 6 7 5 18
(256, 128+16) 6 9 9 24
(512, 256+16) 11 17 13 41
(1024, 512+16) 17 26 26 69

IV. SIMULATION RESULTS

A. Simulation Results — Performance Analysis

In this section, we compare the frame error rate (FER)
performance of the proposed SCLF/GSCLF decoders based
on our proposed critical set construction. We implement two
versions of SCLF - symbol-wise (called SCLF Diff, T =
x) and generalized subcodes-based GSCLF versions (called
GSCLF, T = x). We compare our proposed schemes with
SCLF decoder based on CS constructed as described in [12]
(called further CA-SCL-1, T = x). The 16-bit CRC with
the generator polynomial g(x) = x16 + x15 + x2 + 1 is
used for codeword selection in all decoding schemes (SCLF,
GSCLF, CA-SCL) that are used for performance comparison).
This CRC is combined with half-rate 5G NR polar codes
with lengths N = 1024, 512, 256, and (1024, 648). We
also consider (1024, 205) and (1024, 848) 5G NR polar codes
which have exactly 50 different subcodes but R0. It means
that for T = 50 all information symbols (grouped by special
nodes) will be flipped.

It must be stated here that for comparison we use only PM
proposed in [12] but not the whole decoding scheme since it
has significantly higher complexity due to recalculation of CS
after each unsuccessful decoding attempt and multilevel flips
in [12]. We will denote SCLF decoder with CS based on [12]
by CA-SCL-1. As in [12] we use ↵ = 1.2 for Ei calculation.

AWGN channel and binary phase shift keying (BPSK) are
used for simulation.

We consider two setups: When number of flips is small
(T = 10) and when it is significantly large (T = 50). For
symbol-wise decoders maximal possible number of flips is
limited by the number of information symbols of code but for
generalized decoder it is reasonable to limit this value by the
number of non-trivial subcodes R1, REP , SPC. (256, 128+
16) and (512, 256+16) codes have less than 50 such subcodes
and thus for this case we limit number of flips for subcodes
based decoders by 10.

Figs. 10–13 represents simulation results for the proposed
decoders with our new metric in comparison with scheme from
[12]. As it can be noticed new SCLF / GSCLF decoders have
the same performance as more complex ones from [12] both
for T = 10 and T = 50. For (256, 128 + 16) GSCLF with
T = 10 even has slightly better performance than bit-wise
schemes.

As it can be seen from Figs. 10–13 for moderate length
polar codes (N  512) decoders based on bit-flipping with
T = 50 can achieve the performance of SCL-64 decoder. For
polar codes of length N = 1024 flipping schemes (including
CA-SCL-1 with ↵ = 1.2) with T = 50 can achieve the
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Fig. 10. Performance comparison for SCLF with (GSCLF) and without
subcodes decoding, and SCLF decoder with CS construction proposed in [12]
for (256, 128 + 16) polar code, L = 8.
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Fig. 11. Performance comparison for SCLF with (GSCLF) and without
subcodes decoding, and SCLF decoder with CS construction proposed in [12]
for (512, 256 + 16) polar code, L = 8.

performance of CA-SCL, L = 32 only. However, in [12]
(Fig. 9) it was shown that CA-SCL-1 with T = 50 and
↵ = 1.2 can achieve the performance of CA-SCL L = 64
for (1024, 512 + 16) polar code. This discrepancy in the
simulation results can be explained as follows: it is known
that performance of different decoding schemes depend on
structure of polar code. In our simulations we use 5G NR polar
code. Article [12] does not indicate the structure of the used
polar codes. Perhaps, for other constructions of polar codes,
the simulation results will be different, but for fair comparison
we choose the decoder parameters (CRC, L, ↵, T ) coincide
with ones in [12].

Now let us present the behavior of bit-flipping and GSCLF
decoders based on Ei and D[i] metrics for high-rate codes.
We compare the performance of CA-SCL-16, CA-SCL-32,
CA-SCL-64, bit-flipping decoders based on Ei and D[i], and
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Fig. 12. Performance comparison for SCLF with (GSCLF) with and without
subcodes decoding, and SCLF decoder with CS construction proposed in [12]
for (1024, 512 + 16) polar code, L = 8.
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Fig. 13. Performance comparison for SCLF with (GSCLF) and without
subcodes decoding, and SCLF decoder with CS construction proposed in [12]
for (1024, 205 + 16) polar code, L = 8.

