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Abstract—We consider a vector-disjunctive channel where
users transmit some vector of bits of length L. We estimate the
capacity of this channel and derive the lower bound on this value.
We present some numerical results for the bound we obtained
in the case of different number of active users and different
parameters of channel.

I. INTRODUCTION

Due to the recent development in Internet of Things tech-
nology the need for wireless networks with high mutual
interference is rising. At the same high data rate and low
packet loss are still required in these scenarios.

These systems are usually described uncoordinated multiple
access channels. While the number of users might be huge the
number of active users is usually not that large. The length of
the data transmitted by each user is relatively small. This fact
and the uncoordinated nature of the multiple access channel
is what differs the channel model considered for the ones
described in most papers on multiple access. Due to these
differences we have to derive new bounds on capacity of such
channels.

Almost all well-known low-complexity coding solutions for
the traditional MAC channel such as code-division multiple
access (CDMA), rate-splitting [1], and interleave-division mul-
tiple access [2], implicitly assume some form of coordination
between the users and that some parameters of the coding
scheme such as the spreading sequence, code rates, time
sharing parameters, Tanner graph of the code, etc., are user
dependent.

In this paper we focus on a special class of uncoordinated
MAC, namely vector-disjunctive channel (logical OR or Z-
channel) that was introduced by Cohen, Heller and Viterbi
in [3], also see [4], [5]. Papers [6]–[9] are devoted to the
capacity of this channel under some additional assumptions.

More precisely, we consider on a special class of vector-
disjunctive channel where each active user transmit some
binary vector of length L ≥ 1. We estimate the capacity of
this channel and derive the lower bound on this value.

The reported study was funded by RFBR according to the research projects
18-07-01409, 18-37-00322, 18-37-00319, 19-01-00364

II. CHANNEL MODEL

Let us first describe precisely the channel model we use.

A. Channel Description

A disjunctive channel has Q distinct sub-channels. Each
user can transmit a unit symbol over one (and only one)
of these sub-channels. Only U users are active at the same
time. In a vector-disjunctive channel each user can transmit
any vector of length L in one of S slots (also known as
L-channels). The slot is selected randomly, but the vector is
selected from a codebook. The net number of sub-channels is
therefore Q = LS. The channel computes a disjunction of all
vectors transmitted in the same slot and the receiver measures
these disjunctions.

If all users transmit in different slots all transmitted vectors
are received without any distortions. But we will often con-
sider U > S so that some collisions will always happen and
some vectors will likely be distorted.

Let us consider an example of such collision: users i and k
have transmitted vectors (0, 1, 0) and (0, 1, 1) respectively in
the slot j. The receiver would get (0, 1, 0)∨(0, 1, 1) = (0, 1, 1)
in j-th slot. The vector transmitted by user k is received
without any distortions but the vector transmitted by user i
has the last bit flipped.

B. Collision Model

Let us define a collision as the event when multiple users
transmit in the same slot. Let us define collision order (denoted
by κ) as the number of users transmitting in a single slot minus
one. Therefore no collision corresponds to a collision of zero
order. The probability of no collision is:

Ps = 1−
(
1− 1

S

)U−1

.

It is easy to calculate the probability that in a selected slot
where a selected user transmits the collision order κ = t:

P (κ = t) =

(
U − 1

t

)(
1

S

)t(
1− 1

S

)U−t−1

.
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In this paper we consider noiseless channel and uncoor-
dinated transmission scenario. Thus for a given user we can
assume transmissions of all other U − 1 users as noise (cause
of collisions).

In some cases the transmission of other users does not
result in incorrect transmission for a given user. For instance
if the transmitted information in slot for considering user is
(1, 1, . . . , 1) then it will be received correctly regardless of
what other users transmit in the same slot.

Let us in consider two users i and k that use common L-
channel for transmission in j-th time moment.

Let us assume that users i and k transmit L binary symbols
Xij = (x

(1)
ij , x

(2)
ij , . . . , x

(L)
ij ) and Xkj = (x

(1)
kj , x

(2)
kj , . . . , x

(L)
kj )

respectively in L-channel. Since we suppose that our channel
is vector-disjunctive then in common L-channel we obtain a
disjunction of transmitted binary vectors: Xij ∨Xkj . Now let
us focuse on i-th user. Since we suppose that vector-disjunctive
channel is noiseless then we can consider transmission k-th
user as a noise for i-th user. Taking this assumption into
account one can conclude that collision for i-th user takes
place if and only if Xij does not cover Xkj .

Let us describe this event more precisely. Let us denote by
supp(X) a support of vector X, i. e.

supp(X) = {i : xi 6= 0}.

Thus if i-th and k-th users use the same L-channel then
collision for user i does not take place if

supp(Xkj) ⊂ supp(Xij).

