New moduli components of rank 2 bundles on projective space

Alexander S. Tikhomirov
National Research University Higher School of Economics,
Moscow, Russia

"VI Algebraic Geometry Meeting Bandoleros 2022", Middle East Technical University, Ankara, Turkey,

May 11th, 2022

Introduction

Maruyama, 1977: moduli rank r stable vector bundles on a projective scheme X with fixed Chern classes c_{1}, \ldots, c_{r} can be parametrized by an algebraic quasi-projective scheme, denoted by $\mathcal{B}_{X}\left(r, c_{1}, \ldots, c_{r}\right)$. Although this result has been known for almost 40 years, there are just a few concrete examples and established facts about such schemes, even for cases like $X=\mathbb{P}^{3}$ and $r=2$. For instance,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,1)$ was studied by Barth, 1977,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,2)$ was described by Harthorne, 1978,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,2)$ was studied by Harthorne and Sols, 1981, and by
Manolache, 1981,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,4)$ was described by Bǎnicǎ and Manolache, 1985

This probably happened due to the fact that the questions of irreducibility (solved by [T] in 2012-13), and smoothness (answered by Jardim and Verbitsky in 2014) of the so-called instanton component of the moduli space $\mathcal{B}_{\mathbb{P}^{3}}\left(2,0, c_{2}\right)$ for all $c_{2} \in \mathbb{Z}_{+}$remained open until 2014.

Introduction

Maruyama, 1977: moduli rank r stable vector bundles on a projective scheme X with fixed Chern classes c_{1}, \ldots, c_{r} can be parametrized by an algebraic quasi-projective scheme, denoted by $\mathcal{B}_{X}\left(r, c_{1}, \ldots, c_{r}\right)$. Although this result has been known for almost 40 years, there are just a few concrete examples and established facts about such schemes, even for cases like $X=\mathbb{P}^{3}$ and $r=2$. For instance,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,1)$ was studied by Barth, 1977,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,2)$ was described by Harthorne, 1978,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,2)$ was studied by Harthorne and Sols, 1981, and by Manolache, 1981,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,4)$ was described by Bǎnicǎ and Manolache, 1985
This probably happened due to the fact that the questions of irreducibility (solved by [T] in 2012-13), and smoothness (answered by Jardim and Verbitsky in 2014) of the so-called instanton component of the moduli space $\mathcal{B}_{\mathbb{P}^{3}}\left(2,0, c_{2}\right)$ for all $c_{2} \in \mathbb{Z}_{+}$remained open until 2014.

Introduction

Maruyama, 1977: moduli rank r stable vector bundles on a projective scheme X with fixed Chern classes c_{1}, \ldots, c_{r} can be parametrized by an algebraic quasi-projective scheme, denoted by $\mathcal{B}_{X}\left(r, c_{1}, \ldots, c_{r}\right)$. Although this result has been known for almost 40 years, there are just a few concrete examples and established facts about such schemes, even for cases like $X=\mathbb{P}^{3}$ and $r=2$. For instance,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,1)$ was studied by Barth, 1977,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,2)$ was described by Harthorne, 1978,
> $\mathcal{B}_{\mathbb{P}^{3}}(2,-1,2)$ was studied by Harthorne and Sols, 1981, and by Manolache, 1981,
> $\mathcal{B}_{\mathbb{P}^{3}}(2,-1,4)$ was described by Bǎnicǎ and Manolache, 1985

> This probably happened due to the fact that the questions of irreducibility (solved by [T] in 2012-13), and smoothness (answered by Jardim and Verbitsky in 2014) of the so-called instanton component of the moduli space $\mathcal{B}_{\mathbb{P}^{3}}\left(2,0, c_{2}\right)$ for all $c_{2} \in \mathbb{Z}_{+}$remained open until 2014.

Introduction

Maruyama, 1977: moduli rank r stable vector bundles on a projective scheme X with fixed Chern classes c_{1}, \ldots, c_{r} can be parametrized by an algebraic quasi-projective scheme, denoted by $\mathcal{B}_{X}\left(r, c_{1}, \ldots, c_{r}\right)$. Although this result has been known for almost 40 years, there are just a few concrete examples and established facts about such schemes, even for cases like $X=\mathbb{P}^{3}$ and $r=2$. For instance,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,1)$ was studied by Barth, 1977,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,2)$ was described by Harthorne, 1978,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,2)$ was studied by Harthorne and Sols, 1981 , and by Manolache, 1981,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,4)$ was described by Bǎnicǎ and Manolache, 1985

This probably happened due to the fact that the questions of irreducibility (solved by [T] in 2012-13), and smoothness (answered by Jardim and Verbitsky in 2014) of the so-called instanton component of the moduli space $\mathcal{B}_{\mathbb{P}^{3}}\left(2,0, c_{2}\right)$ for all $c_{2} \in \mathbb{Z}_{+}$remained open until 2014.

Introduction

Maruyama, 1977: moduli rank r stable vector bundles on a projective scheme X with fixed Chern classes c_{1}, \ldots, c_{r} can be parametrized by an algebraic quasi-projective scheme, denoted by $\mathcal{B}_{X}\left(r, c_{1}, \ldots, c_{r}\right)$. Although this result has been known for almost 40 years, there are just a few concrete examples and established facts about such schemes, even for cases like $X=\mathbb{P}^{3}$ and $r=2$. For instance,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,1)$ was studied by Barth, 1977,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,2)$ was described by Harthorne, 1978,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,2)$ was studied by Harthorne and Sols, 1981 , and by Manolache, 1981,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,4)$ was described by Bǎnicǎ and Manolache, 1985.

This probably happened due to the fact that the questions of irreducibility (solved by [T] in 2012-13), and smoothness (answered by Jardim and Verbitsky in 2014) of the so-called instanton component of

Introduction

Maruyama, 1977: moduli rank r stable vector bundles on a projective scheme X with fixed Chern classes c_{1}, \ldots, c_{r} can be parametrized by an algebraic quasi-projective scheme, denoted by $\mathcal{B}_{X}\left(r, c_{1}, \ldots, c_{r}\right)$. Although this result has been known for almost 40 years, there are just a few concrete examples and established facts about such schemes, even for cases like $X=\mathbb{P}^{3}$ and $r=2$. For instance,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,1)$ was studied by Barth, 1977,
$\mathcal{B}_{\mathbb{P}^{3}}(2,0,2)$ was described by Harthorne, 1978,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,2)$ was studied by Harthorne and Sols, 1981, and by Manolache, 1981,
$\mathcal{B}_{\mathbb{P}^{3}}(2,-1,4)$ was described by Bǎnicǎ and Manolache, 1985.
This probably happened due to the fact that the questions of irreducibility (solved by [T] in 2012-13), and smoothness (answered by Jardim and Verbitsky in 2014) of the so-called instanton component of the moduli space $\mathcal{B}_{\mathbb{P}^{3}}\left(2,0, c_{2}\right)$ for all $c_{2} \in \mathbb{Z}_{+}$remained open until 2014.

Introduction

In this talk, l'll present my joint paper with Ch. Almeida (Belo Horizonte), M. Jardim (Campinas), and Sergey Tikhomirov (Yaroslavl) [New moduli components of rank 2 bundles on projective space. Sbornik Mathematics, 212:11 (2021), 1503-1552.]