GSCLF decoders based on D[i]. We choose (1024, 648+ 16)
and (1024, 848 + 16) polar codes. The latest code has 50
different non-trivial subcodes as (1024, 205 + 16) code.

From Fig. 14 we can conclude that while bit-flipping
decoders based on Ei and D[i] metrics have identical per-
formance that coincides (for T = 50) with CA-SCL, L = 32
decoder, GSCLF decoder shows worse performance than
symbol-wise decoders. This fact can be explained as follows:
the higher rate of polar code, the more number of SPC and
R1 codes in it’s decoding tree. Since these code have high
rate, then its’ list decoding without tree traversal described
in Section II-D provides significantly worse performance than
SCL decoding, and the longer SPC or R1 code, the higher
difference between SCL and direct list decoding without tree
traversal.

Finally, let us present simulation results for 5G NR
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Fig. 14. Performance comparison for SCLF with (GSCLF) and without
subcodes decoding, and SCLF decoder with CS construction proposed in [12]
for (1024, 648 + 16) polar code, L = 8.
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Fig. 15. Performance comparison for SCLF with (GSCLF) with and without
subcodes decoding, and SCLF decoder with CS construction proposed in [12]
for (1024, 848 + 16) polar code, L = 8.

(1024, 848 + 16) polar code.
Simulation results presented in Fig. 15 proofs the hy-

pothesis that the higher code rate the worse performance of
GSCLF decoder, when the number of flips T is fixed. Since
(1024, 848 + 16) polar code has more longer SPC and R1

codes than (1024, 648 + 16) and especially (1024, 512 + 16)
code, then GSCLF decoder results in the worst performance.
We suppose that this behavior is common for all simplified
(fast) SCL decoders since the structure of high-rate polar codes
involves a lot of long SPC and R1 codes, where simplified
list decoding operates only with a very limited number of
codeword-candidates. This fact was already mentioned in [24]
where authors found error-correction performance loss when
length of SPC code is higher than 8. One possible way to
overcome this issue is to divide long SPC code on shorter
subcodes and decode them separately. At the same time this
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Fig. 16. Average number of additional decoding attempts for different SCL-
Flip decoding schemes with L = 8 for (1024, 512 + 16) polar code.

approach results in complexity increasing and we will not
implement it in this paper.

Thus the best use cases for proposed GSCLF decoder are
such applications where either low-rate or short length polar
codes are exploited.

B. Simulation Results — Complexity Analysis

As it was mentioned above, high rate polar codes are not
use cases of the proposed GSCLF decoder with fast special
nodes decoding. Thus we present a complexity analysis of
GSCLF decoder for codes with moderate and low code rates,
for whom GSCLF decoder is more applicable.

Before we present a detailed complexity analysis let us
show the dependence between average number of additional
decoding attempts (flips) and SNR for (1024, 512) polar code
with CRC-16 for different decoding algorithms with flips.
This value is normalized by the complexity of CA-SCL
decoding with L = 8. We also add complexities of CA-
SCL with L = 32 and L = 64 (horizontal solid lines) and
complexities of their fast simplified versions proposed in [8]
(dashed horizontal lines).

Fig. 16 shows the average number of additional decoding
attempts for every decoding scheme which is normalized by
the complexity of CA-SCL decoding with L = 8. It can be
also noticed that the proposed schemes have either the same
number of additional flips or even smaller for subcodes based
decoders. But it will be shown that regardless of the fact
that the number of attempts is about the same for already
known and proposed decoding schemes, GSCLF algorithm has
significantly lower computational complexity. Comparing our
proposed decoders with CA-SCL or fast CA-SCL proposed
in [8] we can conclude that all bit-flipping schemes lose in
complexity to CA-SCL and fast CA-SCL decoders in low
SNR regions. At the same time average number of decoding
attempts drops rapidly as the SNR increases, and proposed
decoders have lower complexity compared to CA-SCL and

Fast CA-SCL decoding with L = 32 and 64 in the medium-
to-high SNR region.