III. CHANNEL ANALYSIS

Let us first consider the simpliest case of transmission
through the channel we described above. For this purpose let
us fix L = 1 and collision order t = 1. We denote this channel
is C11 . If p is a probability to transmit 1 then C11 is just simple
Z-channel:

Fig. 1. Z-channel for L = 1 and t = 1.

Transition probability matrix of C11 has the following form:

P1
1 =

(
1− p p
0 1

)
.

Since C11 : {0, 1} 7→ {0, 1} and input probabilities pin(x)
as follows: pin(0) = 1 − p, pin(1) = p then it is easy to
calculate output probabilities pout(y): pout(0) = (1 − p)2,
pout(1) = p(2− p).

Now we can estimate the capacity C of this channel:

C
(
C11
)
≥

∑
x∈{0,1}

pin(x)
∑

y∈{0,1}

p(y|x) log2
p(y|x)
pout(y)

=

= (1− p)2 log2
1

1− p
+ p(2− p) log2

1

2− p
+ p log2

1

p
.

Also we will assume that if t = 0 then C
(
C01
)
= 1.

Now let us consider the case when L = 2 and t = 1.
We denote the channel of this case as C12 . The graphical
representation of C12 is as follows:

Fig. 2. Channel for L = 2 and t = 1.

If pin(0) = 1 − p, pin(1) = p then it is easy to calculate
input probabilites of (0, 0), ..., (1, 1):

pin ((0, 0)) = (1− p)2

pin ((0, 1)) = pin ((1, 0)) = p(1− p)
pin ((1, 1)) = p2.

Transition probability matrix of C12 has the following form:

P1
2 =


(1− p)2 p(1− p) p(1− p) p2

0 1− p 0 p
0 0 1− p p
0 0 0 1

 .

And it is not difficult to notice that

P1
2 =

(
1− p p
0 1

)⊗2
=
(
P1

1

)⊗2
, (1)

where sign A⊗k means k-th Kronecker (tensor) product of
matrix A.

Before we use this observation let us calculate the capacity
of C12 . In order to do this one need to calculate output
probabilities of (0, 0), (0, 1), (1, 0), (1, 1):

pout ((0, 0)) = (1− p)4

pout ((0, 1)) = pout ((1, 0)) = p(2− p)(1− p)2

pout ((1, 1)) = p2(2− p)2.
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Thus, applying the same expression as for C
(
C11
)

for
input/output alphabets X = Y = {(0, 0), (0, 1), (1, 0), (1, 1)}
we have:

C
(
C21
)
≥ (1− p)4 log2

1

(1− p)2
+ p(1− p)3 log2

1

(1− p)(2− p)
+

+p(1− p)2 log2
1

p(1− p)(2− p)
+ p(1− p)3 log2

1

(1− p)(2− p)
+

+p2(1− p)2 log2
1

(2− p)2
+ p2(1− p) log2

1

p(2− p)2
+

+p(1− p)2 log2
1

p(1− p)(2− p)
+ p2(1− p) log2

1

p(2− p)2
+

+p2 log2
1

p2(2− p)2
.

After long but rather straightforward simplifications of the
latest expression we can find that

C
(
C21
)
= 2C

(
C11
)
. (2)

Previously we showed that P1
2 =

(
P1

1

)⊗2
. And now we show

that equation (2) goes directly from (1) not only for channel
we described above but for any discrete memoryless one.

But first of all let us prove generalization of equation (1).
For this case let us consider communication channel C1L for
t = 1 and arbitrary L ≥ 1. Thus this channel has 2L inputs and
2L outputs: X = Y = {(0, . . . , 0), . . . , (1, . . . , 1)}. In order
to simplify further expressions we will assume that X = Y =
{0,1, . . . ,2L − 1}, where under i we assume binary, length
L representation of integer i, 0 ≤ i ≤ 2L − 1.

If p is a probability of transmitting 1 for each coordinate in
length L binary vector, then

pin(i) = pwt(i)(1− p)L−wt(i),

where wt(x) is a Hamming weight of vector x.
The transition probability matrix of C1L has size 2L × 2L.

We will denote it by

P1
L =

[
pij

]2L−1,2L−1
i,j=0,0

,

where pij = p(j|i) – are transition probabilities to obtain
vector j for input vector i.

It is obvious that pij = 0 if supp(i) 6⊂ supp(j). Let us
calculate pij for the case when supp(i) ⊂ supp(j). Without
loss of generality one can assume that supp(i) = [k1] and
supp(j) = [k2], where 0 ≤ k1 ≤ k2 ≤ L, then

pij =

k1∑
s=0

(
k1
s

)
ps+k2−k1(1− p)L−s−k2+k1 .

Then we can write these transition probabilities in more
general way:

pij =

wt(i)∑
s=0

(
wt(i)

s

)
ps+wt(j)−wt(i)(1− p)L−s−wt(j)+wt(i) ×

×Isupp(i)⊂supp(j),

where I - indicator function, which is 1 if corresponding
condition is fulfilled and 0 otherwise.