In this paper, we continue the study of the moduli space $\mathcal{B}_{\mathbb{P}^{3}}(2,0, n)$, which we will simply denote by $\mathcal{B}(n)$ from now on, with the goal of providing new examples of families of vector bundles, and understanding their geometry. It is more or less clear from the table in [Hartshorne-Rao, 1991, Section 5.3] that $\mathcal{B}(1)$ and $\mathcal{B}(2)$ should be irreducible, while $\mathcal{B}(3)$ and $\mathcal{B}(4)$ should have exactly two irreducible components; see [Ellingsrud-Strømme, 1981] and [Chang, 1983], respectively, for the proof of the statements about $\mathcal{B}(3)$ and $\mathcal{B}(4)$.

As for $\mathcal{B}(5)$, a description of all its irreducible components had been a challenge since 1980ies. In the paper. we give a complete answer to this problem (Main Theorem 2 below)
\square
For $n \geq 5$, two families of irreducible components have been studied

Introduction

In this talk, l'll present my joint paper with Ch. Almeida (Belo Horizonte), M. Jardim (Campinas), and Sergey Tikhomirov (Yaroslavl) [New moduli components of rank 2 bundles on projective space. Sbornik Mathematics, 212:11 (2021), 1503-1552.]

In this paper, we continue the study of the moduli space $\mathcal{B}_{\mathbb{P}^{3}}(2,0, n)$, which we will simply denote by $\mathcal{B}(n)$ from now on, with the goal of providing new examples of families of vector bundles, and understanding their geometry. It is more or less clear from the table in [Hartshorne-Rao, 1991, Section 5.3] that $\mathcal{B}(1)$ and $\mathcal{B}(2)$ should be irreducible, while $\mathcal{B}(3)$ and $\mathcal{B}(4)$ should have exactly two irreducible components; see [Ellingsrud-Strømme, 1981] and [Chang, 1983], respectively, for the proof of the statements about $\mathcal{B}(3)$ and $\mathcal{B}(4)$.

As for $\mathcal{B}(5)$, a description of all its irreducible components had been a challenge since 1980ies. In the paper, we give a complete answer to this problem (Main Theorem 2 below).

For $n \geq 5$, two families of irreducible components have been studied, namely the instanton components,

The idea of construction

and the Ein components, whose general point corresponds to a bundle given as cohomology of a monad of the form

$$
\begin{gathered}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-c) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-b) \oplus \mathcal{O}_{\mathbb{P}^{3}}(-a) \oplus \mathcal{O}_{\mathbb{P}^{3}}(a) \oplus \mathcal{O}_{\mathbb{P}^{3}}(b) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(c) \rightarrow 0, \\
b \geq a \geq 0, c>a+b
\end{gathered}
$$

In 2019 A. Kytmanov, T, \& S. Tikhomirov proved that the Ein components are rational varieties.

All of the components of $\mathcal{B}(n)$ for $n \leq 4$ are of either of these types; here we focus on a new family of bundles that appear as soon as $n \geq 5$.
More precisely, we study the set of vector bundles in $\mathcal{B}\left(a^{2}+k\right)$ for each $a \geq 2$ and $k \geq 1$ which arise as cohomologies of monads of the form:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus k} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 2 k+4} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus k} \oplus \mathcal{O}_{\mathbb{P}^{3}}(a) \rightarrow 0
$$

which will be denoted by $\mathcal{G}(a, k)$. We provide a bijection between such monads and monads of the form:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \rightarrow E \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(a) \rightarrow 0
$$

where E is a symplectic rank 4 instanton bundle of charge k.

The idea of construction

When $k=1$, these facts are used to prove our first main result. (See Theorem 5.2 below.)
Main Theorem 1
For each a ≥ 2 not equal to $3, \mathcal{G}(a, 1)$ is a nonsingular dense subset of a rational irreducible component of $\mathcal{B}\left(a^{2}+1\right)$ of dimension $4\binom{a+3}{3}-a-1$.

Our second main result provides a complete description of all the irreducible components of $\mathcal{B}(5)$.

The idea of construction

Main Theorem 2

The moduli space $\mathcal{B}(5)$ has exactly 3 rational irreducible components:
(i) the instanton component, of dimension 37, which is nonsingular and consists of those bundles given as cohomology of monads of the form $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 5} \rightarrow \mathcal{O}_{\mathbb{P} 3}^{\oplus 12} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 5} \rightarrow 0$,
or of the form
$0 \rightarrow \mathcal{O}_{p 3}(-2)^{\oplus 2} \rightarrow \mathcal{O}_{p 3}(-1)^{\oplus 3} \oplus \mathcal{O}_{p 3}(1)^{\oplus 3} \rightarrow \mathcal{O}_{p 3}(2)^{\oplus 2} \rightarrow 0 ;$
(ii) the Ein component, nonsingular of dimension 40, which consists of those bundles given as cohomology of monads of the form
$0 \rightarrow \mathrm{O}_{p_{3}}(-3) \rightarrow \mathrm{O}_{p_{3}}(-2) \oplus \mathrm{O}_{3}^{0_{2}^{2}} \oplus \mathrm{O}_{p_{3}}(2) \rightarrow \mathrm{O}_{3}(3) \rightarrow 0 ;$
(iii) the closure of the set $\mathcal{G}(2,1)$, of dimension 37 consisting of the socalled modified instantons given as cohomology of monads of the form
$0 \rightarrow \mathcal{O}_{p_{3}}(-2) \oplus \mathcal{O}_{p_{3}}(-1) \rightarrow \mathcal{O}^{-\sigma} \rightarrow \mathcal{O}_{p_{3}}(1) \oplus \mathcal{O}_{p_{3}}(2) \rightarrow 0$
or of the form
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6} \oplus \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow$

The idea of construction

Main Theorem 2

The moduli space $\mathcal{B}(5)$ has exactly 3 rational irreducible components:
(i) the instanton component, of dimension 37, which is nonsingular and consists of those bundles given as cohomology of monads of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 5} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 12} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 5} \rightarrow 0, \tag{1}
\end{equation*}
$$

or of the form
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 3} \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 3} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(2)^{\oplus 2} \rightarrow 0 ;$
(ii) the Ein component, nonsingular of dimension 40, which consists of
those bundles given as cohomology of monads of the form
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-3) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}^{\oplus^{2}} \oplus \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(3) \rightarrow 0 ;$
(iii) the closure of the set $\mathcal{G}(2,1)$, of dimension 37 consisting of the socalled modified instantons given as cohomology of monads of the form $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1) \oplus \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow 0$

or of the form

The idea of construction

Main Theorem 2

The moduli space $\mathcal{B}(5)$ has exactly 3 rational irreducible components:
(i) the instanton component, of dimension 37, which is nonsingular and consists of those bundles given as cohomology of monads of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 5} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 12} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 5} \rightarrow 0, \tag{1}
\end{equation*}
$$

or of the form
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 3} \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 3} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(2)^{\oplus 2} \rightarrow 0 ;$
(ii) the Ein component, nonsingular of dimension 40, which consists of those bundles given as cohomology of monads of the form $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-3) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(3) \rightarrow 0 ;$
(iii) the closure of the set $\mathcal{G}(2,1)$, of dimension 37 consisting of the socalled modified instantons given as cohomology of monads of the form or of the form

