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Abstract—The error exponent of the regular graph-based binary low-density parity-check (LDPC) codes
under the maximum likelihood (ML) decoding algorithm in the binary symmetric channel (BSC) is ana-
lyzed. Unlike most other papers where error exponents are considered for the case when the length of LDPC
codes tends to infinity (asymptotic analysis), the finite length case (finite length analysis) is considered. In
this paper, a method of deriving the lower bound on the error exponent for a regular graph-based LDPC code
with finite length under ML decoding is described. Also we analyze Dependences of the error exponent on
various LDPC code parameters are also analyzed. The numerical results obtained for the considered lower
bound are represented and analyzed at the end of the paper.
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1. INTRODUCTION
The low-density parity-check (LDPC) code was

proposed by Gallager in [1], where the lower bound on
the code distance was also obtained. In [2] and [3], the
asymptotic upper and lower bounds on the error expo-
nent under the maximum likelihood (ML) decoding
of LDPC codes were investigated. It is also known
from [2] that the lower bound on the error exponent
under the ML decoding of LDPC codes asymptoti-
cally tends to the lower bound on the error exponent
under the ML decoding of good linear codes obtained
in [4].

It should be noted that all works mentioned above,
where error exponents were considered, were obtained
for the asymptotic case: it was assumed that the code
length tends to infinity. This assumption allows one to
use some well-known methods of asymptotic behavior
estimation.

There is a limited number of papers where non-
asymptotic behavior of LDPC codes is considered. In
[5], the performance of finite length LDPC codes in
the waterfall onset region (such values of the signal-to-
noise ratio for which the output probability of error per
codeword after decoding begins to decrease) was con-
sidered. The authors proposed an algorithm (based on
the density evolution technique) that predicts the error
performance of finite-length LDPC codes transmitted
through various binary symmetric memoryless chan-

nels (BSMCs). Using a combinatorial characteriza-
tion of decoding failures, expressions for the average
bit and block erasure probabilities were derived in [6],
[7], and [8] for various LDPC ensembles and iterative
message-passing decoding algorithms. Some modifi-
cations of these methods was presented in [9]. Most of
these works deal with only a binary erasure channel
and low-complexity decoding (e.g., bit-flipping or
belief propagation). Only a few papers are devoted to
channels with errors.

This work was inspired partly by studies [10] and
[11], where methods for the analysis of graph-based
LDPC codes were developed. It should also be noted
that the average weight distribution of finite-length
LDPC codes was estimated in [7] but, in this paper, an
error exponent was not considered. In this paper, we
analyze the decoding performance of regular LDPC
codes with finite length under the conditions of the
ML decoding algorithm. We describe a method of
deriving the lower bound on the error exponent for the
LDPC code with this decoding algorithm using finite
length analysis based on generating functions and
some other combinatorial methods. The error expo-
nents are computed numerically and analyzed for var-
ious code parameters.

2. CONSTRUCTION OF LDPC CODES
Sometimes it is convenient to represent LDPC

codes in terms of the Tanner graph [12]. This is a1 The article was translated by the authors.
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Fig. 1. Tanner graph of the regular (2,3) LDPC code.
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bipartite graph, where m > 0  check nodes (parity-
checks) are associated with the n > m variable nodes
(codeword bits), where n  is the length of the corre-
sponding LDPC code. Although only regular LDPC
codes are considered in this paper, we provide a more
general way for description of LDPC code ensembles.
In this case, any LDPC code can be described in terms
of bipartite graphs that are characterized by two prob-
ability vectors

where   is the portion of variable nodes with the
degree k, and   is the fraction of check nodes with
degree t. For convenience, we also define the poly-
nomials

Let E  denotes the total number of edges, n  denotes
the number of variable nodes and m  denotes the num-
ber of check nodes. Then   is equal to the number
of edges outgoing from variable nodes with the degree
k and   is equal to the number of edges emanating
from check nodes with the degree  t. Thus,

where   and   are derivatives of functions 
and   of variable x  calculated at the point  x = 1.

For each variable node with degree i, we assign i
variable sockets. Similarly, for each check node with
the degree i, we assign i check sockets. The total num-
ber of variable sockets and the total number of check
sockets are both equal to the total number of edges E.
The ensemble of bipartite graphs is obtained by choos-
ing randompermutation π with the uniform probabil-
ity from the space of all permutations of size  E. For
each  1 ≤ i ≤ E, we connect the variable node associated
with the ith variable socket to the check node associ-
ated with the πith check socket. Note that, in this way,
multiple edges may link a pair of nodes. The mapping
from the bipartite graph space into the space of the
parity-check matrix H of the LDPC code is such that
element Hi,j in the matrix corresponding to the ith
check node and the jth variable node is set to 1 if there
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is an odd number of edges between the two nodes and
to 0 otherwise.

The rate R of each code in the ensemble satisfies
inequality R ≥ R', where

is the designed rate of the code (the inequality is due
to a possible degeneracy in m parity-check equations
of matrix H).

A special case of the irregular code ensemble that
was described above is obtained when all variable
nodes have a constant degree l and all check nodes
have a constant degree n0. In this case, the ensemble is
called regular, and there is constant m ∈ N such that
nl = mn0, R ≥ 1 – l/n0, and

In this paper, only regular LDPC codes are consid-
ered. The Tanner graph of a regular (l, n0) LDPC code
is presented in the Fig. 1.