Now let us prove the following theorem:

Theorem 1. P1
L =

(
P1

1

)⊗L
Proof. We will prove this theorem by induction on L.
• Base of induction: L = 2. For this case it was shown that

P1
2 =

(
P1

1

)⊗2
.

• Induction hypothesis: P1
L−1 =

(
P1

1

)⊗(L−1)
.

• Induction step: L−1 7→ L. In order to prove the theorem
we must show that P1

L = P1
L−1 ⊗ P1

1. Let us consider
arbitrary i, j: 0 ≤ i, j ≤ 2L−1 − 1 and corresponding
vectors i and j.
There are two possible cases:

1) supp(i) 6⊂ supp(j),
2) supp(i) ⊂ supp(j).

It is evident that pij = 0 for the first case.
When we substitute L − 1 by L a number of
channel inputs and outputs increase twice. It means
that each vector i splits into (i, 0) and (i, 1). If
supp(i) 6⊂ supp(j) then supp((i, 0)) 6⊂ supp((j, 0)),
supp((i, 1)) 6⊂ supp((j, 0)), supp((i, 0)) 6⊂ supp((j, 1))
and supp((i, 1)) 6⊂ supp((j, 1)). It means that:

p((j, 0)|(i, 0)) = p((j, 1)|(i, 0)) = p((j, 0)|(i, 1)) =
= p((j, 1)|(i, 1)) = 0.

Which indicates that 0 is subsitited by 2× 2 all-zeros matrix
when L−1 7→ L and we proved the theorem for the first case.

Now let us consider the second case when supp(i) ⊂
supp(j) and pij > 0. Let us substitute L − 1 by L. If i and
j have length L − 1 then i 7→ i′, j 7→ j′ where i′ = (i, 0) or
i′ = (i, 1) or j′ = (j, 0) or j′ = (j, 1). There are four possible
cases for p(j′|i′).

1) i′ = (i, 0) and j′ = (j, 0) in this case we can obtain j′

from i′ only when i′(L) = 0. The probability of this
event is 1− p and thus p(j′|i′) = pij(1− p).

2) For the case when i′ = (i, 0) and j′ = (j, 1), p(j′|i′) =
pij · p

3) For the case when i′ = (i, 1) and j′ = (j, 1), p(j′|i′) =
pij

4) For the case when i′ = (i, 1) and j′ = (j, 0), supp(i′) 6⊂
supp(j′) and p(j′|i′) = 0

These four cases indicates that pij > 0 is subsitited by 2× 2
matrix with the following form:(

(1− p)pij p · pij
0 pij

)
= pijP

1
1.

Thus finally P1
L = P1

L−1⊗P1
1 and the theorem is proved. �

Remark 1. Let PA and PB are transition probabilites ma-
trices for arbitraty discrete memoryless channels CA and CB
with input alphabets XA, XB and output alphabets YA, YB
such that |XA| = nA, |XB | = nB , |YA| = mA, |YB | = mB ,
XA = {xA0 , xA1 , . . . , xAnA−1}, XB = {xB0 , xB1 , . . . , xBnB−1},
YA = {yA0 , yA1 , . . . , yAmA−1}, YB = {yB0 , yB1 , . . . , yBmB−1}. If
we consider matrix PC = PA ⊗PB then

PC(i1 + i2nA, j1 + j2mA) = PA(i1, j1)PB(i2, j2),
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where 0 ≤ i1 < nA, 0 ≤ i2 < nB , 0 ≤ j1 < mA, 0 ≤ j2 <
mB . In the other hand

PC(i1 + i2nA, j1 + j2mA) = p(yAi1 , y
B
i2 |x

A
j1 , x

B
j2),

PA(i1, j1) = p(yAi1 |x
A
j1),

PB(i2, j2) = p(yBi2 |x
B
j2).

It means that

p(yAi1 , y
B
i2 |x

A
j1 , x

B
j2) = p(yAi1 |x

A
j1)p(y

B
i2 |x

B
j2)

and transmission over channel CC with transition probabilities
matrix PC is equvalent of transmission over parallel and
independent channels CA and CB .

From Theorem 1 and Remark 1 the following Theorem is
followed:

Theorem 2. Let P is a transition probability matrix for some
discrete memoryless channel C with input alphabet X and
output alphabet Y and capacity C1. Consider l ∈ N and
channel Cl : X l 7→ Y l with transition probability matrix P⊗l.
Capacity Cl of Cl : can be calculated as Cl = lC1.