The idea of construction

Main Theorem 2

The moduli space $\mathcal{B}(5)$ has exactly 3 rational irreducible components:
(i) the instanton component, of dimension 37, which is nonsingular and consists of those bundles given as cohomology of monads of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 5} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 12} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 5} \rightarrow 0, \tag{1}
\end{equation*}
$$

or of the form
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 3} \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 3} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(2)^{\oplus 2} \rightarrow 0 ;$
(ii) the Ein component, nonsingular of dimension 40, which consists of those bundles given as cohomology of monads of the form
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-3) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(3) \rightarrow 0 ;$
(iii) the closure of the set $\mathcal{G}(2,1)$, of dimension 37 consisting of the socalled modified instantons given as cohomology of monads of the form $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1) \oplus \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow 0$ or of the form

$$
\begin{align*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}} & (-2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 2} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6} \oplus \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow \tag{4}\\
& \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 2} \oplus \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow 0 . \tag{5}
\end{align*}
$$

Irreducible components of $\mathcal{B}(5)$

Component	Dimension	Monads	Spectra	$\boldsymbol{\alpha}$-invariant
Instanton	37	(1)	$(0,0,0,0,0)$	0
		(2)	$(-1,-1,0,1,1)$	
Ein	40	(3)	$(-2,-1,0,1,2)$	1
Modified Instanton	37	(4)	$(-1,0,0,0,1)$	1
		(5)		

Here α-invariant of a vector bundle E is $\alpha(E):=h^{1}(E(-2)) \bmod 2$.

Proof of Theorem 1

Proof of Theorem 1

A vector bundle E is called instanton bundle if $h^{i}(E(-i-1))=0$, $i=0,1,2,3$. Here is a list of some properties of instanton bundles.
(i) Every rank 4 instanton bundle E of charge 1 satisfies an exact triple $0 \rightarrow \mathcal{O}_{\mathbb{P} 3}^{\oplus 2} \rightarrow E \rightarrow N \rightarrow 0$, where N is a null-correlation bundle.
(ii) The cohomology bundle $E=\mathcal{H}^{0}\left(M^{\bullet}\right)$ of the monad M^{\bullet} of the form $M^{\bullet}: \quad 0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow 0$,
is a rank 4 instanton bundle E of charge 1
(iii) Any rank 2 bundle $[\mathcal{E}] \in \mathcal{G}(a, k)$ is the cohomology of a monad $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \rightarrow E \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(a) \rightarrow 0$
where E is a rank 4 instanton bundle E of charge k.

Proof of Theorem 1

Proof of Theorem 1

A vector bundle E is called instanton bundle if $h^{i}(E(-i-1))=0$, $i=0,1,2,3$. Here is a list of some properties of instanton bundles.
(i) Every rank 4 instanton bundle E of charge 1 satisfies an exact triple $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus^{2}} \rightarrow E \rightarrow N \rightarrow 0$, where N is a null-correlation bundle.
(ii) The cohomology bundle $E=\mathcal{H}^{0}\left(M^{*}\right)$ of the monad M^{0} of the form:
is a rank 4 instanton bundle E of charge 1
(iii) Any rank 2 bundle $[\varepsilon] \in G(a, k)$ is the cohomology of a monad $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \rightarrow E \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(a) \rightarrow 0$
where E is a rank 4 instanton bundle E of charge k.

Proof of Theorem 1

Proof of Theorem 1

A vector bundle E is called instanton bundle if $h^{i}(E(-i-1))=0$, $i=0,1,2,3$. Here is a list of some properties of instanton bundles.
(i) Every rank 4 instanton bundle E of charge 1 satisfies an exact triple $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus^{2}} \rightarrow E \rightarrow N \rightarrow 0$, where N is a null-correlation bundle.
(ii) The cohomology bundle $E=\mathcal{H}^{0}\left(M^{\bullet}\right)$ of the monad M^{\bullet} of the form:

$$
\begin{equation*}
M^{\bullet}: \quad 0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6^{6}} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow 0, \tag{6}
\end{equation*}
$$

is a rank 4 instanton bundle E of charge 1 .
(iii) Any rank 2 bundle $[\mathcal{E}] \in \mathcal{G}(a, k)$ is the cohomology of a monad
where E is a rank 4 instanton bundle E of charge k.

Proof of Theorem 1

Proof of Theorem 1

A vector bundle E is called instanton bundle if $h^{i}(E(-i-1))=0$, $i=0,1,2,3$. Here is a list of some properties of instanton bundles.
(i) Every rank 4 instanton bundle E of charge 1 satisfies an exact triple $0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus^{2}} \rightarrow E \rightarrow N \rightarrow 0$, where N is a null-correlation bundle.
(ii) The cohomology bundle $E=\mathcal{H}^{0}\left(M^{\bullet}\right)$ of the monad M^{\bullet} of the form:

$$
\begin{equation*}
M^{\bullet}: \quad 0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus^{6}} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1) \rightarrow 0, \tag{6}
\end{equation*}
$$

is a rank 4 instanton bundle E of charge 1 .
(iii) Any rank 2 bundle $[\mathcal{E}] \in \mathcal{G}(a, k)$ is the cohomology of a monad

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \rightarrow E \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(a) \rightarrow 0 \tag{7}
\end{equation*}
$$

where E is a rank 4 instanton bundle E of charge k.

Proof of Theorem 1

We construct three families of symplectic monads of the form (6). The first one is the universal family, with the base scheme S, of monads with E splitting as

$$
E=\mathcal{O}_{\mathbb{P}^{3}}^{\oplus^{2}} \oplus N
$$

where N is a null correlation bundle.

> The second is a family, with the base scheme \widetilde{S} containing S as a dense open subset, of monads with E a general symplectic rank 4 instanton of charge 1 .

> The third is a family of monads with E splitting as in the first one, but with a new base Y. All the three families inherit universal cohomology sheaves, and it is shown that the images of their corresponding modular morphisms to $\mathcal{B}\left(a^{2}+1\right)$ have the same closure $\overline{\mathcal{G}(a, 1)}$

> We will give now more details of construction for this family Y. For this, introduce some new schemes and morphisms.

Proof of Theorem 1

We construct three families of symplectic monads of the form (6). The first one is the universal family, with the base scheme S, of monads with E splitting as

$$
E=\mathcal{O}_{\mathbb{P}^{3}}^{\oplus^{2}} \oplus N
$$

where N is a null correlation bundle.
The second is a family, with the base scheme \widetilde{S} containing S as a dense open subset, of monads with E a general symplectic rank 4 instanton of charge 1.

The third is a family of monads with E splitting as in the first one, but with a new base Y. All the three families inherit universal cohomology sheaves, and it is shown that the images of their corresponding modular morphisms to $\mathcal{B}\left(a^{2}+1\right)$ have the same closure $\bar{G}(a, 1)$

We will give now more details of construction for this family Y. For this, introduce some new schemes and morphisms.

Proof of Theorem 1

We construct three families of symplectic monads of the form (6). The first one is the universal family, with the base scheme S, of monads with E splitting as

$$
E=\mathcal{O}_{\mathbb{P}^{3}}^{\oplus 2} \oplus N
$$

where N is a null correlation bundle.
The second is a family, with the base scheme \widetilde{S} containing S as a dense open subset, of monads with E a general symplectic rank 4 instanton of charge 1.

The third is a family of monads with E splitting as in the first one, but with a new base Y. All the three families inherit universal cohomology sheaves, and it is shown that the images of their corresponding modular morphisms to $\mathcal{B}\left(a^{2}+1\right)$ have the same closure $\overline{\mathcal{G}(a, 1)}$.

We will give now more details of construction for this family Y. For this, introduce some new schemes and morphisms.

