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Abstract—We consider a special class of multiple access system
over vector-disjunctive channel when users transmit some vector
of bits of length L. We estimate the asymptotic capacity of this
channel and derive the lower bound on this value in the case of
different number of active users and channel slots. It was shown
that the channel capacity achieves maximum when the number
of active users is strictly higher than the number of orthogonal
slots.

I. INTRODUCTION

At present one of the most important features of the wireless
networks evolution process is a sharp increase of the number
of active users in the system due to the development of IoT
(Internet of Things) and Smart House concepts. In this case
the level of the mutual interference becomes extremely high.
At the same time, the requirements on the data rate and the
probability of successful transmission become more strict.
Thus new coding methods are needed which allow a large
number of users to work simultaneously in the system at
high rate (per user) and in presence of interference. In this
setting, a very large number of users in a wireless network
operate in an uncoordinated fashion. Out of the total number
of users, there is some subset of U users which are active
at any time; and each of them wishes to communicate a
relatively short message to a central base station. The base
station is interested only in recovering the list of messages
without regard to the identity of the user who transmitted a
particular message. The uncoordinated nature of the problem
and the small block lengths represent a substantial departure
from the traditional multiple access channel and, consequently,
has important implications both on the fundamental limits
as well as the design of pragmatic low-complexity coding
schemes. Due to small block lengths, information rates do not
provide reasonable benchmarks and finite block length bounds
are more meaningful.

Almost all well-known low-complexity coding solutions for
the traditional MAC channel such as code-division multiple
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access (CDMA), rate-splitting [1], and interleave-division mul-
tiple access [2], implicitly assume some form of coordination
between the users and that some parameters of the coding
scheme such as the spreading sequence, code rates, time
sharing parameters, Tanner graph of the code, etc., are user
dependent.

In this paper we focuse on a special class of uncoordinated
MAC, namely vector-disjunctive channel (logical OR of Z-
channel) that was introduced by Cohen, Heller and Viterbi in
[3]. We assume that channel consists of Q > 2 undependent
and distinct subchannels. Moreover,we consider U > 1 active
users that are trying to transmit information over channel men-
tioned above. In this paper we consider a vector-disjunctive
channel that was introduced by Cohen, Heller and Viterbi in
[3]. The channel model is a generalization of the A-channel
from [4]– [8]. We estimate the capacity of this channel in
the case of equiprobable choice of each binary vector of
length L. Thus we derive the lower bound on the capacity. We
also present some simulation results for maximal achievable
relative sum-rate of the channel.

II. VECTOR-DISJUNCTIVE CHANNEL MODEL

A. Channel Description

We consider vector-disjunctive channel that consists of
Q > 1 independent and distinct sub-channels. Also we assume
that there are U > 0 active users which use channel for
transmission. Let us assume that Q = LS and our MAC
channel is divided into S independent channels that consist
of L elementary sub-channels. We will call these ”grouped”
channels as L-channels or slots. At each time moment τ each
i-th user choose an arbitrary j-th L-channel (1 ≤ j ≤ S) and
transmit L bits in this slot. For each slot receiver obtains a
disjunction of all transmitted data (binary vectors of length L)
in it.

For instance, let us consider a transmission of two users: i
and k who choose one common slot for transmission in j-th
time moment.

Let us assume that users i and k transmit L binary symbols
Xij = (x

(1)
ij , x

(2)
ij , . . . , x

(L)
ij ) and Xkj = (x

(1)
kj , x

(2)
kj , . . . , x

(L)
kj )

978-1-7281-1374-6/19/$31.00 2019 IEEE



respectively in L-channel. Since we suppose that our channel
is vector-disjunctive then in common L-channel we obtain a
disjunction of transmitted binary vectors: Xij ∨Xkj .

For instance, let us assume that L = 3 and two users choose
some common slot for transmission. If first user transmit
vector (0, 1, 0) and second one – (0, 1, 1) then receiver obtains
(0, 1, 0) ∨ (0, 1, 1) = (0, 1, 1).

It is obvious that the maximal number of users that can
transmit information orthogonal is S.

B. Collision model

Let us consider transmission model described above. In this
scheme collisions may take place when two or more users
choose common L-channel for transmission at the same time
moment.

Let us denote by κ the order of collision. This value might
be considered as a number of additional active users that
choose adjusted j-th L-channel for transmission which was
selected by user we consider. It is obvious that 0 ≤ κ ≤ U−1.
It is easy to calculate the probability that κ = t:

P (κ = t) =

(
U − 1

t

)( 1
S

)t(
1− 1

S

)U−t−1
.

In this paper we consider noiseless channel and uncoor-
dinated transmission scenario. Thus for a given user we can
assume transmissions of all other U−1 users as a noise (cause
of collisions).