Now let us present the detailed complexity analysis (in terms
of average number of different operations) of the proposed de-
coders and compare them with CA-SCL-16, CA-SCL-32, fast
CA-SCL decoders, proposed in [8], and stack decoder (SCS)
from [25]. For all implementations of SCL decoders we use
simplified LLR-based versions of them, where logarithmic
and exponential calculations are omitted [26]. The results are
collected not for one decoding iteration (one decoding attempt
in flipping scheme) but for the full decoding scheme averaged
by 106 decoding attempts for fixed SNR = 2. All values in
the table are counted in thousands (⇥1000). For all considered
decoding schemes we count numbers of different operations
that are used in decoding. It means that when any decoder
applies some calculation, like D[i] evaluation for ith symbol,
we suppose that decoder uses one ·(�1) operation and one
sum operation, assuming that PM1

i and PML+1
i are already

calculated in previous decoding steps. We first calculate the
total number of each operation mentioned in tables, and then
divide these amounts on total trials of decodings.

In considered schemes of CA-SCL-1 proposed in [12],
SCLF Diff, GSCLF we assume that the core SCL decoder
has list size L = 8. All polar codes use CRC-16 for errors
detection.

Now let us describe headers of tables. Tables IV–VII have
9 columns:

1) Algorithm:
• CA-SCL-L — is a ordinary CRC-aided SCL with list

size L
• Fast CA-SCL-L — improved CA-SCL-L decoder with

fast decoding of special nodes [8]
• CA-SCL-1, T = x — is a decoder with metric

proposed in [12] with x additional decoding attempts
• SCLF Diff, T = x — is a symbol-wise decoder with

new proposed metric and with x additional decoding
attempts

• GSCLF, T = x — is a subcodes-based decoder with
new proposed metric and with x additional decoding
attempts

• SCS, L = x, D = y — Successive Cancellation Stack
decoder with list L and size of stack D

2) # sums — number of floating point additions
3) # mults — number of floating point multiplications
4) # comps — number of comparing numbers: >,<,=,

,�
5) # exp(·) — number of exponents calculations exp(·)

(used only in a metric (5) calculation in CA-SCL-1)
6) # log(·) — number of logarithms calculations log(·) (used

only in a metric (5) calculation in CA-SCL-1)
7) # � — number of modulo-2 XORs
8) # ·(�1) — number of inversions (multiplications on �1).

Excluded from “number of muls”
9) total — Total number of operations
From Tables IV–VII and the previously obtained simulation

results, we can conclude that although the proposed metric
D[i] applied for symbol-by-symbol decoding does not provide
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TABLE IV
AVERAGE NUMBER OF DIFFERENT OPERATIONS FOR 5G NR (256, 128 + 16) POLAR CODES AND DIFFERENT DECODERS, SNR = 2 dB.

Algorithm # sums # mults # comps # exp(·) # log(·) # � # ·(�1) Total

CA-SCL-16 229.99 52.22 124.37 0 0 26.61 9.91 443.10
Fast-CA-SCL-16 201.89 12.3 160.37 0 0 23.20 2.34 400.03
CA-SCL-32 473.13 101.86 253.90 0 0 52.27 19.49 900.65
Fast-CA-SCL-32 399.71 24.20 312.93 0 0 45.83 4.58 787.25
CA-SCL-1, T=10 188.91 48.97 103.93 4.55 2.58 21.03 14.60 384.57
SCLF, Diff, T=10 186.67 49.44 106.3 0 0 21.29 13.92 377.62
GSCLF, Diff, T=10 154.25 9.50 127.00 0 0 17.5 1.77 310.02
CA-SCL-1, T=50 300.58 78.88 165.18 6.37 4.90 33.94 22.86 612.71
SCLF, Diff, T=50 297.82 79.21 167.27 0 0 34.14 22.15 600.59
SCS, L=32, D=L*N 43.38 2.31 8438.69 0 0 1.03 4.37 8489.78

TABLE V
AVERAGE NUMBER OF DIFFERENT OPERATIONS FOR FOR 5G NR (512, 256 + 16) POLAR CODES AND DIFFERENT DECODERS, SNR = 2 dB.