Proof of Theorem 1

We construct three families of symplectic monads of the form (6). The first one is the universal family, with the base scheme S, of monads with E splitting as

$$
E=\mathcal{O}_{\mathbb{P}^{3}}^{\oplus 2} \oplus N
$$

where N is a null correlation bundle.
The second is a family, with the base scheme \widetilde{S} containing S as a dense open subset, of monads with E a general symplectic rank 4 instanton of charge 1.

The third is a family of monads with E splitting as in the first one, but with a new base Y. All the three families inherit universal cohomology sheaves, and it is shown that the images of their corresponding modular morphisms to $\mathcal{B}\left(a^{2}+1\right)$ have the same closure $\overline{\mathcal{G}(a, 1)}$.

We will give now more details of construction for this family Y. For this, introduce some new schemes and morphisms.

Proof of Theorem 1

$B:=\mathcal{B}(1), \mathbb{B}:=\mathbb{P}^{3} \times B, \mathbb{N}$ universal family of bundles on \mathbb{B},
$\mathbb{E}:=\mathcal{O}_{\mathbb{B}} \oplus \mathbb{N}, \mathbb{P}_{b}^{3}:=\mathbb{P}^{3} \times\{b\}, E_{b}:=\mathbb{E}_{\mathbb{P}_{b}^{3}}, N_{b}:=\mathbb{N}_{\mathbb{P}_{b}^{3}}, b \in B$,
$\mathcal{T}:=\left\{(b,\langle\sigma\rangle) \mid b \in B, 0 \neq \sigma \in H^{0}\left(E_{b}(a)\right)\right\}, \mathcal{T} \rightarrow B$ projection, $B_{1}:=\left\{\left(b, \varphi_{1}\right) \mid b \in B, \varphi_{1}: \mathcal{O}_{\mathbb{P}_{3}^{3}}^{\oplus 2} \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}_{3}^{3}}^{\oplus 2}\right.$ symplectic structure $\}$,
$B_{2}:=\left\{\left(b, \varphi_{2}\right) \mid b \in B, \varphi_{2}: N_{b} \xrightarrow{\simeq} N_{b}^{\vee}\right.$ symplectic structure $\}$,
$\tilde{B}:=B_{1} \times{ }_{B} B_{2}$,
$Y:=\tilde{B} \times B \mathcal{T}, \mathbb{Y}:=\mathbb{P}^{3} \times Y, \mathbb{E}:=\mathbb{E} \otimes_{0}, \mathcal{O}$,
$L:=\mathcal{O}_{Y / \tilde{B}}(1)$ Grothendieck sheaf, $\mathbb{P}_{y}^{3}:=\mathbb{P}^{3} \times\{y\}, y \in Y$
Clearly, Y is a rational irreducible variety.
$\mathbb{A}^{0}: 0 \rightarrow \mathcal{O}_{p_{3}}(-a) \boxtimes L^{V} \rightarrow \mathbb{E}_{Y} \rightarrow \mathcal{O}_{p 3}(-a) \boxtimes L \rightarrow 0$ universal monad,
$\mathcal{E}:=\mathcal{H}^{0}\left(\mathbb{A}^{\bullet}\right)$ cohomology bundle of \mathbb{A}^{\bullet}
$\Phi_{Y}: Y \rightarrow \mathcal{B}\left(a^{2}+1\right), y \mapsto\left[\left.\mathcal{E}\right|_{\mathbb{P}^{3}}\right]$ modular morphism,
Similarly, there are well-defined modular morphisms
$\Phi_{S}: S \rightarrow \mathcal{B}\left(a^{2}+1\right), \Phi_{\tilde{S}}: \tilde{S} \rightarrow \mathcal{B}\left(a^{2}+1\right)$.

Proof of Theorem 1

$B:=\mathcal{B}(1), \mathbb{B}:=\mathbb{P}^{3} \times B, \mathbb{N}$ universal family of bundles on \mathbb{B}, $\mathbb{E}:=\mathcal{O}_{\mathbb{B}} \oplus \mathbb{N}, \mathbb{P}_{b}^{3}:=\mathbb{P}^{3} \times\{b\}, E_{b}:=\mathbb{E}_{\mathbb{P}_{b}^{3}}, N_{b}:=\mathbb{N}_{\mathbb{P}_{b}^{3}}, b \in B$, $\mathcal{T}:=\left\{(b,\langle\sigma\rangle) \mid b \in B, 0 \neq \sigma \in H^{0}\left(E_{b}(a)\right)\right\}, \mathcal{T} \rightarrow B$ projection, $B_{1}:=\left\{\left(b, \varphi_{1}\right) \mid b \in B, \varphi_{1}: \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2} \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2}\right.$ symplectic structure $\}$, $B_{2}:=\left\{\left(b, \varphi_{2}\right) \mid b \in B, \varphi_{2}: N_{b} \xrightarrow{\simeq} N_{b}^{\vee}\right.$ symplectic structure $\}$, $\tilde{B}:=B_{1} \times{ }_{B} B_{2}$,
$Y:=\tilde{B} \times_{B} \mathcal{T}, \mathbb{Y}:=\mathbb{P}^{3} \times Y, \mathbb{E}_{\mathbb{Y}}:=\mathbb{E} \otimes \mathcal{O}_{\mathbb{B}} \mathcal{O}_{\mathbb{Y}}$, $L:=\mathcal{O}_{Y / \tilde{B}}(1)$ Grothendieck sheaf, $\mathbb{P}_{y}^{3}:=\mathbb{P}^{3} \times\{y\}, y \in Y$. Clearly, Y is a rational irreducible variety.
$\mathbb{A}^{\bullet}: 0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \boxtimes L^{\vee} \rightarrow \mathbb{E}_{\mathbb{Y}} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \boxtimes L \rightarrow 0$ universal monad, $\mathcal{E}:=\mathcal{H}^{0}\left(\mathbb{A}^{\bullet}\right)$ cohomology bundle of \mathbb{A}^{\bullet}
$\Phi_{Y}: Y \rightarrow \mathcal{B}\left(a^{2}+1\right), y \mapsto\left[\left.\mathcal{E}\right|_{\mathbb{P}^{3}}\right]$ modular morphism,
Similarly, there are well-defined modular morphisms
$\Phi_{S}: S \rightarrow \mathcal{B}\left(a^{2}+1\right), \Phi_{\tilde{S}}: \tilde{S} \rightarrow \mathcal{B}\left(a^{2}+1\right)$.

Proof of Theorem 1

$B:=\mathcal{B}(1), \mathbb{B}:=\mathbb{P}^{3} \times B, \mathbb{N}$ universal family of bundles on \mathbb{B}, $\mathbb{E}:=\mathcal{O}_{\mathbb{B}} \oplus \mathbb{N}, \mathbb{P}_{b}^{3}:=\mathbb{P}^{3} \times\{b\}, E_{b}:=\mathbb{E}_{\mathbb{P}_{b}^{3}}, N_{b}:=\mathbb{N}_{\mathbb{P}_{b}^{3}}, b \in B$, $\mathcal{T}:=\left\{(b,\langle\sigma\rangle) \mid b \in B, 0 \neq \sigma \in H^{0}\left(E_{b}(a)\right)\right\}, \mathcal{T} \rightarrow B$ projection, $B_{1}:=\left\{\left(b, \varphi_{1}\right) \mid b \in B, \varphi_{1}: \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2} \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2}\right.$ symplectic structure $\}$, $B_{2}:=\left\{\left(b, \varphi_{2}\right) \mid b \in B, \varphi_{2}: N_{b} \xrightarrow{\simeq} N_{b}^{\vee}\right.$ symplectic structure $\}$, $\tilde{B}:=B_{1} \times{ }_{B} B_{2}$,