In some cases the transmission of other users does not
result in incorrect transmission for a given user. For instance
if the transmitted information in slot for considering user is
(1, 1, . . . , 1) then it will be received correctly regardless of
what other users transmit in the same slot.

In the most general case there is no collision for i-th user
if the binary vector which this user transmit covers all vectors
transmitted by all other users who have chosen the same slot
for transmission.

C. Channel analysis

The previous reasoning can be generalized for arbitrary
order of collision. For the better clarity of our proposed
technique let us consider the channel presented in Fig. 1

In fig. 1 we represent all possible relations between inputs
and outputs of the channel. As we can see for each vector of
length L and weight w there are 2L−w possible transitions.
Thus the number of transmissions and transition probabilities
does not depend on vector structure (support). Moreover, we
can notice that in the case of error the weight of output vector
weight increases, otherwise the vector weight is preserved.
So, we can represent our initial channel model with 2L inputs
(which are equiprobable) and 2L outputs as a channel with
L + 1 inputs and L + 1 outputs, which correspond to input
and output vectors weights respectively (see Fig. 2).

We would like to point out that in this case the inputs
of the channel are not equiprobable. In particular, the input
distribution are as follows:

Fig. 1. Possible transitions for L = 3

Fig. 2. Possible weights transitions for L = 3

Pin(w) =

(
L

w

)
2−L.

It is obvious that input distribution does not depend on
collisions order κ. In the same time output distribution depends
on it. Let us assume that κ = t. If the input vector u has
weight w < L then the output vector v has weight w′ > w
if at least one of t other users transmit at least one 1 in any
positions from [L] \ {i : ui = 1}, where [L] = {1, 2, . . . , L}.
The probability p(t) that at least one of t users transmit 1 in
any fixed position k ∈ [L] is as follows:

p(t) = 1− (1− p)t,

where p is the probability of transmitting 1. Since we assume
that p = 1

2 then

p(t) = 1− 2−t.

Taking this fact into account it is easy to calculate the
conditional probabilities P (w′|w, t) to obtain output vector
with weight w′ for a given input vector with weight w in the
case of collision order t:

P (w′|w, t) =

{
0, w′ < w(
L−w
w′−w

)
p(t)w

′−w(1− p(t))L−w′ , w′ ≥ w
.



Finally, the output distribution of channel is as follows:

Pout(w
′|t) =

w′∑
i=0

P (w′|i, t)Pin(i).

D. Channel capacity estimation

Now let us calculate the capacity of channel described
above. First we obtain the capacity for a given order of colli-
sion κ = t and then we obtain the mathematical expectation
over all possible collision orders of a given quantity which is
the lower bound on capacity of MAC channel we described
in the paper.

First let us introduce a definition of channel capacity. Let X
and Y are random variables representing the input and output
of the channel, respectively. The channel capacity C is defined
as follows:

C = sup
pin(X )

I(X ;Y),

where I(X ;Y) is a mutual information between random vari-
ables X and Y . Supremum takes over all possible distributions
pin(X ) of input X .

If one fixes an input distribution Pin(w) and collision order
κ = t then the capacity C(t) of MAC channel with fixed
collision order t can be estimated as follows:

C(t) ≥
L∑

w=0

Pin(w)

L∑
w′=w

P (w′|w, t) log2 P (w′|w, t)−

−
L∑

w′′=0

Pout(w
′′|t) log2 Pout(w′′|t).

(1)

Thus one can estimate the capacity of vector-disjunctive
channel by the mathematical expectation of C(t) over collision
order t:

C ≥ C? =
U−1∑
t=0

P (κ = t)C(t). (2)

Since C? can be considered as fraction of information that
is guaranteed to be transmitted correctly then it has sense
to consider ”throughput” T = C?L because each user can
transmit up to L bits per channel use.

In fig. 3 the dependence between the lower bound on
”throughput” T and number of active users U for fixed
Q = 1024 and different values of the number of orthogonal
slots S = Q/L is represented. Now we can notice that for
some U -ranges [0;Uth] the smaller S the larger T . Thus to
increase the single user throughput for relatively small number
of users it has sense to increase L (the number of bits per
channel use) and with the increasing of number of users it has
sense to increase the number of orthogonal slots S.

It can be shown that for large enough L the value C(t) for
t ≥ 1 can be approximated as follows: Let us consider the
first part of (1):

Z1 =

L∑
w=0

Pin(w)

L∑
w′=w

P (w′|w, t) log2 P (w′|w, t). (3)

Fig. 3. Lower bound on ”throughput” T = C?L for Q = 1024 and different
values of S = Q/L

More precisely:

Z1 = 2−L
L∑
w=0

(
L

w

)
L∑

w′=w

(
L− w

w′ − w

)(
1− 2−t

)w′−w ×

×
(
2−t
)L−w′

log2

((
L− w

w′ − w

)(
1− 2−t

)w′−w (
2−t
)L−w′)

.