Algorithm # sums # mults # comps # exp(·) # log(·) # � # ·(�1) Total

CA-SCL-16 469.82 103.54 266.16 0 0 59.77 19.53 918.82
Fast-CA-SCL-16 378.62 23.28 314.49 0 0 49.29 4.33 770.01
CA-SCL-32 975.37 202.60 546.18 0 0 117.61 38.48 1880.21
Fast-CA-SCL-32 753.59 45.95 614.53 0 0 97.91 8.59 1520.57
CA-SCL-1, T=10 283.00 70.66 162.77 7.36 3.86 34.56 21.25 583.46
SCLF, Diff, T=10 277.80 71.28 166.88 0 0 34.99 19.88 570.83
GSCLF, Diff, T=10 216.59 13.33 186.71 0 0 27.86 2.46 446.95
CA-SCL-1, T=50 332.71 83.63 191.39 8.41 5.64 40.94 24.78 687.50
SCLF, Diff, T=50 331.12 82.19 197.57 0 0 41.84 23.66 677.82
SCS, L=32, D=L*N 134.59 5.11 33696.20 0 0 2.30 9.45 33847.65

TABLE VI
AVERAGE NUMBER OF DIFFERENT OPERATIONS FOR FOR 5G NR (1024, 512 + 16) POLAR CODES AND DIFFERENT DECODERS, SNR = 2 dB.

Algorithm # sums # mults # comps # exp(·) # log(·) # � # ·(�1) Total

CA-SCL-16 969.86 209.39 573.54 0 0 134.55 39.26 1926.60
Fast-CA-SCL-16 789.09 43.33 679.29 0 0 108.67 8.49 1628.87
CA-SCL-32 2023.57 409.94 1177.65 0 0 264.60 77.44 3953.20
Fast-CA-SCL-32 1563.29 85.47 1319.63 0 0 215.60 16.84 3200.83
CA-SCL-1, T=10 533.18 129.49 319.19 10.34 6.93 70.94 38.72 1108.79
SCLF, Diff, T=10 517.06 129.14 323.80 0 0 71.04 35.62 1076.66
GSCLF, Diff, T=10 416.63 22.73 368.58 0 0 56.61 4.40 868.95
CA-SCL-1, T=50 538.73 134.28 330.51 10.60 7.38 73.59 40.01 1135.10
SCLF, Diff, T=50 522.04 134.63 336.80 0 0 74.07 37.09 1104.63
GSCLF, Diff, T=50 434.22 23.70 384.06 0 0 59.03 4.59 905.60
SCS, L=32, D=L*N 454.10 11.26 134686 0 0 5.12 19.09 135175.57

TABLE VII
AVERAGE NUMBER OF DIFFERENT OPERATIONS FOR FOR 5G NR (1024, 205 + 16) POLAR CODES AND DIFFERENT DECODERS, SNR = 2 dB.