$\Phi_{Y}: Y \rightarrow \mathcal{B}\left(a^{2}+1\right), y \mapsto\left[\left.\mathcal{E}\right|_{\mathbb{P}_{y}^{3}}\right]$ modular morphism,
Similarly, there are well-defined modular morphisms

Proof of Theorem 1

$B:=\mathcal{B}(1), \mathbb{B}:=\mathbb{P}^{3} \times B, \mathbb{N}$ universal family of bundles on \mathbb{B},
$\mathbb{E}:=\mathcal{O}_{\mathbb{B}} \oplus \mathbb{N}, \mathbb{P}_{b}^{3}:=\mathbb{P}^{3} \times\{b\}, E_{b}:=\left.\mathbb{E}\right|_{\mathbb{P}_{b}^{3}}, N_{b}:=\left.\mathbb{N}\right|_{\mathbb{P}_{b}^{3}}, b \in B$,
$\mathcal{T}:=\left\{(b,\langle\sigma\rangle) \mid b \in B, 0 \neq \sigma \in H^{0}\left(E_{b}(a)\right)\right\}, \mathcal{T} \rightarrow B$ projection,
$B_{1}:=\left\{\left(b, \varphi_{1}\right) \mid b \in B, \varphi_{1}: \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2} \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2}\right.$ symplectic structure $\}$,
$B_{\tilde{B}}:=\left\{\left(b, \varphi_{2}\right) \mid b \in B, \varphi_{2}: N_{b} \xrightarrow{\simeq} N_{b}^{\vee}\right.$ symplectic structure $\}$,
$\tilde{B}:=B_{1} \times{ }_{B} B_{2}$,
$Y:=\tilde{B} \times_{B} \mathcal{T}, \quad \mathbb{Y}:=\mathbb{P}^{3} \times Y, \quad \mathbb{E}_{\mathbb{Y}}:=\mathbb{E} \otimes \mathcal{O}_{\mathbb{B}} \mathcal{O}_{\mathbb{Y}}$,
$L:=\mathcal{O}_{Y / \tilde{B}}(1)$ Grothendieck sheaf, $\mathbb{P}_{y}^{3}:=\mathbb{P}^{3} \times\{y\}, y \in Y$.
Clearly, Y is a rational irreducible variety.

Proof of Theorem 1

$B:=\mathcal{B}(1), \mathbb{B}:=\mathbb{P}^{3} \times B, \mathbb{N}$ universal family of bundles on \mathbb{B},
$\mathbb{E}:=\mathcal{O}_{\mathbb{B}} \oplus \mathbb{N}, \mathbb{P}_{b}^{3}:=\mathbb{P}^{3} \times\{b\}, E_{b}:=\mathbb{E}_{\mathbb{P}_{b}^{3}}, N_{b}:=\mathbb{N}_{\mathbb{P}_{b}^{3}}, b \in B$,
$\mathcal{T}:=\left\{(b,\langle\sigma\rangle) \mid b \in B, 0 \neq \sigma \in H^{0}\left(E_{b}(a)\right)\right\}, \mathcal{T} \rightarrow B$ projection,
$B_{1}:=\left\{\left(b, \varphi_{1}\right) \mid b \in B, \varphi_{1}: \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2} \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2}\right.$ symplectic structure $\}$,
$B_{2}:=\left\{\left(b, \varphi_{2}\right) \mid b \in B, \varphi_{2}: N_{b} \xrightarrow{\simeq} N_{b}^{\vee}\right.$ symplectic structure $\}$,
$\tilde{B}:=B_{1} \times{ }_{B} B_{2}$,
$Y:=\tilde{B} \times_{B} \mathcal{T}, \mathbb{Y}:=\mathbb{P}^{3} \times Y, \mathbb{E}_{\mathbb{Y}}:=\mathbb{E} \otimes_{\mathcal{O}_{\mathbb{B}}} \mathcal{O}_{\mathbb{Y}}$,
$L:=\mathcal{O}_{Y / \tilde{B}}(1)$ Grothendieck sheaf, $\mathbb{P}_{y}^{3}:=\mathbb{P}^{3} \times\{y\}, y \in Y$.
Clearly, Y is a rational irreducible variety.
$\mathbb{A}^{\bullet}: 0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \boxtimes L^{\vee} \rightarrow \mathbb{E}_{\mathbb{Y}} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \boxtimes L \rightarrow 0$ universal monad, $\mathcal{E}:=\mathcal{H}^{0}\left(\mathbb{A}^{\bullet}\right)$ cohomology bundle of \mathbb{A}^{\bullet}

Proof of Theorem 1

$B:=\mathcal{B}(1), \mathbb{B}:=\mathbb{P}^{3} \times B, \mathbb{N}$ universal family of bundles on \mathbb{B},
$\mathbb{E}:=\mathcal{O}_{\mathbb{B}} \oplus \mathbb{N}, \mathbb{P}_{b}^{3}:=\mathbb{P}^{3} \times\{b\}, E_{b}:=\mathbb{E}_{\mathbb{P}_{b}^{3}}, N_{b}:=\mathbb{N}_{\mathbb{P}_{b}^{3}}, b \in B$,
$\mathcal{T}:=\left\{(b,\langle\sigma\rangle) \mid b \in B, 0 \neq \sigma \in H^{0}\left(E_{b}(a)\right)\right\}, \mathcal{T} \rightarrow B$ projection,
$B_{1}:=\left\{\left(b, \varphi_{1}\right) \mid b \in B, \varphi_{1}: \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2} \xrightarrow{\simeq} \mathcal{O}_{\mathbb{P}_{b}^{3}}^{\oplus 2}\right.$ symplectic structure $\}$,
$B_{2}:=\left\{\left(b, \varphi_{2}\right) \mid b \in B, \varphi_{2}: N_{b} \xrightarrow{\simeq} N_{b}^{\vee}\right.$ symplectic structure $\}$,
$\tilde{B}:=B_{1} \times{ }_{B} B_{2}$,
$Y:=\tilde{B} \times_{B} \mathcal{T}, \mathbb{Y}:=\mathbb{P}^{3} \times Y, \mathbb{E}_{\mathbb{Y}}:=\mathbb{E} \otimes_{\mathcal{O}_{\mathbb{B}}} \mathcal{O}_{\mathbb{Y}}$,
$L:=\mathcal{O}_{Y / \tilde{B}}(1)$ Grothendieck sheaf, $\mathbb{P}_{y}^{3}:=\mathbb{P}^{3} \times\{y\}, y \in Y$.
Clearly, Y is a rational irreducible variety.
$\mathbb{A}^{\bullet}: 0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \boxtimes L^{\vee} \rightarrow \mathbb{E}_{\mathbb{Y}} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \boxtimes L \rightarrow 0$ universal monad, $\mathcal{E}:=\mathcal{H}^{0}\left(\mathbb{A}^{\bullet}\right)$ cohomology bundle of \mathbb{A}^{\bullet}
$\Phi_{Y}: Y \rightarrow \mathcal{B}\left(a^{2}+1\right), y \mapsto\left[\left.\mathcal{E}\right|_{\mathbb{P}_{y}^{3}}\right]$ modular morphism,
Similarly, there are well-defined modular morphisms
$\Phi_{S}: S \rightarrow \mathcal{B}\left(a^{2}+1\right), \Phi_{\tilde{S}}: \tilde{S} \rightarrow \mathcal{B}\left(a^{2}+1\right)$.