(4)
Let us make a substitution z = w′−w and consider inner sum
of (4):

L∑
z=0

(
L− w
z

)(
1− 2−t

)z (
2−t
)L−w−z ×

× log2

((
L− w
z

)(
1− 2−t

)z (
2−t
)L−w−z)

.

(5)

If we apply an expression for the entropy of binomial distri-
bution

n∑
k=0

(
n

k

)
pk(1− p)n−k log2

((
n

k

)
pk(1− p)n−k

)
≈

≈ 1

2
log2 (2πenp(1− p)) +O

(
1

n

) (6)

for (5), then (omitting O(·)) Z1 can represented as follows:

Z1 ≈ 2−L
L∑
w=0

1

2

(
L

w

)
log2

(
2πe (L− w)

(
2−t − 2−2t)) =

=
1

2
log2

(
2πe

(
2t − 1

4t

))
+

1

2L+1

L−1∑
w=0

(
L

w

)
log2(L− w).

(7)

Now let us consider the second part of (1):

Z2 =

L∑
w′′=0

Pout(w
′′|t) log2 Pout(w′′|t). (8)



Or more precisely:

Z2 =

L∑
w=0

w∑
i=0

f(i, w, L) log2

(
w∑
i=0

f(i, w, L)

)
,

where

f(i, w, L) = 2−L
(
L− i

w − i

)(
L

i

)(
1− 2−t

)w−i (
2−t
)L−w

.

Since (
L− i
w − i

)(
L

i

)
=

(
L

L− w

)(
w

i

)
and

2−L
(

L

L− w

)(
2−t
)L−w w∑

i=0

(
w

i

)(
1− 2−t

)w−i
=

=

(
L

L− w

)(
2−(t+1)

)L−w (
1− 2−(t+1)

)w
then applying an expression for the entropy of binomial
distribution we can evaluate Z2 as follows:

Z2 ≈
1

2
log2

(
2πeL2−(t+1)(1− 2−(t+1))

)
+O

(
1

L

)
(9)

Thus omitting O
(
1
L

)
:

C(t) ≈ Z1 − Z2,

Thus, using (7) and (9):

C(t) ≈ 1

2
log2

(
L(2t+1 − 1)

4(2t − 1)

)
−

− 1

2L+1

L−1∑
w=0

(
L

w

)
log2(L− w)

Since C(t)→ 0 when t→∞ then

1

2L+1

L−1∑
w=0

(
L

w

)
log2(L− w) ≈

≈ lim
t→∞

1

2
log2

(
L(2t+1 − 1)

4(2t − 1)

)
=

1

2
log2

(
L

2

)
.

Thus
C(t) ≈ 1

2
log2

(
2t+1 − 1

2t+1 − 2

)
or

C(t) ≈ 1

2
log2

(
1 +

1

2t+1 − 2

)
. (10)

For the case when S → ∞, U → ∞ and ψ = U
S we can

calculate limS→∞ P (κ = t) as follows:

lim
S→∞

(
ψS − 1

t

)(
1

S

)t(
1− 1

S

)−S(t+1−ψS)
S

=

= e−ψ lim
S→∞

(
ψS − 1

t

)(
1

S

)t
=
e−ψψt

t!
.

(11)

Thus

P (κ = t) −→ e−ψψt

t!
, (12)

then combining together (10) and (12), knowing that C(0) = 1,
we can estimate C as follows:

C ≥ e−ψ +
1

2

U−1∑
t=1

e−ψψt

t!
log2

(
1 +

1

2t+1 − 2

)
. (13)

Since it is well known that ln(1 + x) ≥ x
x+1 for all x > −1

then

1

2

U−1∑
t=1

e−ψψt

t!
log2

(
1 +

1

2t+1 − 2

)
≥

≥ 1

2 ln 2

U−1∑
t=1

e−ψ
ψt

t!

1

2t+1 − 1
>

e−ψ

4 ln 2

U−1∑
t=1

(
ψ
2

)t
t!

.

In the case when U → ∞ the latest expression can be
represented as follows:

e−ψ

4 ln 2

U−1∑
t=1

(
ψ
2

)t
t!
→ e−ψ

4 ln 2

(
e
ψ
2 − 1

)
.

Finally, applying well-known logarithmic unequality ln(1+
x) ≥ x

x+1 for all x > −1, for (13) we obtain:

C ≥ e−ψ
(
1− 1

4 ln 2

)
+

1

4 ln 2
e−

ψ
2 . (14)

In Fig. 4 present a dependencies between C? and U for
Q = 215, L = 32, S = 1024 which were calculated with (2),
(13) and (14):

Fig. 4. Lower bounds on C obtained by (2), (13) and (14)

It is easy to see that expressions (13) and (14) are rather
good approximations of exact formula (2). We apply expres-
sion (14) for further analysis since it has a very simple form.