Proof. See Chapter 7: Channel Capacity” in [10].
�

From this theorem we can conclude that

C
(
CL1
)
= L · C

(
C11
)
. (3)

Now let us consider a case when L = 1 and collision
order t ∈ N is an arbutrary number. We will denote the
corresponding channel as Ct1. The input/output alphabets for
this channel are the same as for C11 . If p is a probability to
each of t users send 1, then transition probability to obtain
0 for input 0 is p00 = p(0|0, t) = (1 − p)t. In the same
manner we can calculate p01 = p(1|0, t) = 1− (1−p)t. Since
disjunction of t random binary variables equals 1 if at least
one of these variables equals 1 then, p10 = p(0|1, t) = 0 and
p11 = p(1|1, t) = 1. Thus transition probability matrix Pt

1 of
Ct1 is:

Pt
1 =

(
(1− p)t 1− (1− p)t

0 1

)
=
(
P1

1

)t
. (4)

It means that channel Ct1 is just serial connection of t C11
channels: Thus we can calculate a capacity of channel Ct1

Fig. 3. Graphical representation of Ct
1

(t > 0) as follows:

C(Ct1) = (1− p)t+1 log2
1

1− p
+

+(1− p)
(
1− (1− p)t

)
log2

(
1− (1− p)t

1− (1− p)t+1

)
+

+p log2

(
1

1− (1− p)t+1

)
.

As it was mentioned above, if t = 0 then C01 = 1.
And finally we can calculate capacity of CtL as follows:

C(CtL) =

{
L · C(Ct1), t > 0

L, t = 0
.

In Figure 4 the dependence between C(CtL) and p for L = 8
and t = 1, 2, 3, 4, 5, 10 is presented.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

p

C
t L
(p
)

t=1
t=2
t=3
t=4
t=5
t=10

Fig. 4. Dependence between C(Ct
L) and p for L = 8 and t = 1, 2, 3, 4, 5, 10

It is obvious that the larger t the smaller capacity C(CtL).
Moreover, for each t there is p = popt which is the optimal
probability that maximizes C(CtL), and the larger t the smaller
popt.

Now let us estimate a capacity C = C(U,Q,L, p) of slotted
vector-disjunctive channel for a given Q, L, probability p and
fixed number of users U .

By the definition of capacity:

C = sup
pin(X )

I(X ;Y),

where I(X ;Y) is a mutual information between random vari-
ables X and Y . Supremum takes over all possible distributions
pin ∈ P(XL) of input XL. Thus

C = sup
pin∈P(XL)

∑
x∈XL

pin(x)
∑
y∈YL

p(y|x) log2
p(y|x)
pout(y)

(5)

Let us define all the probabilities in (5).

pin(x) = pwt(x)(1− p)L−wt(x)
,
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Fig. 5. Mutual information (6) as a function of number of users for Q =
1024, L=8.

p(y|x, U) =


U−1∑
t=0

Pr{κ = t}pt(wt(y)−wt(x))(1− pt)L−wt(y)
,

supp(x) ⊆ supp(y)

0, supp(x) * supp(y)

To define pout we need to introduce the probabilities as
functions of weight. As p(y|x, U) only depends on the weight
of x and y and not on their values let us define

p(w′|w,U) = p(y|x, U),

∀x ∈ XL : wt(x) = w

∀y ∈ YL : wt(y) = w′

supp(x) ⊆ supp(y)

pin(w) = pin(x), ∀x ∈ XL : wt(x) = w

pout(y) =
∑

x∈XL

pin(x)p(y|x, U)

=

wt(y)∑
w=0

(
wt(y)

w

)
pin(w)p(wt(y)|w,U)

Likewise let us define

pout(w
′) = pout(y), ∀y ∈ YL : wt(y) = w′

Combining these expressions one can estimate C as follows:

C ≥
L∑

w=0

pin(w)
L∑

w′=w

(
L

w,w′ − w

)
p(w′|w,U) log2

p(w′|w,U)

pout(w′)
.

(6)

In Fig. 5 the dependence between expression (6) and number
of active users U for fixed Q = 1024, L = 8 and different
values of p is presented. It is easy to notice that p = 0.5 is not
optimal for all cases: it maximizes (6) only when the number
of active users is relatively small (U < S). In other cases
smaller values of p result in better capacity.

IV. CONCLUSION

In this paper we consider a very simple model of multiple
access system where users send short bit packets to base
station which recovers a disjunction of all transmitted data.
We estimate the capacity of this system in terms of maximal
achievable throughput per one channel use and obtain lower
bound on this value. The numerical results, presented in the
paper allow us to make a conclusion that capacity still remains
non-zero when the number of active users becomes greater
than S — number of orthogonal slots. It means that proposed
transmission scenario potentially allows a large number of
users transmit simultaneously in uncoordinated fashion even
when this number becomes greater than the maximal number
of users that can work in orthogonal manner.

Moreover, our proposed scheme has such advantages as
simple receiver, uncoordinated transmission, number of active
users are not strictly fixed and can be changed dynamically.
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