Proof of Theorem 1

Comments to the construction of S : $\mathcal{G}(a, 1)=\left\{[\mathcal{E}] \in \mathcal{B}\left(a^{2}+1\right) \mid \mathcal{E}=\mathcal{H}^{0}\left(A_{S}^{\bullet}\right)\right\}$, where A_{S}^{\bullet} is a monad:

$$
A_{S}^{\bullet}: \quad 0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \oplus \mathcal{O}_{\mathbb{P}^{3}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(1) \oplus \mathcal{O}_{\mathbb{P}^{3}}(a) \rightarrow 0,
$$

$E=\frac{\mathrm{ker} \beta_{0}}{\mathrm{im} \alpha_{0}}$:

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-a) \rightarrow E \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(a) \rightarrow 0 \tag{7}
\end{equation*}
$$

$\mathcal{E}=\mathcal{H}^{0}(\operatorname{monad}(7))$

Proof of Theorem 1

Theorem

(i) $\Phi_{\tilde{S}}(\tilde{S})=\mathcal{G}(a, 1)$.
(ii) $\mathcal{G}(a, 1)_{0}:=\Phi_{Y}(Y)=\Phi_{S}(S)$ is a dense subset of $\overline{\mathcal{G}(a, 1)}$.
(iii) The modular morphism Φ_{Y} factors as

$$
\Phi_{Y}: Y \xrightarrow{\pi} \mathcal{P} \hookrightarrow \mathcal{B}\left(a^{2}+1\right),
$$

where \mathcal{P} is a rational variety and $\pi: Y \rightarrow \mathcal{P}$ is a principal G-bundle, where $G \simeq G L(2, k) \times \mathrm{k}^{\times}$. Hence, $\mathcal{P}=\mathcal{G}(a, 1)_{0}$.
(iv) $\operatorname{dim} \mathcal{P}=4\binom{a+3}{3}-a-1=h^{1}\left(\mathcal{E} n d\left(E_{y}\right)\right)$ for $y \in Y$. Hence, $\overline{\mathcal{G}(a, 1)}$ is an irreducible component of $\mathcal{B}\left(a^{2}+1\right)$.

The proof of this theorem is an explicit calculation, though quite involved, especially of statement (iii). Main Theorem 1 is a direct corollary of this theorem.

Proof of Theorem 2

Proof of Theorem 2

Consider the set

$$
\begin{aligned}
& \mathcal{H}=\left\{[\mathcal{E}] \in \mathcal{B}(5) \mid \mathcal{E}=\mathcal{H}\left(M^{\bullet}\right), \text { where } M^{\bullet} \text { is a monad of type (5) }\right\}, \\
& M^{\bullet}: 0 \rightarrow M^{-1} \xrightarrow{\alpha} M^{0} \xrightarrow{\beta} M^{1} \rightarrow 0, \quad M^{1}=\mathcal{O}_{\mathbb{P}^{3}}(2) \oplus \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 2}, \\
& M^{0}=\mathcal{O}_{\mathbb{P}^{3}}(-1) \oplus V_{6} \otimes \mathcal{O}_{\mathbb{P}^{3}}^{\oplus 6} \oplus \mathcal{O}_{\mathbb{P}^{3}}(1), \quad M^{-1}=\left(M^{1}\right)^{\vee} .
\end{aligned}
$$

It is known [Hartshorne-Rao, 1991, Table 5.3] that $\mathcal{H} \neq \emptyset$. Note that \mathcal{H} is a constructible subset of $\mathcal{B}(5)$, as well as $\mathcal{G}(2,1)$. We prove
Theorem

$$
\operatorname{dim}(\mathcal{H} \backslash(\mathcal{G}(2,1) \cap \mathcal{H})) \leq 36
$$

Hence the closure of \mathcal{H} in $\mathcal{B}(5)$ does not constitute a component of $\mathcal{B}(5)$.
The idea is to relate the vector bundle $[\mathcal{E}] \in \mathcal{H} \backslash(\mathcal{G}(2,1) \cap \mathcal{H})$ to a certain rank 2 reflexive sheaf

$$
\mathcal{F}=\mathcal{F}\left(M^{\bullet}\right)
$$

with Chern classes $c_{1}(\mathcal{F})=0, c_{2}(\mathcal{F})=2$ and $c_{3}(\mathcal{F})=2 k, 0 \leq k \leq 6$.

Proof of Theorem 2

Namely, M^{\bullet} yields a display diagram in which α_{0} and β_{0} are the induced morphisms:

Since there is a unique (up to a scalar multiple) quotient morphism $M^{0} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)$, we have well-defined morphisms

$$
\begin{gathered}
\tilde{\alpha}: \mathcal{O}_{\mathbb{P}^{3}}(-1)^{\oplus 2} \stackrel{\alpha_{0}}{\longrightarrow} M^{0} \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1) \\
\tilde{\beta}: \mathcal{O}_{\mathbb{P}^{3}}(1) \hookrightarrow M^{0} \xrightarrow{\beta_{0}} \mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 2} .
\end{gathered}
$$

Proof of Theorem 2

The sheaf $\mathcal{F}\left(M^{\bullet}\right)$ is constructed in the following way: It occurs that the only possible case for $\tilde{\alpha}$ and $\tilde{\beta}$ is

$$
\tilde{\alpha}=\tilde{\beta}=0 .
$$

This condition and some standard diagram chasing with the above display imply that there exist a uniquely defined monomorphism $j: \mathcal{O}_{\mathbb{P}^{3}}(1) \mapsto E:=\frac{\operatorname{ker} \beta_{0}}{\operatorname{im} \alpha_{0}}$ and, respectively, a uniquely defined epimorphism $\varepsilon: \operatorname{coker}(j) \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-1)$. Then $\mathcal{F}\left(M^{\bullet}\right)$ is defined as

$$
\mathcal{F}\left(M^{\bullet}\right):=\operatorname{ker}(\varepsilon)
$$

Again, a diagram chasing with the above display induces a monad:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2) \xrightarrow{\sigma} E \rightarrow \mathcal{O}_{\mathbb{P}^{3}}(2) \rightarrow 0, \quad \text { with } \quad \mathcal{E}=\mathcal{H}^{0}(E),
$$

and uniquely defined monomorphisms $j^{\prime}: \mathcal{O}_{\mathbb{P}^{3}}(1) \hookrightarrow \operatorname{coker}(\sigma)$ and $j^{\prime \prime}: \mathcal{O}_{\mathbb{P}^{3}}(-1) \longmapsto \mathcal{O}_{\mathbb{P}^{3}}$, and we set

Proof of Theorem 2

$$
\mathcal{L}=\mathcal{L}\left(M^{\bullet}\right):=\operatorname{coker}\left(j^{\prime}\right), \quad \mathbb{P}^{2}=\mathbb{P}^{2}\left(M^{\bullet}\right):=\operatorname{Supp}\left(\operatorname{coker}\left(j^{\prime \prime}\right)\right)
$$