Algorithm # sums # mults # comps # exp(·) # log(·) # � # ·(�1) Total

CA-SCL-16 615.61 146.40 380.98 0 0 104.44 25.21 1272.64
Fast-CA-SCL-16 436.94 24.52 390.29 0 0 75.41 3.47 930.63
CA-SCL-32 1202.40 274.74 737.70 0 0 197.80 47.93 2460.57
Fast-CA-SCL-32 853.07 47.50 741.43 0 0 146.67 8.86 1797.53
CA-SCL-1, T=10 338.84 86.70 211.07 7.12 5.07 55.83 20.83 725.46
SCLF, Diff, T=10 332.10 86.55 212.96 0 0 55.87 19.54 707.02
GSCLF, Diff, T=10 228.72 12.59 214.86 0 0 38.63 1.78 496.58
CA-SCL-1, T=50 339.54 86.88 211.51 7.55 5.17 55.95 20.87 727.47
SCLF, Diff, T=50 332.24 86.58 213.05 0 0 55.89 19.55 707.31
GSCLF, Diff, T=50 228.97 12.60 215.10 0 0 38.67 1.78 497.12
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a significant reduction in complexity, nevertheless, the GSCLF
decoder with this metric can significantly reduce the number
of operations required for decoding a polar code. Although the
GSCLF decoder uses a slightly larger number of comparison
operations than bit flipping decoders, it can significantly re-
duce the number of such complex operations as multiplications
in comparison not only with CA-SCL-16 and especially CA-
SCL-32 decoders and their fast modifications [8] but also with
CA-SCL-1 with metric proposed in [12] and with bit flipping
decoder SCLF with D[i] metric. Let us also remind that space
complexity of GSCLF decoder is O(LN), where L is list size
of the core decoder. For flipping decoders presented in Ta-
bles IV–VII, L = 8. Thus for practical important FER values
(from 0.05 to 10�4 at SNR = 2 for different polar codes)
new proposed GSCLF decoder reduces number of operations
from 66% to 80% for different parameters of polar codes
and different number of flips while requiring approximately
4 times smaller memory than CA-SCL-32 decoder.

We emphasize again that the most significant complexity
reduction is achieved on the most computationally complex
operations. It is a main reason why further complexity com-
parisons between decoding algorithms will be divided into two
groups: first we compare decoders taking into account total
number of operations except multiplications, exp() and log()
and second we compare decoders in terms of number of the
most expensive operations — multiplications, exp() and log().

In the last three rows of the table we present complexity
estimations for different polar codes decoded by succesive
cancellation stack decoder (SCS) with list size L = 32 and
stack size D = LN , where N is a code length. In accordance
with [25] these parameters of SCS allow to obtain performance
of SCL-32 decoder. As it can be found from the Tables IV–VI,
SCS can significantly reduce number of nearly all operations
applied during decoding in comparison not only with CA-
SCL-32 but also with GSCLF. At the same time a number
of comparison operations in SCS increases dramatically with
code length even in comparison with CA-SCL-32. Although,
of course, it should be noted that comparison operations
are much simpler than operations such as multiplication,
calculating logarithms, etc. In addition, main drawback of
the SCS decoder should be noted. The memory consumption
of SCS can be estimated as O(DN) which is significantly
larger than O(LN) for CA-SCL-L decoder. Thus the proposed
GSCLF decoder might be considered as a competitor to SCS
especially in applications and devices that imply significant
memory limitations.

Let us present a graphical representation of the dependence
between code construction and complexities C1 = #mults+
#exp(·)+# log(·) and C2 = total�C1 of different decoding
algorithms represented in Tables IV–VII.

Figs. 17–20 demonstrate that for all parameters of polar
codes GSCLF decoder with either T = 10 or T = 50
provide the lowest computational complexity in comparison
with both SCL/Fast-SCL with larger list size and with SCLF
decoder with the same list size and T as in GSCLF but
with symbol-by-symbol calculations: Average reduction in
complexity due to subcodes decoding is 23% for T = 10
and T = 50. More significant difference is achieved on low-

Fig. 17. Dependence between C1 complexities for different decoders and
polar code parameters: decoders VS C1 complexity for different parameters
of polar codes.

Fig. 18. Dependence between C2 complexities for different decoders and
polar code parameters: decoders VS C2 complexity for different parameters
of polar codes.

Fig. 19. Dependence between C1 complexity for different decoders and polar
code parameters: Different parameters of polar codes VS decoders.

rate codes: for (1024, 205 + 16) code the difference in the
number of operations between the SCLF and GSCLF decoder
is 32% for T = 10. It should be noted that GSCLF decoders
provide the most significant complexity reduction in terms
of multiplications (C1 complexity), while C2 complexity of
GSCLF is approximately the same as for bit-flipping decoders
with the same T value.



430 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 23, NO. 6, DECEMBER 2021

Fig. 20. Dependence between C2 complexity for different decoders and polar
code parameters: Different parameters of polar codes VS decoders.
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Fig. 21. C1 complexity for different SNR of different decoders for
(256, 128 + 16) polar code.