In order to evaluate the efficiency of proposed scheme of
transmission let us consider the sum-rate of transmission over
vector-disjunctive channel:

Rσ =
ULC?

Q
= ψC?(ψ).



This value has the following meaning: it represents the relation
between the overall throughput of total number of users (UT )
and the maximal achievable throughput (Q) for the system we
consider.

Fig. 5. Lower bound on sum-rate Rσ = UC?L/Q for Q = 1024 and
different values of S = Q/L

In fig. 5 the dependency between sum-rate Rσ and number
of users U for fixed value Q = 1024 and different values
of S ∈ {16, 32, 64, 128, 256, 512, 1024} is represented. It is
obvious that the smaller S the smaller number of users where
Rσ achieves maximum. Moreover, maximal achievable values
of Rσ increase with growth of S. But there are some areas
(when the number of users is relatively small) where sum-rate
for smaller S is higher than the one for higher value of S.

Now let us prove that Rσ achieves maximum when a
number of users is greater than a number of orthogonal slots
S.

In order to do it let us consider a derivative of Rσ:

dRσ
dψ

= C1e
−ψ + C2e

−ψ2 + ψ

(
−C1e

−ψ − 1

2
C2e

−ψ2

)
,

where C1 = 1 − 1
4 ln 2 > 0 and C2 = 1

4 ln 2 > 0. It is easy
to show that dRσ

dψ decreases monotonically with growth of ψ.
Thus Rσ achieves maximum when dRσ

dψ = 0:

C1(1− ψ) + C2

(
1− ψ

2

)
e
ψ
2 = 0. (15)

If ψ ≤ 1 then 1 − ψ ≥ 0 and 1 − ψ
2 > 0 thus dRσ

dψ > 0.
Thereby dRσ

dψ = 0 only when U
S = ψ > 1.

Since it is rather difficult to find an exact solution of (15)
we apply numerical methods to find solution ψ ≈ 1.357. For
this ψ we have Rσ ≈ 0.4717. So, when the number of users
are more than the number of orthogonal slots on 35%, then
the maximum sum-rate is 0.4717.

Now let us consider this ”optimal” number of users Uopt =
argmax

U
Rσ(U,Q, S) for different Q and L, applying exact

formula (2).

Fig. 6. Number of users when maximum of Rσ is achieved: for different Q
and different of S = Q/L.

In fig. 6 the dependency between Uopt and different values
of Q and S is represented. As it was proved Uopt always
greater than the S – number of users that can transmit
information orthogonal.

III. CONCLUSION

In this paper we consider a vector-disjunctive channel
where users transmit some vectors of bits. We estimate the
capacity of this channel deriving the lower bound on this value
for a different number of active users and various channel
parameters.

REFERENCES

[1] B. Rimoldi and R. Urbanke, “A rate-splitting approach to the Gaussian
multiple-access channel,” IEEE Transactions on Information Theory, vol.
42, no. 2, pp. 364–375, 1996.

[2] L. Ping, L. Liu, K. Wu, and W. K. Leung, “Interleave division multiple-
access,” IEEE Transactions on Wireless Communications, vol. 5, no. 4,
pp. 938–947, 2006.

[3] A. R. Cohen, J. A. Heller and A. J. Viterbi, “A new coding technique
for asynchronous multiple access communication,” IEEE Transactions on
Communication Technology, vol. 19, pp. 849–855, October 1971.

[4] S. C. Chang and J. Wolf, “On the t-User m-Frequency Noiseless Multiple-
Access Channel with and without Intensity Information,” IEEE Transac-
tions on Information Theory, vol. 27, no. 1, pp. 41–48, Jan. 1981.

[5] L. Wilhelmsson and K. S. Zigangirov, “On the Asymptotic Capacity of
a Multiple-Access Channel,” Problems of Information Transmission, vol.
33, no. 1, pp. 9–16, 1997.

[6] L. A. Bassalygo and M. S. Pinsker, “Evaluation of the Asymptotics of
the Summarized Capacity of an m-Frequency t-User Noiseless Multiple-
Access Channel,” Problems of Information Transmission, vol. 36, no. 2,
pp. 91–97, 2000.

[7] A. Han Vinck and K. Keuning, “On the Capacity of the Asynchronous t-
User m-Frequency Noiseless Multiple-Access Channel without Intensity
Information,” IEEE Transactions on Information Theory, vol. 42, no. 6,
pp. 2235–2238, Nov. 1996.

[8] D. S. Osipov, A. A. Frolov and V. V. Zyablov, ”Multiple access system
for a vector disjunctive channel,” Problems of information Transmission,
vol. 48, no. 3, pp. 243—249, 2012.