Claim:
(i) The sheaf $\mathcal{L}=\mathcal{L}\left(M^{\bullet}\right)$ is a stable reflexive rank 2 sheaf on \mathbb{P}^{3},
$[\mathcal{L}] \in \mathcal{R}(1,4,6)$.
(ii) The sheaf $\mathcal{F}=\mathcal{F}\left(M^{\bullet}\right)$ is a reflexive rank 2 sheaf on \mathbb{P}^{3}, fitting in an exact triple

$$
0 \rightarrow \mathcal{F} \rightarrow \mathcal{L} \rightarrow \mathcal{I}_{W, \mathbb{P}^{2}}(-1) \rightarrow 0
$$

and in its dual

$$
0 \rightarrow \mathcal{L}(-1) \rightarrow \mathcal{F} \rightarrow \mathcal{I}_{Z, \mathbb{P}^{2}}(2) \rightarrow 0
$$

where $\mathbb{P}^{2}=\mathbb{P}^{2}\left(M^{\bullet}\right), Z$ and W are subschemes of $\mathbb{P}^{2}, \operatorname{dim} Z \leq 0$, $\operatorname{dim} W \leq 0$, and

$$
\ell(Z)+\ell(W)=6
$$

Chern classes of \mathcal{F} are $c_{1}(\mathcal{F})=0, c_{2}(\mathcal{F})=2,0 \leq c_{3}(\mathcal{F})=2 \ell(W) \leq 12$,
i.e.,

$$
[\mathcal{F}] \in \bigsqcup_{0 \leq k \leq 6} \mathcal{R}_{k}, \quad \mathcal{R}_{k}:=\mathcal{R}(0,2,2 k) .
$$

Proof of Theorem 2

The relation between the sheaf $\mathcal{E}=\mathcal{H}^{0}\left(M^{\bullet}\right)$ and the reflexive sheaf \mathcal{F} constructed above is given by the following

Proposition

There is an inclusion

$$
\mathcal{H} \backslash(\mathcal{H} \cap \mathcal{G}(2,1)) \subset \bigsqcup_{0 \leq k \leq 6} \mathcal{H}_{k}, \quad \text { where }
$$

$\mathcal{H}_{k}=\left\{[\mathcal{E}] \in \mathcal{B}(5) \mid \mathcal{E}\right.$ is obtained from \mathcal{F}, where $[\mathcal{F}] \in \mathcal{R}_{k}$,
by the two subsequent elementary transformations (1) below\},

$$
\begin{aligned}
& 0 \rightarrow \mathcal{L}(-1) \rightarrow \mathcal{F} \rightarrow \mathcal{I}_{Z, \mathbb{P}^{2}}(2) \rightarrow 0, \\
& 0 \rightarrow \mathcal{E} \rightarrow \mathcal{L} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(2) \rightarrow 0,
\end{aligned}
$$

where \mathbb{P}^{2} is some plane in $\mathbb{P}^{3}, Z \subset \mathbb{P}^{2}, \operatorname{dim} Z \leq 0, \ell(Z)=6-k$, and \mathcal{L} is a stable reflexive sheaf from $\mathcal{R}(1,4,6)$.

Proof of Theorem 2

Properties of the reflexive sheaf \mathcal{F} are reflected in the following statements. (Here we denote by \mathcal{R}_{k}^{s} and \mathcal{R}_{k}^{u} the moduli spaces of stable and unstable reflexive sheaves from \mathcal{R}_{k}, respectively.)
Claim:
(i) $\mathcal{R}_{k}^{u} \neq \emptyset$ only for $0 \leq k \leq 3$, and any sheaf \mathcal{F} from \mathcal{R}_{k}^{u} fits in an exact triple

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \xrightarrow{s} \mathcal{F} \xrightarrow{u} \mathcal{I}_{C, \mathbb{P}^{3}} \rightarrow 0
$$

where $C=\operatorname{Sing}\left(\mathcal{F} / \mathcal{O}_{\mathbb{P}^{3}}\right)$ is a l.c.i. curve of degree 2 in \mathbb{P}^{3},
$\chi\left(\mathcal{O}_{C}\right)=4-\frac{1}{2} c_{3}(\mathcal{F})=4-k$.
(ii) If C is reduced, then either $c_{3}(\mathcal{F})=4$ and C is a disjoint union $I_{1} \sqcup I_{2}$ of two projective lines in \mathbb{P}^{3}, or $c_{3}(\mathcal{F})=6$, then C is a plane conic in \mathbb{P}^{3}. (iii) If C is nonreduced then C is the scheme structure of multiplicity two on a projective line I in \mathbb{P}^{3} defined by an exact sequence

$$
0 \rightarrow \mathcal{I}_{C, \mathbb{P}^{3}} \rightarrow \mathcal{I}_{l, \mathbb{P}^{3}} \rightarrow \mathcal{O}_{l}(m) \rightarrow 0, \quad-1 \leq m=2-k \leq 2
$$

(iv) The moduli spaces \mathcal{R}_{k}^{u} are varieties of $\operatorname{dimensions~} \operatorname{dim} \mathcal{R}_{0}^{u}=\operatorname{dim} \mathcal{R}_{3}^{u}$
$=14, \operatorname{dim} \mathcal{R}_{1}^{u}=\operatorname{dim} \mathcal{R}_{2}^{u}=13$, and they are fine.

Proof of Theorem 2

Claim:
Suppose that $[\mathcal{F}] \in \mathcal{R}_{k}^{s}$. Then the following statements hold.
(i) $\mathcal{R}_{k}^{s} \neq \emptyset$ only for $0 \leq k \leq 2$.
(ii) $\operatorname{dim} \mathcal{R}_{k}^{s}=13, k=0,1,2$.
(iii) For $0 \leq k \leq 2$ and any $[\mathcal{F}] \in \mathcal{R}_{k}^{s}$,
$\operatorname{dim} \operatorname{Ext}^{1}(\mathcal{F}, \mathcal{F})=13, \quad \operatorname{Ext}^{2}(\mathcal{F}, \mathcal{F})=0$.
(iv) For any $\mathbb{P}^{2} \subset \mathbb{P}^{3}, h^{0}\left(\mathcal{F}_{\mathbb{P}^{2}}(2)\right)=10, h^{1}\left(\mathcal{F}_{\mathbb{P}^{2}}(2)\right)=0$.

Using these two claims, together with the above Proposition on a pair of elementary transformations from \mathcal{F} to \mathcal{E}, we eventually obtain the desired result that $\operatorname{dim}(\mathcal{H} \backslash(\mathcal{G}(2,1) \cap \mathcal{H})) \leq 36$.

To finish the proof of Theorem 2, we make the following remarks.
\square

Proof of Theorem 2

Claim:
Suppose that $[\mathcal{F}] \in \mathcal{R}_{k}^{s}$. Then the following statements hold.
(i) $\mathcal{R}_{k}^{s} \neq \emptyset$ only for $0 \leq k \leq 2$.
(ii) $\operatorname{dim} \mathcal{R}_{k}^{s}=13, k=0,1,2$.
(iii) For $0 \leq k \leq 2$ and any $[\mathcal{F}] \in \mathcal{R}_{k}^{s}$,
$\operatorname{dim} \operatorname{Ext}^{1}(\mathcal{F}, \mathcal{F})=13, \quad \operatorname{Ext}^{2}(\mathcal{F}, \mathcal{F})=0$.
(iv) For any $\mathbb{P}^{2} \subset \mathbb{P}^{3}, h^{0}\left(\mathcal{F}_{\mathbb{P}^{2}}(2)\right)=10, h^{1}\left(\mathcal{F}_{\mathbb{P}^{2}}(2)\right)=0$.

Using these two claims, together with the above Proposition on a pair of elementary transformations from \mathcal{F} to \mathcal{E}, we eventually obtain the desired result that $\operatorname{dim}(\mathcal{H} \backslash(\mathcal{G}(2,1) \cap \mathcal{H})) \leq 36$.