Also it can be noticed that curves in Figs. 17–20 corre-
sponded to either GSCLF decoder with T = 50 or polar
codes of length N = 256 and N = 512 have less points than
other curves. This comes from the fact that polar codes with
N = 256 and N = 512 are not decoded by GSCLF decoder
with T = 50 since these codes have less than 50 non-trivial
subcodes.

Finally, we present a simulation results of the dependence
of the total decoding complexity for different SNR ratio for
various decoders and various parameters of polar codes.

Simulation results presented in Figs. 21–28 demonstrate that
for practically significant signal-to-noise ratios (corresponding
to the error probability per block less than 0.01), the proposed
GSCLF decoders based D[i] metric with a list size L = 8
provide a significant reduction in computational complexity
compared to SCL-16 and SCL-32, and at sufficiently high
signal-to-noise ratios (corresponding to the error probability
per block less than 0.001) are less complex than fast simplified
versions of SCL-16 and SCL-32 [8]. In addition, for all signal-
to-noise ratios, GSCLF decoders have complexity less than bit-
wise SCLF decoders with D[i] CS construction and CA-SCL-1
with metric from [12]. Moreover, previously it was shown
that GSCLF decoders have significantly lower C1 complexity
(complexity in terms of multiplications, log(·), exp(·)) than
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Fig. 22. C2 complexity for different SNR of different decoders for
(256, 128 + 16) polar code.
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Fig. 23. C1 complexity for different SNR of different decoders for
(512, 256 + 16) polar code.
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Fig. 24. C2 complexity for different SNR of different decoders for
(512, 256 + 16) polar code.

other competitors for different polar codes and SNR = 2 dB.
Simulation results provided in Figs. 21–28 show that GSCLF
decoder has significantly lower C1 complexity than bit-flipping
decoders for wide range of SNR and approximately the same
C2 complexity. Comparing the complexity of GSCLF and fast
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Fig. 25. C1 complexity for different SNR of different decoders for
(1024, 512 + 16) polar code.
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Fig. 26. C2 complexity for different SNR of different decoders for
(1024, 512 + 16) polar code.
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Fig. 27. C1 complexity for different SNR of different decoders for
(1024, 205 + 16) polar code.

CA-SCL decoders [8], we can conclude that GSCLF also
provides both C1 and C2 complexities reduction for SNR
values correspond to practical FER values ( 0.01).

Thus, the use of GSCLF is justified at sufficiently high
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Fig. 28. C2 complexity for different SNR of different decoders for
(1024, 205 + 16) polar code.

signal-to-noise ratios, where they have a complexity that is
less than that of list decoders, and, in addition, this class of
decoders should always be preferred to bit flipping decoders
with flips, since the complexity of GSCLF turns out to be
lower at all SNRs.

V. GENERAL OBSERVATIONS

In general we can make the following observations:
• If code rate and CRC is fixed then the shorter polar code

the smaller number of additional decoding attempts are
required to achieve performance of SCL decoder with
larger list size. It follows from the fact that the smaller
information set size, the higher probability to find first
erroneous bit among chosen T symbols in accordance
with some criterion.

• If the code length and CRC is fixed then the lower code
rate the smaller number of additional decoding attempts
are required to achieve performance of SCL decoder with
larger list size. It also follows from the fact that small
size of information set simplifies searching of the first
erroneous bit.

• The smaller number of non-trivial subcodes of polar code,
the better performance of GSCL decoder with small T -
value. In the case of GSCLF decoder a number of non-
trivial subcodes plays the same role as information set
for bit-wise SCLF decoder.

• The best use case of the proposed GSCLF decoder is
either short codes or low and middle rate polar codes.
For high rate codes bit-flipping SCLF decoders are more
appropriate.

• Proposed GSCLF decoders allow to significantly reduce
number of such complex operations as multiplications for
wide SNR range.

VI. CONCLUSION

In this work an improvement of SCLF decoding is sug-
gested. This improvement is based on application of special
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low-complexity critical set construction. The proposed metric
for CS can be adapted for generalized subcodes based SCLF
further decreasing the complexity. Simulation results also
reveal that the proposed GSCLF decoding with a small list size
and moderate number of flips can achieve a better performance
than CA-SCL decoding with a large list size while keeping the
complexity low.
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