3. MAIN RESULT
Investigating the decoding error probability P, we

will consider a memoryless binary-symmetric channel
(BSC) with crossover probability p. The decoding
error probability P is estimated in the following way:

where E(⋅) is the required error exponent.
In this paper, we consider the error exponent E(⋅)

of (l, n0) regular LDPC code of length  n under the
ML decoding algorithm, which has exponential
complexity.
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Theorem 1. The average number  of codewords
of weight W of the irregular LDPC codes determined by
polynomials  satisfies the relationship:

(1)

where t(W, j) is defined in the following way:

where notation fi = f(x)[xi] means that f(x) = 

and q(j) is given by

where  g0 = 

In the case of regular (l, n0) LDPC code, we can

easily calculate the exact value of t(W, j). Indeed, since

 = 1 when k = l and  = 0  otherwise, then

We can also simplify the expression for q(j) :

Thus,
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(3)

where b(x) = xa'(x).

In our case, f(x) = (g0(x, n0))m and k = lW. Therefore,

By definition f(x) ≠ 0 for x ≥ 0, then

Thus,

Finally, we obtain

where alW is obtained from (3). Thereby, we can esti-

mate the average number  of codewords of

weight W  of a regular  (l, n0) LDPC code as

(4)

Inequality (4) allows us to estimate not only the
spectrum of the LDPC code but also its relative mini-

mum distance δ =  We will present corresponding

results in the next section.

Now let us denote the average spectrum function
ψ(z) for a (l, n0) regular LDPC code as

Applying (4), we can obtain the following obvious
estimate for ψ(z):

This estimate of the spectrum function will be used
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Fig. 2. Comparison of the dependences of ν(ω) on n for
fixed l = 7 , n0 = 14 , and R = 0.5.
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Fig. 3. Comparison of the dependences of ν(ω) on l   for
fixed n = 300 and R = 0.5.
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decoding in a BSC with crossover probability p  is upper-
bounded in the following way:

where E(R, p) is given by:

where g(s) and g(r, t) are defined as follows:

4. NUMERICAL RESULTS

First of all let us present an estimate of the average

number   of codewords  of weight W  of regular

LDPC codes with fixed parameters l and n0 but differ-

ent lengths n. For convenient representation of
numerical results, we introduce a special function

ν(ω) =  where ω =  0 ≤ ω ≤ 1.

In Fig. 2, we can see the obtained spectrum esti-
mate in the case of (l, n0) = (7, 14) regular LDPC

codes with different lengths n = 100, n = 300, and n =
1000  and fixed rate R = 0.5. One can see that ν(ω)
grows with the growth of code length n.

Figure 3 illustrates dependences of ν(ω) on l  of  for
the fixed length n = 300 and rate R = 0.5.

One can notice that ν(ω) grows with decreasing l
(especially for small and large ω). This fact means that

the relative minimum distance δ =  is a function of l,

which monotonically grows with l  (for fixed  n and R).
This fact is more pronounced in Fig. 4.

Numerical results presented in Fig. 4 also allow us
to conclude that the relative distance decreases with
code length n. One can also notice that LDPC codes
with parameters n ≈ 100 , R = 0.5  and l ∈ {5, 7, 9} have
δ ≈ 0.12 while in the asymptotic case δVG(0.5) ≈ 0.11,

where δVG(R) is the Varshamov–Gilbert bound. Thus,

in the case of small lengths, these codes lie above the
Varshamov–Gilbert bound.

Let us now present numerical results for error
exponent E(R, p),  which was obtained according to
Theorem 3.

Figure 5 presents the dependence of the error expo-
nent E(R, p) on the length of the LDPC code n   and
the channel crossover probability p for the fixed
parameters l = 7, n0 = 14, and R = 0.5. We can note

that the error exponent grows with n  and decreases
with increasing p  (when n  is fixed).

Figure 6 presents the dependence of E(R, p) on n
and l   for fixed rate R = 0.5  and the channel crossover
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Fig. 5. Comparison of the dependences of E(R, p) on n
and  p  for fixed R = 0.5  and l = 7 .
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probability p = 2.5 × 10–3. We can note that the error

exponent decreases with n  for l = 3  or l = 5  and

increases with n for LDPC codes with  l = 7 or l = 9.

This fact is explained by significant reduction of the

relative minimum distance for codes with l = 3 and l =
5  when the length  is growing (see Fig. 4).

At the end of this chapter, we present the results of

comparison between error exponents obtained in this

paper (solid lines) and the results obtained with the

use of the Polyansky bound [15] for random binary
JOURNAL OF COMMUNICATIONS TECHNO
codes (dotted lines). These comparison results are

shown in Fig. 7. Regular (7,14) LDPC codes with R =

0.5 and lengths from 100 to 1000 were chosen for this

comparison. Comparison was performed for various

input error probabilities of the channel.

It is easy to see that the Polyansky bound for ran-

dom codes is always higher than the bound obtained in

this paper. This fact suggests that regular LDPC codes

(especially with short lengths) have less potential cor-

rective performance than arbitrary binary codes.
LOGY AND ELECTRONICS  Vol. 63  No. 12  2018
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5. CONCLUSIONS

It has been described how to estimate the spectrum
function of a regular graph-based finite-length binary
LDPC code. It has been shown that this  estimate is
useful for deriving results regarding the lower bound
on the error exponent of considered codes under ML
decoding in the BSC channel. Numerical results pre-
sented in this paper show that (3,6)-regular LDPC
codes that are widely used in practice due to their good
iterative decoding performance have the worst error
exponent under the ML decoding. Moreover, this
exponent decreases with increasing code length. This
means that these codes should be substituted with
some other codes when we deal with applications
where very small error probability or very long codes
are required.
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