To finish the proof of Theorem 2, we make the following remarks.
The first ingredient is the result of [Hartshorne-Rao, 1991, Table 5.3, case 5.(1)-(4)] saying that every bundle in $\mathcal{B}(5)$ is cohomology of one of the monads (1)-(5).

Proof of Theorem 2

It is known that the Atiyah-Rees α-invariant of E is invariant on the connected components of the moduli space of stable vector bundles on \mathbb{P}^{3}. One can easily check that the cohomologies of monads of the form (1) and (2) have α-invariant equal to 0 , while the cohomologies of the monads (3), (4) and (5) have α-invariant equal to 1 .

$$
\begin{aligned}
& \text { Rao, } 1987 \text { : the family of cohomology bundles of monads of the form }(2) \\
& \text { is irreducible, of dimension } 36 \text {, and it lies in a unique component of } \mathcal{B}(5) \text {, } \\
& \text { Since instanton bundles of charge } 5 \text {, i. e. the cohomologies of monads } \\
& \text { (1), yield an irreducible family of dimension } 37 \text {, it follows that the set } \\
& \qquad \mathcal{I}:=\{[E] \in \mathcal{B}(5) \mid \alpha(E)=0\}
\end{aligned}
$$

forms a single irreducible component of $\mathcal{B}(5)$, of dimension 37 , whose generic point corresponds to an instanton bundle. In addition, every $[E] \in \mathcal{I}$ satisfies $h^{1}(\mathcal{E} n d(E))=37$; this was originaly proved by Katsylo and Ottaviani in 2004 for instanton bundles, and by Rao in 1987 for the cohomologies of monads (2). Therefore, \mathcal{I} is nonsingular. This completes the proof of the first statement (i) of the Main Theorem 1.

Proof of Theorem 2

It is known that the Atiyah-Rees α-invariant of E is invariant on the connected components of the moduli space of stable vector bundles on \mathbb{P}^{3}. One can easily check that the cohomologies of monads of the form (1) and (2) have α-invariant equal to 0 , while the cohomologies of the monads (3), (4) and (5) have α-invariant equal to 1 .

Rao, 1987: the family of cohomology bundles of monads of the form (2) is irreducible, of dimension 36 , and it lies in a unique component of $\mathcal{B}(5)$. Since instanton bundles of charge 5 , i. e. the cohomologies of monads (1), yield an irreducible family of dimension 37, it follows that the set

$$
\begin{equation*}
\mathcal{I}:=\{[E] \in \mathcal{B}(5) \mid \alpha(E)=0\} \tag{*}
\end{equation*}
$$

forms a single irreducible component of $\mathcal{B}(5)$, of dimension 37 , whose generic point corresponds to an instanton bundle. In addition, every $[E] \in \mathcal{I}$ satisfies $h^{1}(\mathcal{E} n d(E))=37$; this was originaly proved by Katsylo and Ottaviani in 2004 for instanton bundles, and by Rao in 1987 for the cohomologies of monads (2). Therefore, \mathcal{I} is nonsingular. This completes the proof of the first statement (i) of the Main Theorem 1.

Proof of Theorem 2

Our next step is to analyse bundles with α-invariant equal to 1 . Hartshorne, 1980: the family \mathcal{K} of stable rank 2 bundles E with $c_{1}(E)=0$ and $c_{2}(E)=5$ with spectrum $(-2,-1,0,1,2)$ is an irreducible, nonsigular family of dimension 40, and from the definition of spectrum one has

$$
h^{1}(\mathcal{E}(-2))=3, \quad[\mathcal{E}] \in \mathcal{K} . \quad(* *)
$$

[Hartshorne-Rao, 1991, Table 5.3, case 5.(4)]: bundles from \mathcal{K} are precisely those given as cohomologies of monads (3). This is a particular case of a class of monads studied by Ein in 1988. Ein shows that the closure $\overline{\mathcal{K}}$ of \mathcal{K} in $\mathcal{B}(5)$ is an irreducible component of $\mathcal{B}(5)$ of dimension 40.

Main Theorem 1, case $a=2$: bundles arising as cohomology of monads
(4) (modified instantons) form a dense subset $\mathcal{G}(2,1)$ of a rational irreducible component of dimension 37. Consider the above studied set \mathcal{H} of cohomology bundles of monads (5). Since the bundles from $\mathcal{G}(2,1) \cup \mathcal{H}$ have the spectrum $(-1,0,0,0,1)$ by [Hartshorne-Rao, 1991 Table 5.3, case 5.(2)], we have

Proof of Theorem 2

Our next step is to analyse bundles with α-invariant equal to 1 . Hartshorne, 1980: the family \mathcal{K} of stable rank 2 bundles E with $c_{1}(E)=0$ and $c_{2}(E)=5$ with spectrum $(-2,-1,0,1,2)$ is an irreducible, nonsigular family of dimension 40, and from the definition of spectrum one has

$$
h^{1}(\mathcal{E}(-2))=3, \quad[\mathcal{E}] \in \mathcal{K} . \quad(* *)
$$

[Hartshorne-Rao, 1991, Table 5.3, case 5.(4)]: bundles from \mathcal{K} are precisely those given as cohomologies of monads (3). This is a particular case of a class of monads studied by Ein in 1988. Ein shows that the closure $\overline{\mathcal{K}}$ of \mathcal{K} in $\mathcal{B}(5)$ is an irreducible component of $\mathcal{B}(5)$ of dimension 40.

Main Theorem 1, case $a=2$: bundles arising as cohomology of monads (4) (modified instantons) form a dense subset $\mathcal{G}(2,1)$ of a rational irreducible component of dimension 37. Consider the above studied set \mathcal{H} of cohomology bundles of monads (5). Since the bundles from $\mathcal{G}(2,1) \cup \mathcal{H}$ have the spectrum $(-1,0,0,0,1)$ by [Hartshorne-Rao, 1991, Table 5.3, case 5.(2)], we have

$$
h^{1}(\mathcal{E}(-2))=1, \quad[\mathcal{E}] \in \mathcal{G}(2,1) \cup \mathcal{H}, \quad(* * *)
$$

Proof of Theorem 2

so that $\alpha(\mathcal{E})=1$, and therefore, in view of $\left({ }^{*}\right), \mathcal{H} \cap \mathcal{I}=\emptyset$. As we have seen in Theorem on the dimension of \mathcal{H}, \mathcal{H} does not constitute a component in $\mathcal{B}(5)$, it then follows from the above that

$$
\mathcal{H} \subset \overline{\mathcal{G}(2,1)} \cup \overline{\mathcal{K}}
$$

Proposition

$\mathcal{H} \subset \overline{\mathcal{G}(2,1)}$ and $\overline{\mathcal{K}}=\mathcal{K}$.
Proof. We only have to show that $(\mathcal{G}(2,1) \cup \mathcal{H}) \cap \overline{\mathcal{K}}=\emptyset$. Suppose by contradiction that there exists a vector bundle $[\mathcal{E}] \in(\mathcal{G}(2,1) \cup \mathcal{H}) \cap \overline{\mathcal{K}}$. By $\left({ }^{* *}\right)$ and the inferior semi-continuity of the dimension of the cohomology groups of coherent sheaves, one has that $h^{1}(\mathcal{E}(-2)) \geq 3$, contrary to (***).

This last proposition finally concludes the proof of Main Theorem 2.

